
Effective Static Deadlock Detection

Mayur Naik
Intel Research

mayur.naik@intel.com

Chang-Seo Park and Koushik Sen
UC Berkeley

{parkcs,ksen}@cs.berkeley.edu

David Gay
Intel Research

david.e.gay@intel.com

Abstract

We present an effective static deadlock detection algo-
rithm for Java. Our algorithm uses a novel combination of
static analyses each of which approximates a different nec-
essary condition for a deadlock. We have implemented the
algorithm and report upon our experience applying it to a
suite of multi-threaded Java programs. While neither sound
nor complete, our approach is effective in practice, finding
all known deadlocks as well as discovering previously un-
known ones in our benchmarks with few false alarms.

1 Introduction

A deadlock in a shared-memory multi-threaded program
is an unintended condition in which a set of threads blocks
forever because each thread in the set is waiting to acquire
a lock already held by another thread in the set. Today’s
concurrent programs are riddled with deadlocks—a prob-
lem further exacerbated by the shift to multicore proces-
sors. For instance, roughly 6500/198,000 (∼ 3%) of the bug
reports in Sun’s bug database at http://bugs.sun.com
involve the keyword “deadlock”. Moreover, fixing other
concurrency problems like races often involves introduc-
ing new synchronization, which in turn can introduce new
deadlocks. Hence, static deadlock detection is valuable for
testing and debugging such programs.
Previous static deadlock detection approaches are based

on type systems [3,4], dataflow analyses [1,7,12,13,17,19,
21], or model checking [5, 6, 11] (Section 7). The annota-
tion burden for type-based approaches is often significant
while model checking approaches currently do not scale to
beyond a few thousand lines of code. Approaches based on
dataflow analysis, on the other hand, have been applied to
large programs but are highly imprecise.
In this paper, we present an effective static deadlock de-

tection algorithm for Java (Section 3). Conceptually, our
algorithm considers every tuple (ta, la1 , la2 , tb, lb1, l

b
2), where

ta, tb denote abstract threads and la1 , la2 , lb1, lb2 denote lock
acquisition statements, and checks if any pair of threads ab-

stracted by ta and tb may deadlock by waiting to acquire
a pair of locks z1 and z2 at la2 and lb2, while already hold-
ing locks z2 and z1 at la1 and lb1. Our key idea is to ex-
press the complex property of deadlock freedom for a pair
of threads/locks—a problem that no existing static analysis
can directly solve effectively—in terms of six problems that
can be solved effectively using existing static analyses:

• reachable: In some execution of the program, can a
thread abstracted by ta reach la1 and, after acquiring a
lock at la1 , proceed to reach la2 while still holding the
lock (and similarly for tb, lb1, lb2)?

• aliasing: In some execution of the program, can a lock
acquired at la1 be the same as a lock acquired at lb2 (and
similarly for la2 , lb1)?

• escaping: In some execution of the program, can a lock
acquired at la1 be accessible from more than one thread
(and similarly for each of la2 , lb1, and lb2)?

• parallel: In some execution of the program, can dif-
ferent threads abstracted by ta and tb simultaneously
reach la2 and lb2, respectively?

• non-reentrant: In some execution of the program, can
a thread abstracted by ta acquire a lock at la1 it does
not already hold and, while holding that lock, proceed
to acquire a lock at la2 it does not already hold (and
similarly for tb, lb1, lb2)? If the thread acquires the same
lock it already holds then the second lock acquisition
cannot cause a deadlock as locks are reentrant in Java.

• non-guarded: In some execution of the program, can
different threads abstracted by ta and tb reach la1 and
lb1, respectively, without holding a common lock? If the
two threads already hold a common lock then we call
it a guarding lock (also called a gate lock [10]).

Each of these six necessary conditions is undecidable.
Thus, any solution to each of them is necessarily unsound or
incomplete. Our algorithm soundly approximates the first
four conditions using well-known static analyses, namely, a
call-graph analysis, a may-alias analysis, a thread-escape

analysis, and a may-happen-in-parallel analysis, respec-
tively. Soundly approximating the last two conditions, how-
ever, requires a must-alias analysis, which is much harder
than may-alias analysis. We address this problem using a
common unsound solution: we use our may-alias analysis
to masquerade as a must-alias analysis—as a result, we may
fail to report some real deadlocks.
We may also report false deadlocks, either due to im-

precision in our approximation of the six conditions, or
because the deadlock is prevented by some condition not
considered by our algorithm (Section 6). However, our ap-
proach is extensible: additional conditions, perhaps specific
to the language or even the application at hand, can easily
be added. In fact, the non-guarded and non-reentrant con-
ditions specifically target Java programs. These idioms, if
not identified, cause any static deadlock detector for Java to
report overwhelmingly many false deadlocks [10, 21].
Our algorithm, while unsound and incomplete, is effec-

tive in practice. We have implemented it in a tool JADE
(Section 4) and applied it to a suite of multi-threaded Java
programs comprising over 1.5 MLOC. Our approach found
all known deadlocks as well as discovered previously un-
known ones in the suite, with few false alarms (Section 5).

2 Example

We first illustrate our approach on a real-world case:
the JDK’s logging facilities from package java.util.
logging. These facilities are provided as a library whereas
our approach uses whole-program static analyses and thus
requires a closed program, i.e., a complete program with a
main method. So the first step in applying our approach to
an open program such as a library is to build a harness that
simulates clients exercising the interface of the program.
Currently, we construct harnesses manually. Our algorithm
is not path-sensitive and it ignores the values of primitive
data. Hence, it neither requires a detailed, fully concrete
harness nor test input data.
A snippet of our harness for this example is shown in

class Harness in Figure 1. For brevity, we omit access
qualifiers on classes, methods, and fields. Also, we label
object allocation sites h1–h3, synchronized methods m1–
m3, and thread run methods m4 and m5. The harness
creates and starts two threads which we identify by their
object allocation sites h1 and h2. Thread h1 calls static
method Logger.getLogger, which returns the unique
logger having the specified name, creating the logger if
it does not already exist in the global logger manager.
This manager, allocated at site h3 and stored in static field
LogManager.manager, maintains all existing loggers in
a hashtable. On the other hand, thread h2 calls instance
method LogManager.addLogger, which adds the speci-
fied logger to the global logger manager’s hashtable if it

class Harness {
static void main(String[] args) {

11: Thread v1 = newh1 Thread() {
void runm4() {

13: Logger.getLogger(...);
}};

v1.start();
16: Thread v2 = newh2 Thread() {

void runm5() {
18: LogManager.manager.addLogger(...);

}};
v2.start();

}
}

// snippet of java/util/logging/Logger.java
class Logger {
226: static syncm1 Logger getLogger(String name) {

LogManager lm = LogManager.manager;
228: Logger l = lm.getLogger(name);

if (l == null) {
l = new Logger(...);

231: lm.addLogger(l);
}
return l;

}
}

// snippet of java/util/logging/LogManager.java
class LogManager {

static final LogManager manager =
155: newh3 LogManager();

Hashtable loggers = new Hashtable();
280: syncm2 boolean addLogger(Logger l) {

String name = l.getName();
if (!loggers.put(name, l))

return false;
// ensure l’s parents are instantiated
for (...) {

String pname = ...;
314: Logger.getLogger(pname);

}
return true;

}
420: syncm3 Logger getLogger(String name) {

return (Logger) loggers.get(name);
}

}

Figure 1. Example Java program.

*** Stack trace of thread <Harness.java:11>:
LogManager.addLogger (LogManager.java:280)

- this allocated at <LogManager.java:155>
- waiting to lock {<LogManager.java:155>}

Logger.getLogger (Logger.java:231)
- holds lock {<Logger.java:0>}

Harness$1.run (Harness.java:13)

*** Stack trace of thread <Harness.java:16>:
Logger.getLogger (Logger.java:226)

- waiting to lock {<Logger.java:0>}
LogManager.addLogger (LogManager.java:314)

- this allocated at <LogManager.java:155>
- holds lock {<LogManager.java:155>}

Harness$2.run (Harness.java:18)

Figure 2. Example deadlock report.

does not already contain a logger with that name.
Our algorithm reports the counterexample shown in

Figure 2 for this program. It is similar to a thread stack
dump output by a dynamic tool except that it is produced
by a static tool and hence may denote a false deadlock.
To improve usability we provide additional details to help
users determine whether the counterexample denotes a real
deadlock or a false positive. First, although we cannot
provide concrete addresses of threads, we can identify
their allocation sites. For instance, the counterexample in
Figure 2 reports a deadlock between threads h1 and h2,
identified by allocation sites <Harness.java:11> and
<Harness.java:16>, respectively. Likewise, instead
of providing concrete addresses of locks, we provide
abstract locks. An abstract lock is a set of abstract objects
where each abstract object is a site at which the lock
may be allocated. More generally, abstract objects may
be sequences of multiple such sites, allowing different
objects allocated at the same site to be distinguished (Sec-
tion 3.1). In Figure 2, {<LogManager.java:155>}
denotes the lock on the LogManager object allo-
cated at site h3 at LogManager.java:155 and
stored in static field LogManager.manager while
{<Logger.java:0>} denotes the lock on the implicitly
allocated java.lang.Class object stored in the implicit
static field Logger.class.
Finally, each instance method called in each stack trace

is coupled with an abstract object denoting the site at which
the distinguished this variable of that method is allocated.
In Figure 2, instance method LogManager.addLogger in
either stack trace is called in a context in which its this
variable is allocated at site h3 at LogManager.java:155.
In more complex programs, the same method may be ana-
lyzed in multiple contexts (Section 3.1).
It is easy to see that the above counterexample de-

notes a real deadlock: thread h1 waits to acquire the
lock on LogManager.manager while holding the lock
on Logger.class, whereas thread h2 waits to acquire
the lock on Logger.class while holding the lock on
LogManager.manager.
Our algorithm reports another counterexample for

the above program; the only difference is that the top-
most call in the stack trace of thread h1 is to method
LogManager.getLogger from call site Logger.
getLogger (Logger.java:228) instead of to method
LogManager.addLogger from call site Logger.
getLogger (Logger.java:231). Both methods attempt
to acquire the same lock, on LogManager.manager, and
hence both counterexamples denote the same deadlock.
In our experience, our algorithm’s ability to report all
possible ways in which the same deadlock may occur
helps in determining the best fix for the deadlock. In the
above program, for instance, both counterexamples (and

(method) m ∈ M = {mmain, mstart, ...}
(local var.) v ∈ V

(alloc. site) h ∈ H

(list) [h1 :: . . . :: hn] ∈ H
n

(abstract object) o ∈ O = H
0 ∪ H

1 ∪ H
2 ∪ . . .

(abstract context) c, t, l ∈ C = O × M

(synchronized argument) sync : C ⇀ V

(call graph) cg ⊆ (C × C)
(points-to for locals) pt ⊆ (C × V × O)

(thread-escape) esc ⊆ (C × V)
(may-happen-in-parallel) mhp ⊆ (C × C × C)

Figure 3. Notation.

many similar ones resulting from parts of the program not
shown here) contain the same last call in the stack trace of
thread h2, namely, code Logger.getLogger(pname) at
LogManager.java:314. Indeed, the fix for this deadlock
is to replace this code by the inlined body of method
Logger.getLogger without its synchronization so that it
does not hold the lock on Logger.class.

3 Algorithm

Our algorithm is based on sound and unsound approxi-
mations of our six necessary conditions (Section 3.2). Ef-
fectively approximating these conditions needs precise call-
graph and points-to information—we use a form of com-
bined call-graph and may-alias analysis called k-object-
sensitive analysis [14] (Section 3.1). Finally, to improve
usability, our algorithm generates and groups counter-
examples to explain the deadlocks it detects (Section 3.3).
Before presenting our algorithm, we summarize our no-

tation (Figure 3). Our algorithm takes as input a closed
program with a main method denoted mmain. We use
M to denote the set of all method implementations that
may be reachable from mmain. M may be a crude
over-approximation, e.g., one computed by Class Hier-
archy Analysis (CHA). We use mstart ∈ M to denote
the start() method of class java.lang.Thread, the
method used to explicitly spawn a thread. We use V to de-
note the set of all local variables referenced by methods in
M. We presume that each methodm ∈ M may be synchro-
nized on any one of its arguments, specified by sync((o,m))
(o is irrelevant but simplifies our notation), but does not con-
tain any other synchronized blocks in its body. If methodm

is not synchronized, then the partial function sync is not de-
fined at (o,m). It is easy to transform any Java program to
satisfy this restriction (Section 4).
Figure 3 also shows the relations produced by our four

sound whole-program static analyses: call-graph analysis

(cg), may-alias analysis (pt), thread-escape analysis (esc),
and may-happen-in-parallel analysis (mhp). These relations
are the ones we need to define our deadlock detector; inter-
nally our analyses track information in greater detail (e.g.,
the may-alias analysis tracks the contents of the heap and
static fields). We outline how pt and cg are computed in
Section 3.1; we reuse the thread-escape analysis and may-
happen-in-parallel analysis from earlier work [15].

3.1 k-Object-Sensitive Analysis

k-object-sensitive analysis [14] is an object sensitive,
context sensitive, and flow insensitive analysis that com-
putes call-graph and points-to approximations.
The analysis is object sensitive in that it can represent

different objects allocated at the same site by potentially dif-
ferent abstract objects. An abstract object o ∈ O is a finite
sequence of object allocation sites denoted [h1 :: ... :: hn].
The first allocation site h1 is the represented object’s allo-
cation site. The subsequent allocation sites [h2 :: ... :: hn]
represent the object denoted by the distinguished this vari-
able of the method where o was allocated—thus, that this
object was allocated at h2, in a method whose this object
is represented by [h3 :: ... ::hn], and so on. For static meth-
ods, which lack the this variable, we represent the this
object by [] (which represents no objects).
The analysis is also context sensitive in that it can an-

alyze each method implementation in potentially multiple
abstract contexts. An abstract context c ∈ C is a pair (o,m)
of an abstract object o and a methodm such that o abstracts
the this object ofm; as above, for static methods o = [].
Finally, the analysis is flow insensitive as it computes

global (instead of per program point) points-to information.
This, however, does not adversely affect the precision of the
analysis on local variables as our implementation operates
on a Static Single Assignment (SSA) representation of the
program (Section 4).
The analysis produces the following relations:

• cg ⊆ (C × C), the context-sensitive call graph, con-
tains each tuple ((o1,m1), (o2,m2)) such that method
m1 may call method m2 with its this object ab-
stracted by o2 when the this object of m1 is ab-
stracted by o1.

• pt ⊆ (C × V × O), the points-to information for local
variables, contains each tuple (c, v, o) such that local
variable v may point to abstract object o in abstract
context c.

We illustrate how k-object-sensitive analysis com-
putes these relations for our running example from Fig-
ure 1, concentrating on how object allocation sites and
method call sites are handled. The analysis begins

by deeming reachable the contexts of the main method
([], Harness.main) and of every class initializer method
(e.g., ([], LogManager.<clinit>)). As the analysis is
flow insensitive, whenever a context (o,m) is reachable, ev-
ery statement in the body ofm is reachable.
The analysis presumes a positive integer associated with

each object allocation site, called the k-value of that site.
Consider any such site v = newh..., where h ∈ H and
v ∈ V, in a method m that the analysis deems reach-
able in a context (o,m). Then, the analysis adds tuple
((o,m), v, h⊕ko) to relation pt, where h⊕ko is a finite non-
empty sequence of object allocation sites whose head is h
and whose tail comprises at most the k − 1 most significant
sites in o in order. Our deadlock detection algorithm auto-
matically chooses potentially different k-values for differ-
ent sites (Section 4). For our running example, however, we
presume k = 1 for all sites. The initially reachable context
([], Harness.main) contains object allocation statements:

v1 = newh1 . . . and v2 = newh2 . . .

and so the analysis adds the following tuples to pt:

(([], Harness.main), v1, [h1])
(([], Harness.main), v2, [h2])

If n(. . .) is a static method call in a reachable context
(o,m), the analysis adds tuple ((o,m), ([], n)) to cg. Also,
the analysis henceforth deems context ([], n) reachable.
If v.n(. . .) is an instance method call, then the target

method depends upon the run-time type of the object de-
noted by v. Every ((o,m), v, [h1 :: ... :: hn]) ∈ pt denotes
a target in a potentially different context. The analysis thus
adds ((o,m), ([h1 :: ... :: hn], n′)) to cg, where n′ is the
target of a call to n for an object allocated at site h1. We
must also add (([h1 :: ... :: hn], n′), this, [h1 :: ... :: hn])
to pt—this treatment of the this argument is key to pre-
cision [14]. Also, the analysis henceforth deems context
([h1 :: ... :: hn], n′) reachable. Furthermore, if n′ = mstart

(a thread is started), the context ([h1 :: ... :: hn], n′′) is also
deemed reachable, where n′′ is the run() method of the
class allocated at h1.
For our running example, since the analysis has deemed

context ([], Harness.main) reachable and Harness.main
contains calls v1.start() and v2.start(), the analysis
adds the following tuples to cg:

(([], Harness.main), ([h1],mstart))
(([], Harness.main), ([h2],mstart))

and deems contexts ([h1],m4) and ([h2],m5) of the respec-
tive run() methods reachable.

3.2 Deadlock Computation

Our deadlock detection algorithm represents threads (t)
by the abstract context of the thread’s entry method, and

(Reachability) c1 → c2 ! L iff ∃n : c1 →n c2 ! L where:
(1) c →0 c ! ∅

(2) c1 →n+1 c2 ! L′ iff ∃c, L : c1 →n c ! L ∧ (c, c2) ∈ cg ∧ L′ =

{

L ∪ {c} if sync(c) defined
L otherwise

(Lock Aliasing) mayAlias(l1, l2) iff ∃o : (l1, sync(l1), o) ∈ pt ∧ (l2, sync(l2), o) ∈ pt
(Lock-set Aliasing) mayAlias(L1, L2) iff ∃l1 ∈ L1, l2 ∈ L2 : mayAlias(l1, l2)

Figure 4. Reachability, locks, and aliasing.

lock acquisitions (l) by the abstract context of synchronized
methods; the latter suffices as we presume that methods do
not contain any synchronized blocks in their body. We rep-
resent sets of held locks (L) by sets of abstract contexts of
synchronized methods that acquire the corresponding locks.
Figure 4 defines some properties of threads, lock acquisi-

tions, and lock sets that we derive from pt and cg and use in
the rest of our algorithm. We use c1 → c2 !L to denote that
context c2 may be reachable from context c1 along some
path in some thread, and, moreover, a thread executing that
path may hold set of locks L upon reaching c2 (we elide !L

when the locks are irrelevant). We use mayAlias(l1, l2) to
denote that lock acquisitions at l1 and l2 may acquire the
same lock. We extend mayAlias to lock sets as usual.
We use reachability (→) to approximate the set of

startable threads and reachable lock acquisitions:

threads = {x |∃n : x ∈ threadsn } where
threads0 = { ([],mmain) }

threadsn+1 = threadsn ∪
{ (o, run) | c ∈ threadsn ∧ c → (o,mstart) }

locks = { c | c′ ∈ threads ∧ c′ → c ∧ sync(c) defined }

For our running example, we have:

threads = { ([],mmain), t1, t2 }
locks = { l1, l2, l3 }

t1 ! ([h1],m4) t2 ! ([h2],m5)
l1 ! ([],m1) l2 ! ([h3],m2) l3 ! ([h3],m3)

A deadlock six-tuple d = (ta, la1 , la2 , tb, lb1, l
b
2) denotes a

deadlock involving a pair of locks z1 and z2 such that thread
ta holds lock z1 it acquired at synchronized method la1 and
is waiting to acquire lock z2 at la2 while thread tb holds lock
z2 it acquired at synchronized method lb1 and is waiting to
acquire lock z1 at lb2. Conceptually, our deadlock detection
algorithm simply filters all potential deadlocks through our
six necessary conditions, computing the final set of poten-
tial deadlocks to be reported as:

finalDeadlocks = { d | d = (ta, la1 , la2 , tb, lb1, l
b
2) ∧

ta, tb ∈ threads ∧ la1 , la2 , lb1, l
b
2 ∈ locks ∧

reachableDeadlock d ∧ aliasingDeadlock d ∧
escapingDeadlock d ∧ parallelDeadlock d ∧
nonReentDeadlock d ∧ nonGrdedDeadlock d }

Our six necessary conditions are formally defined in Sec-
tions 3.2.1–3.2.6 below.
For our running example, we focus on two potential

deadlocks:
d1 ! (t1, l1, l2, t2, l2, l1)
d2 ! (t1, l1, l3, t2, l2, l1)

Each of these tuples denotes a possible deadlock between
abstract threads t1 and t2. In both tuples, thread t2 holds
a lock at l2 (context ([h3],m2)) and is waiting to acquire
a lock at l1 (context ([],m1)). Also, in both tuples, thread
t1 holds a lock at l1, but it is waiting to acquire a lock at l2 in
tuple d1 and a lock at l3 (context ([h3],m3)) in tuple d2. As
we will see, d1 and d2 pass all six conditions and are thus
contained in finalDeadlocks.

3.2.1 Computation of reachableDeadlock

For a tuple (ta, la1 , la2 , tb, lb1, l
b
2) to be a deadlock our reach-

able condition must be satisfied: Can a thread abstracted by
ta reach la1 and, after acquiring a lock at la1 , proceed to reach
la2 while still holding the lock (and similarly for tb, lb1, lb2)?
Our algorithm uses the reachability property (Figure 4)

to approximate this condition:

reachableDeadlock (ta, la1 , la2 , tb, lb1, l
b
2) if

ta → la1 ∧ la1 → la2 ∧ tb → lb1 ∧ lb1 → lb2

For our running example, it is easy to see that thread
t1 reaches l1, then l3 and subsequently l2, while t2 reaches
l2 and then l1. Thus both tuples d1 and d2 satisfy
reachableDeadlock.

3.2.2 Computation of aliasingDeadlock

For a tuple (ta, la1 , la2 , tb, lb1, lb2) to be a deadlock our alias-
ing condition must be satisfied: Can a lock acquired at la1
be the same as a lock acquired at lb2 (and, similarly for la2 ,
lb1)? Our algorithm uses the mayAlias property (Figure 4) to
approximate this condition:

aliasingDeadlock (ta, la1 , la2 , tb, lb1, l
b
2) if

mayAlias(la1 , lb2) ∧ mayAlias(la2 , lb1)

For our running example, both tuples d1 and d2

satisfy aliasingDeadlock: predicates mayAlias(l1, l1) and

mayAlias(l2, l2) hold trivially and hence tuple d1 satisfies
aliasingDeadlock; additionally, mayAlias(l3, l2) holds be-
cause abstract object [h3] satisfies the two conjuncts in the
definition of mayAlias, and hence tuple d2 also satisfies
aliasingDeadlock.

3.2.3 Computation of escapingDeadlock

The JDK contains many classes (e.g. java.util.Vector)
with synchronized methods. When such objects cannot be
accessed by more than one thread, they cannot participate
in a deadlock. Thus, for a tuple (ta, la1 , la2 , tb, lb1, lb2) to be
a deadlock our escaping condition must be satisfied: Can a
lock acquired at la1 be accessible from more than one thread
(and similarly for each of la2 , lb1, lb2)?
We approximate this condition using a thread-escape

analysis. Our application of this analysis to static deadlock
detection appears novel and we quantify the need for it in
our experiments (Section 5).
The thread-escape problem is usually defined as follows:

“In some execution, is some object allocated at a given site
h accessible frommore than one thread?” To increase preci-
sion, we refine the notion of thread-escape to track when an
object escapes. This allows the escaping condition to elim-
inate some deadlock reports on objects that later escape to
other threads. Formally, (c, v) must be in relation esc if ar-
gument v of abstract context cmay be accessible from more
than one thread. Our escaping condition is thus:

escapingDeadlock (ta, la1 , la2 , tb, lb1, l
b
2) if

(la1 , sync(la1)) ∈ esc ∧ (la2 , sync(la2)) ∈ esc ∧
(lb1, sync(lb1)) ∈ esc ∧ (lb2, sync(lb2)) ∈ esc

For our running example, LogManager.manager (l2,
l3) and Logger.class (l1), being static fields, clearly es-
cape everywhere, and so both tuples d1 and d2 satisfy
escapingDeadlock.

3.2.4 Computation of parallelDeadlock

For a tuple (ta, la1 , la2 , tb, lb1, lb2) to be a deadlock our par-
allel condition must be satisfied: Can different threads ab-
stracted by ta and tb simultaneously reach la2 and lb2, respec-
tively? The motivation for checking this condition is two-
fold. First, it eliminates each tuple (t, ∗, ∗, t, ∗, ∗) where t
abstracts at most one thread in any execution. The most
common example of such an abstract thread is ([],mmain),
but it also applies to any thread class allocated at most once
in every execution. The second motivation is that even if
different threads abstracted by ta and tb may be able to
reach la2 and lb2, respectively, the thread structure of the
program may forbid them from doing so simultaneously,
namely, threads ta and tb may be in a “parent-child” rela-
tion, causing la2 to happen before lb2 in all executions.

We approximate these two conditions using a may-
happen-in-parallel analysis that computes relation mhp
which contains each tuple (t1, (o,m), t2) such that a thread
abstracted by t2 may be running in parallel when a thread
abstracted by t1 reaches method m in context o. Our may-
happen-in-parallel analysis is simple and only models the
program’s thread structure, ignoring locks and other kinds
of synchronization (fork-join, barrier, etc). Our parallel
condition is thus:

parallelDeadlock (ta, la1 , la2 , tb, lb1, l
b
2) if

(ta, la2 , tb) ∈ mhp ∧ (tb, lb2, t
a) ∈ mhp

For our running example, clearly nothing prevents t1

and t2 from running in parallel, so tuples d1 and d2 satisfy
parallelDeadlock.

3.2.5 Computation of nonReentDeadlock

In Java, a thread can re-acquire a lock it already holds.
This reentrant lock acquisition cannot cause a deadlock.
Thus, for a tuple (ta, la1 , la2 , tb, lb1, lb2) to be a deadlock our
non-reentrant condition must be satisfied: Can a thread ab-
stracted by ta acquire a lock at la1 it does not already hold
and, while holding that lock, proceed to acquire a lock at la2
it does not already hold (and similarly for tb, lb1, lb2)?
Soundly identifying reentrant locks requires must-alias

analysis. Must-alias analysis, however, is much harder than
may-alias analysis. Instead, we use our may-alias analysis
itself to unsoundly check that whenever a thread abstracted
by t acquires a lock at l1 and, while holding that lock, pro-
ceeds to acquire a lock at l2, then the lock it acquires at l1
or l2 may (soundness requires must) be already held by the
thread—a property approximated by reentrant:

reentrant(t, l1, l2) iff l1 = l2 ∨
(∀L1 : (t → l1 ! L1 =⇒ mayAlias({l1, l2}, L1))) ∨
(∀L2 : (l1 → l2 ! L2 =⇒ mayAlias({l2}, L2)))

Intuitively, the first conjunct checks that the locks acquired
at l1 and l2 may be the same. The second conjunct checks
that when a thread abstracted by t reaches up to but not in-
cluding l1, the set of locks L1 it holds may contain the lock
it will acquire at l1 or l2. The third conjunct checks that
when the thread proceeds from l1 and reaches up to but not
including l2, the set of locks L2 it holds may contain the
lock it will acquire at l2. Next, we use the reentrant predi-
cate to approximate our non-reentrant condition as follows:

nonReentDeadlock (ta, la1 , la2 , tb, lb1, l
b
2) if

¬reentrant(ta, la1 , la2) ∧ ¬reentrant(tb, lb1, lb2)

The above approximation itself is sound but the approxima-
tion performed by the reentrant predicate it uses is unsound;
thus, a tuple that does not satisfy nonReentDeadlock is not
provably deadlock-free.

For our running example, the two locks acquired by ei-
ther thread do not alias, and no locks are acquired prior to
the first lock or between the first and second lock in either
thread, so tuples d1 and d2 satisfy nonReentDeadlock.

3.2.6 Computation of nonGrdedDeadlock

One approach to preventing deadlock is to acquire a com-
mon guarding lock in all threads that might deadlock. Thus,
for a tuple (ta, la1 , la2 , tb, lb1, lb2) to be a deadlock our non-
guarded condition must be satisfied: Can threads abstracted
by ta and tb reach la1 and lb1, respectively, without already
holding a common lock?
Soundly identifying guarding locks, like reentrant locks,

needs a must-alias analysis. We once again use our may-
alias analysis to unsoundly check whether every pair of
threads abstracted by ta and tb may (soundness requires
must) hold a common lock whenever they reach la and lb,
respectively—a property approximated by guarded:

guarded(ta, la, tb, lb) iff ∀L1, L2 :
(ta → la ! L1 ∧ tb → lb ! L2) =⇒ mayAlias(L1, L2)

Then, we use the guarded predicate to approximate our non-
guarded condition as follows:

nonGrdedDeadlock (ta, la1 , la2 , tb, lb1, l
b
2) if

¬ guarded(ta, la1 , tb, lb1)

The above approximation itself is sound but the approxima-
tion performed by the guarded predicate it uses is unsound;
thus, a tuple that does not satisfy nonGrdedDeadlock is not
necessarily deadlock-free.
For our running example, as we saw for

nonReentDeadlock, no locks are acquired prior to the
first lock, so tuples d1 and d2 satisfy nonGrdedDeadlock.

3.3 Post-Processing

Our algorithm reports a counterexample for each tuple
in finalDeadlocks. The counterexample reported for a tuple
(ta, la1 , la2 , tb, lb1, lb2) in finalDeadlocks consists of a pair of
paths P1 and P2 in the context-sensitive call graph denot-
ing possible stack traces of threads abstracted by ta and tb,
respectively, at the point of the deadlock. Specifically, P1

is the shortest path from ta to la2 via la1 and, similarly, P2

is the shortest path from tb to lb2 via lb1. Unlike stack traces
reported by a dynamic tool, however, paths P1 and P2 may
be infeasible; we aid the user in comprehending them by
providing additional details such as the context in which
each instance method along each of those paths is called
and the set of abstract objects of each lock that is synchro-
nized along each of those paths. For our running example,
Figure 2 shows the counterexample reported for tuple d1.

Our algorithm also groups together counterexamples
likely to be symptoms of the same deadlock. For each tuple
(ta, la1 , la2 , tb, lb1, lb2) in finalDeadlocks, it computes a pair of
lock types (τ1, τ2) as the least upper bounds of the types of
abstract objects in the points-to sets O1 and O2 of the two
locks involved in the deadlock where:

O1 = { o | (la1 , sync(la1), o) ∈ pt ∧ (lb2, sync(lb2), o) ∈ pt }
O2 = { o | (la2 , sync(la2), o) ∈ pt ∧ (lb1, sync(lb1), o) ∈ pt }

Then, our algorithm groups together the counterexamples
reported for tuples in finalDeadlocks that have the same pair
of lock types. For our running example, both tuples d1 and
d2 have the same pair of lock types (java.lang.Class,
java.util.logging.LogManager). Hence, our algo-
rithm groups their counterexamples together.

4 Implementation

We implemented our deadlock detection algorithm in a
tool called JADE. JADE takes as input a closed Java pro-
gram in bytecode form and, optionally, as source code (the
latter is used only to report source-level counterexamples).
It uses the Soot framework [18] to construct a 0-CFA-based
call graph to determine the set M of all methods that may
be reachable from the main method. It rewrites each syn-
chronized block synchronized (v) { s } as a call to
a fresh static method, synchronized on argument v with
body s. It then converts the program into Static Single As-
signment (SSA) form to increase the precision of the flow-
insensitive k-object-sensitive analysis.
JADE then uses the results of k-object-sensitive analysis

to perform the thread-escape and may-happen-in-parallel
analyses. All three analyses are expressed in Datalog and
solved using bddbddb [20], a Binary Decision Diagram
(BDD)-based Datalog solver. BDDs compactly represent
the input relations, such as those representing basic facts
about the program (e.g., function sync), as well as the rela-
tions output by these analyses (e.g., pt, mhp, etc.). Finally,
JADE runs our deadlock detection algorithm which is also
expressed in Datalog and computes relation finalDeadlocks
that approximates the set of tuples satisfying our six neces-
sary conditions for a deadlock.
Our implementation of k-object-sensitive analysis is pa-

rameterized by three parameters:

• M ⊆ M containing each method that must be ana-
lyzed context-insensitively (i.e., in the lone context []).

• V ⊆ V containing each local variable whose points-to
information must be maintained context-insensitively
(i.e., in the lone context []).

• K : H → N+ mapping each object allocation site to a
positive integer called its k-value (Section 3.1).

For scalability, our k-object-sensitive analysis uses an iter-
ative refinement-based approach: we run all three analyses
and the deadlock detection algorithm in each iteration us-
ing increasingly refinedM, V , and K. In the first iteration,
the cheapest possible k-object-sensitive analysis is run, us-
ing M = M, V = V and K = λh.1, which is effectively
a 0-CFA-based analysis, and finalDeadlocks is computed.
These deadlocks, however, typically contain many false
positives due to the imprecision of 0-CFA-based analysis
(Section 5). Hence, instead of being reported, they are used
to refine parametersM, V , andK and the k-object-sensitive
analysis is re-run. The refinement algorithm considers each
tuple in finalDeadlocks as an effect of imprecision and finds
all its possible causes in terms of M, V , and K (e.g., a
certain method must be analyzed context-sensitively, the
k-value of a certain site must be increased, etc.). Since
the other analyses depend upon k-object-sensitive analysis,
they are also re-run, and finally the deadlock detection algo-
rithm itself is re-run to compute a new finalDeadlocks. The
process terminates either if finalDeadlocks is empty or if its
size begins to grow; the latter termination criterion prevents
overwhelming the user with too many reports denoting the
same deadlock.

5 Experiments

We evaluated JADE on a suite of multi-threaded Java
programs comprising over 1.5 MLOC. The suite includes
the multi-threaded benchmarks from the Java Grande suite
(moldyn, montecarlo, and raytracer); from ETH, a
Traveling Salesman Problem implementation (tsp), a suc-
cessive over-relaxation benchmark (sor) and a web crawler
(hedc); a website download and mirror tool (weblech);
a web spider engine (jspider); W3C’s web server plat-
form (jigsaw); and Apache’s FTP server (ftp). The
suite also includes open programs for which we manu-
ally wrote harnesses: Apache’s database connection pool-
ing library (dbcp); a fast caching library (cache4j);
the JDK4 logging facilities (logging); and JDK4 im-
plementations of lists, sets, and maps wrapped in syn-
chronized collections (collections). All our bench-
marks along with JADE’s deadlocks reports are available at
http://chord.stanford.edu/deadlocks.html
Table 1 summarizes JADE’s results. The ‘LOC’,

‘classes’, ‘methods’, and ‘syncs’ columns show the num-
bers of lines of code, classes, methods, and synchronized
statements deemed reachable from the main method by
Soot’s 0-CFA-based analysis. The ‘time’ column provides
the total running time of JADE. The experiments were per-
formed on a 64-bit Linux server with two 2GHz Intel Xeon
quad-core processors and 8GB memory. JADE, however, is
single-threaded and 32-bit, and hence utilizes only a single
core and at most 4GB memory.

The ‘0-CFA’ and ‘k-obj.’ columns give the size of
finalDeadlocks after one and two iterations of our algorithm
(Section 4)—finalDeadlocks is empty or starts to grow, and
JADE terminates, after at most two iterations for all our
benchmarks. The first iteration uses a k-object-sensitive
analysis that is essentially a 0-CFA-based analysis (Section
4). The difference between the two columns, most notable
for hedc, weblech, jspider, ftp, and dbcp, is the num-
ber of extra false positives that would be reported by a 0-
CFA-based analysis over a k-object-sensitive one. All pre-
vious static deadlock detectors we are aware of employ a 0-
CFA-based analysis or an even more imprecise CHA-based
analysis; moreover, they exclude checking one or more of
our six necessary conditions (Section 7).
Figure 5 justifies the need for the escaping, parallel, non-

reentrant and non-guarded conditions—we consider the
reachable and aliasing conditions fundamental to our dead-
lock definition. We measure the effectiveness of a particu-
lar condition by switching it off and observing the increase
in the size of finalDeadlocks. The graphs exclude bench-
marks moldyn, raytracer, sor, and cache4j as the size
of finalDeadlocks is not noticeably affected for any of them
by switching off any single condition—these benchmarks
are relatively small and have a relatively simple synchro-
nization structure (indicated by the numbers in the ‘sync’
column in Table 1) and gain no significant benefit from any
one condition.
The left graph in Figure 5 shows the effectiveness of the

sound escaping and parallel conditions. The bars are nor-
malized to the number of deadlocks obtained by checking
only the reachable and aliasing conditions. The ‘sound-
Deadlocks’ partition of each bar denotes the number of
deadlocks obtained by checking all four sound conditions.
The ‘only Par.’ (resp. ‘only Esc.’) partition denotes the num-
ber of deadlocks that are soundly filtered out exclusively
by parallel (resp. escaping). The ‘Esc. or Par.’ partition
denotes the number of deadlocks that are filtered out by
both parallel and escaping. The right graph in Figure 5
shows the effectiveness of the unsound non-reentrant and
non-guarded conditions. The bar for each benchmark in
this graph further partitions the ‘soundDeadlocks’ parti-
tion of the bar for the corresponding benchmark in the left
graph. The ‘finalDeadlocks’ partition denotes the size of
finalDeadlocks. The ‘only N.G.’ (resp. ‘only N.R.’) parti-
tion denotes the number of deadlocks that are filtered out
exclusively by non-guarded (resp. non-reentrant). Finally,
the ‘N.R. or N.G.’ partition denotes the number of dead-
locks that are filtered out by both non-guarded and non-
reentrant. In summary, we see that each condition is impor-
tant for some benchmark.
Our algorithm generates a counterexample for each tu-

ple in finalDeadlocks reported under column ‘k-obj.’ in Ta-
ble 1. These counterexamples are grouped by the pair of

benchmark benchmark size time finalDeadlocks lock type pairs
LOC classes methods syncs 0-CFA k-obj. total real

moldyn 31,917 63 238 12 4m48s 0 0 0 0
montecarlo 157,098 509 3447 190 7m53s 0 0 0 0
raytracer 32,576 73 287 16 4m51s 0 0 0 0
tsp 154,288 495 3335 189 7m48s 0 0 0 0
sor 32,247 57 208 5 4m48s 0 0 0 0
hedc 160,071 530 3552 204 21m15s 7,552 2,358 22 19
weblech 184,098 656 4620 238 32m09s 4,969 794 22 19
jspider 159,494 557 3595 205 15m34s 725 4 1 0
jigsaw 154,584 497 3346 184 15m23s 23 18 3 3
ftp 180,904 642 4383 252 35m55s 16,259 3,020 33 24
dbcp 168,018 536 3602 227 16m04s 320 16 4 3
cache4j 34,603 72 218 7 4m43s 0 0 0 0
logging 167,923 563 3852 258 9m01s 4,134 4,134 98 94
collections 38,961 124 712 55 5m42s 598 598 16 16

Table 1. Experimental results.

 0

 20

 40

 60

 80

 100

montecarlo

tsp hedc
weblech

jspider

jigsaw
ftp dbcp

logging

collections

soundDeadlocks
only Par.
only Esc.
Esc. or Par.

 0

 20

 40

 60

 80

 100

montecarlo

tsp hedc
weblech

jspider

jigsaw
ftp dbcp

logging

collections

finalDeadlocks
only N.G.
only N.R.
N.R. or N.G.

Figure 5. Contributions of individual analyses.

types of the locks involved in the deadlock (Section 3.3).
The ‘total’ column in the table denotes the total number
of such groups for each benchmark. The last ‘real’ col-
umn denotes the number of groups which contain at least
one real deadlock. We confirmed real deadlocks by creat-
ing concrete test cases that were able to exhibit them. The
deadlocks in hedc, weblech, jigsaw, and ftp were not
in application code but in the JDK’s logging facilities im-
plemented in java.util.logging. This was our primary
motivation for studying the logging benchmark; all the
deadlocks reported for the above benchmarks are also in-
cluded in those reported for logging. Additionally, this
benchmark includes the previously known deadlock that is
explained in our running example (Section 2) but is not trig-
gered by any of the other benchmarks.

We found three application-level deadlocks in dbcp of
which one was previously known. Finally, all deadlocks re-

ported in benchmark collections are real and previously
known. Strictly speaking, these are not bugs in the JDK col-
lections per se but they indicate ways in which clients could
erroneously use those collections and trigger deadlocks. We
included collections, studied in previous work on dead-
lock detection [21], to confirm that our unsound approach
could find all known deadlocks.

6 Limitations

Our deadlock detection algorithm is unsound. We be-
gin by noting that it only reports deadlocks between two
threads and two locks. Deadlocks between more than two
threads/locks are possible and it is easy at least in principle
to extend our approach to detect such deadlocks. However,
empirical evidence from bug databases of popular open-
source Java programs, such as http://bugs.sun.com

and http://issues.apache.org, shows that the vast
majority of deadlocks involve only two threads/locks (in
fact, we did not encounter a single deadlock involving more
than two threads/locks in perusing the above databases).
Our algorithm detects reentrant locks and guarding locks

unsoundly (Sections 3.2.5 and 3.2.6). Two promising fu-
ture directions are to check our non-reentrant condition us-
ing the form of must-alias analysis used to check finite-state
properties [8] and to check our non-guarded condition using
the form of must-alias analysis used to check races [16].
The key source of false positives in our experiments is

the relatively imprecise thread-escape analysis used by our
algorithm. Existing work on this analysis was driven pri-
marily by the need to eliminate redundant synchronization
in Java programs and subsided in recent years after modern
JVMs diminished the run-time speedups achieved by this
optimization. We hope our application of this analysis to
static deadlock detection, and in our earlier work to static
race detection [15], will renew advances in this analysis.
Our algorithm only detects deadlocks due to lock-based

synchronization whereas other kinds of synchronization,
notably wait-notify in Java, can cause deadlocks as well
which our algorithm does not report.
Finally, our implementation ignores the effects of na-

tive methods and reflection in Java though we mitigate this
problem by manually providing “stubs” for common native
methods and annotations for statically resolving dynamic
class loading sites in the JDK library.

7 Related work

Previous work on deadlock detection for shared-memory
multi-threaded programs includes static approaches based
on type systems, dataflow analysis, or model checking, as
well as dynamic approaches.

7.1 Type Systems

Boyapati et al. [3, 4] present an ownership type system
for Java that allows programmers to specify a partial order
among locks. The type checker statically ensures that well-
typed programs are deadlock-free. Our approach is unsound
and cannot prove deadlock freedom. On the other hand, it
does not require annotations and scales to larger programs.

7.2 Dataflow Analysis

Artho and Biere [1] augment Jlint, a static dataflow anal-
ysis based bug-finding tool for Java, with checks for several
patterns that could indicate deadlocks. It performs local (per
class or per method) analyses and cannot, for instance, in-
fer that syntactically different expressions or synchronized
blocks in methods of different classes may hold the same

lock. Jlint lies in the category of lightweight tools that are
unsound and incomplete but target common bug patterns
and scale well; another similar tool is LockLint for C [17].
Von Praun [19] presents an algorithm that performs

whole-program 0-CFA-based call-graph and may-alias
analysis of Java programs to compute the static lock-order
graph and reports cycles in it as possible deadlocks. Un-
like our approach, his algorithm can report deadlocks in-
volving more than two threads/locks. Like our approach,
however, his algorithm is unsound and incomplete, and it
checks necessary conditions for a deadlock that amount to
our reachable, aliasing, and non-reentrant conditions, but
not our parallel, escaping, and non-guarded conditions.
Williams et al. [21] present an algorithm that traverses

the given Java program’s call graph bottom-up and builds a
lock-order graph summary per method. It then merges the
summaries of thread entry methods into a global lock-order
graph by unifying may-aliasing lock nodes together, and
reports cycles in it as potential deadlocks. Unlike our ap-
proach, their algorithm can report deadlocks involving more
than two threads/locks. Also, unlike our unsound checking
of the non-reentrant condition, they handle reentrant locks
soundly, but only detect them when lock expressions are lo-
cal variables (as opposed to fields). This coupled with their
CHA-based call-graph and may-alias analysis (which is less
precise than a 0-CFA-based one) and the lack of checking
of the parallel, escaping, and non-guarded conditions leads
to significant imprecision which they address by applying
several unsound heuristics.
Engler and Ashcraft [7] present RacerX, a static tool that

performs flow-sensitive interprocedural analysis of C pro-
grams to compute the static lock-order graph and reports cy-
cles in it as possible deadlocks. Their approach scales well
but is highly imprecise and employs heuristics for ranking
the deadlock reports in decreasing order of likelihood.
Masticola et al. [12, 13] present sound deadlock detec-

tion algorithms for various parallelism and synchronization
models mainly in the context of Ada. A key aspect of their
approach is non-concurrency analysiswhich may be viewed
as the counterpart of our may-happen-in-parallel analysis.

7.3 Model Checking

The SPIN model checker has been used to verify dead-
lock freedom for Java programs by translating them into
Promela, SPIN’s modeling language [6, 11]. Model check-
ing based on counterexample-guided abstraction refinement
has also been applied to deadlock detection in message
passing based C programs [5]. A general limitation of
model checking approaches is that they presume that the
input program has a finite and tractable state-space.

7.4 Dynamic Analysis

While deadlocks actually occurring in executions are
easy to detect, dynamic approaches such as Visual Threads
[9] monitor the order in which locks are held by each thread
in an execution and report cycles in the resulting dynamic
lock-order graph as potential deadlocks that could occur in a
different execution. The Goodlock algorithm [2,10] extends
this approach to reduce false positives, namely, it tracks
thread fork/join events and guarding locks that render cy-
cles infeasible; this is akin to checking our parallel and non-
guarded conditions, respectively. Like any dynamic analy-
sis, these approaches are inherently unsound and cannot be
applied to open programs and without test input data.

8 Conclusion

We have presented a novel static deadlock detection al-
gorithm for Java that uses four static analyses to approxi-
mate six necessary conditions for a deadlock. We have im-
plemented and applied it to a suite of multi-threaded Java
programs comprising over 1.5 MLOC. While unsound and
incomplete, our approach is effective in practice, finding
all known deadlocks as well as discovering previously un-
known ones in our benchmarks with few false alarms.

9 Acknowledgment

We would like to thank Pallavi Joshi, Christos Ster-
giou, and the anonymous reviewers for their valuable com-
ments. This research was supported in part by a gener-
ous gift from Intel, by Microsoft and Intel funding (award
#20080469) and by matching funding by U.C. Discovery
(award #DIG07-10227).

References

[1] C. Artho and A. Biere. Applying static analysis to
large-scale, multi-threaded Java programs. In Proceedings
of the 13th Australian Software Engineering Conference
(ASWEC’01), pages 68–75, 2001.

[2] S. Bensalem and K. Havelund. Dynamic deadlock analysis
of multi-threaded programs. In Haifa Verification Confer-
ence, pages 208–223, 2005.

[3] C. Boyapati. SafeJava: A Unified Type System for Safe Pro-
gramming. PhD thesis, MIT, 2004.

[4] C. Boyapati, R. Lee, and M. Rinard. Ownership types for
safe programming: preventing data races and deadlocks.
In Proceedings of the 17th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA ’02), pages 211–230, 2002.

[5] S. Chaki, E. Clarke, J. Ouaknine, N. Sharygina, and
N. Sinha. Concurrent software verification with states,

events, and deadlocks. Formal Aspects of Computing,
17(4):461–483, 2005.

[6] C. Demartini, R. Iosif, and R. Sisto. A deadlock detection
tool for concurrent Java programs. Software - Practice and
Experience, 29(7):577–603, 1999.

[7] D. Engler and K. Ashcraft. RacerX: effective, static detec-
tion of race conditions and deadlocks. In Proceedings of
the 19th ACM Symposium on Operating Systems Principles
(SOSP’03), pages 237–252, 2003.

[8] S. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay.
Effective typestate verification in the presence of aliasing.
ACM Transactions of Software Engineering Methodology,
17(2), 2008.

[9] J. Harrow. Runtime checking of multithreaded applications
with Visual Threads. In Proceedings of the 7th International
SPIN Workshop on Model Checking and Software Verifica-
tion (SPIN’00), pages 331–342, 2000.

[10] K. Havelund. Using runtime analysis to guide model check-
ing of Java programs. In Proceedings of the 7th Interna-
tional SPINWorkshop onModel Checking and Software Ver-
ification (SPIN’00), pages 245–264, 2000.

[11] K. Havelund and T. Pressburger. Model checking Java pro-
grams using Java PathFinder. STTT, 2(4):366–381, 2000.

[12] S. Masticola. Static detection of deadlocks in polynomial
time. PhD thesis, Rutgers University, 1993.

[13] S. Masticola and B. Ryder. A model of Ada programs for
static deadlock detection in polynomial time. In Proceed-
ings of the ACM/ONRWorkshop on Parallel and Distributed
Debugging, pages 97–107, 1991.

[14] A. Milanova, A. Rountev, and B. Ryder. Parameterized ob-
ject sensitivity for points-to analysis for Java. ACM Transac-
tions on Software Engineering and Methodology, 14(1):1–
41, Jan. 2005.

[15] M. Naik. Effective Static Race Detection for Java. PhD
thesis, Stanford University, 2008.

[16] M. Naik and A. Aiken. Conditional must not aliasing for
static race detection. In Proceedings of the 34th ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL’07), pages 327–338, 2007.

[17] LockLint - static data race and deadlock detection tool for
C. http://developers.sun.com/solaris/articles/locklint.html.

[18] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and
V. Sundaresan. Soot - a Java bytecode optimization frame-
work. In Proceedings of the 1999 Conference of the Cen-
tre for Advanced Studies on Collaborative Research (CAS-
CON’99), page 13, Nov. 1999.

[19] C. von Praun. Detecting Synchronization Defects in Multi-
Threaded Object-Oriented Programs. PhD thesis, Swiss
Federal Institute of Technology, Zurich, 2004.

[20] J. Whaley. Context-Sensitive Pointer Analysis using Binary
Decision Diagrams. PhD thesis, Stanford University, 2007.

[21] A. Williams, W. Thies, and M. Ernst. Static deadlock
detection for Java libraries. In Proceedings of the 19th
European Conference on Object-Oriented Programming
(ECOOP’05), pages 602–629, 2005.

