
SEJITS: Raising the Abstraction Level of Productivity Programming
Armando Fox, Bryan Catanzaro, Shoaib Kamil, Yunsup Lee, Krste Asanovic, Kurt Keutzer, Dave Patterson

Layering vs. “Stovepiping”

• Layering: one or a few common intermediate

languages

• Must be flexible enough to support many DSLs

• And map to wide variety of HW

• Stovepiping: specialize structural computation

patterns (motifs, not domains) directly to HW

Other Opportunities

• Autotuning
• SEJITS can intercept calls and substitute autotuned code

(see PySKI)

• Locus of control for making co-tuning decisions

•Cloud Computing

• Generate Hadoop (Java) code expressing PLL

computation as MapReduce

• Generate code for multiple cloud frameworks

Early case study: Python + CUDA

OOO GPU SIMD FPGA ???

Runtime & OS

Common language substrate

Rendering Probabilistic Physics Lin. Alg.

Virt. worlds Data viz. Robotics Music App domains

Computation

domains

Language

Thick Runtime

Hardware

Traditional

Layers

OOO GPU SIMD FPGA ???

Runtime & OS

Virt.

world

s

Data viz. Robotics Music Applications

Motifs/Pattern

s

Thin Runtime

Hardware

SEJITS

“Stovepipes”

Sparse Matrix Dense Matrix Stencil

Leveraging Efficiency-Layer Research

Efficiency programmers, autotuner writers: target

computation patterns to hardware

 stencil/SIMD codes => GPUs

 sparse matrix => communication-avoiding algo’s on

multicore

 “Big finance” Monte Carlo sim => MapReduce

Libraries? Useful, but don’t raise abstraction level

How to make ELL work accessible to more PLL

programmers?

SEJITS in a nutshell: Selective, Embedded

Just-in-Time Specialization

Productivity programmers write in general

purpose, modern, high level PLL

SEJITS infrastructure specializes computation

patterns selectively at runtime

Specialization uses runtime info to generate and

JIT-compile ELL code targeted to hardware

Embedded because PLL’s own machinery

enables (vs. extending PLL interpreter)

.py

OS/HW

@h()

Specializer

.c

P
L

L
 I

n
te

rp

SEJITS

Productivity app

perf.

counters

Hist-

ory

.so

cc/ld

$

1

2

3

4

5

SEJITS Exploits Productivity Level Language (PLL) Mechanisms

1. Some functions in productivity app annotated as potentially

specializable

2. SEJITS intercepts calls using dynamic language features,

uses introspection to examine function's Abstract Syntax Tree

 If AST contains function call or pattern known in local catalog,

specializer is invoked and handed AST

3. Specializer generates source code in an efficiency language

(C, OpenMP, CUDA, ...), compiles & links

4. Specialized function binary is called, results returned to

productivity language

5. (Optional) performance recorded, code cached for future

calls

Selective specialization: If any step fails, fall back to

PLL (no need to JIT or specialize the whole app)

Embedded: SEJITS machinery uses PLL features,

no need to modify or extend PLL interpreter

Productivity language code

Efficiency language code

Berkeley ParLab

Status, Ongoing Work, Challenges

 Conclusions

 Enables code-generation strategy per-function, not per-app

 Uniform approach to productive programming

 same app on cloud, multicore, autotuned libraries

 Research enabler

 Incrementally develop specializers for different motifs, prototype HW

 Don’t need full compiler & toolchain just to get started

Subverting PLL Mechanisms

 Observation: mechanisms intended to promote reuse

also enable SEJITS

 Metaprogramming: generate & JIT-compile efficiency code to

replace PLL code for this function

 Make decisions at runtime based on available HW, argument values, etc., vs.

“static” autotuning

 Introspection: intercept & analyze function to see if can specialize

 Extend PLL without modifying interpreter

 Higher-order programming: patterns at higher levels of abstraction

 capture reusable motifs as well as low-level functions

 Prototypes working for NVidia, x86 multicore, RAMP (SPARC

v8)

 Generalize infrastructure for catalog, pattern matching, call site

annotation, history

 Integrate with PySKI/autotuning

 Cloud computing: Integrate with Nexus

 Cloud/multicore synergy: specialize intra-node as well as

generate cloud code

 Capture additional motifs as specializers

 Ruby => OpenMP on multicore x86

(S. Kamil)

 ~1000-2000x faster than pure Ruby

 Minimal per-call overhead at runtime

 Python => NVidia GPU (B. Catanzaro,

Y. Lee)

 Stencils & Category-reduce (image

processing)

 Python decorators denote

specializable functions

 ~1000x Faster than pure Python

 3x-12x slower than handcrafted CUDA

(including specialization overhead)

 Overheads: Naive code generation &

caching, Type propagation, CUDA

compilation, data marshalling

 Productivity programmer only writes

Python/Ruby, not CUDA or OpenMP

class LaplacianKernel < Kernel

 def kernel(in_grid, out_grid)

 in_grid.each_interior do |point|

 in_grid.neighbors(point,1).each

 do |x|

 out_grid[point] += 0.2*x.val

 end

 end

end

VALUE kern_par(int argc, VALUE* argv, VALUE

self) {

unpack_arrays into in_grid and out_grid;

#pragma omp parallel for default(shared)

private (t_6,t_7,t_8)

for (t_8=1; t_8<256-1; t_8++) {

 for (t_7=1; t_7<256-1; t_7++) {

 for (t_6=1; t_6<256-1; t_6++) {

 int center = INDEX(t_6,t_7,t_8);

 out_grid[center] = (out_grid[center]

 +(0.2*in_grid[INDEX(t_6-1,t_7,t_8)]));

 ...

 out_grid[center] = (out_grid[center]

 +(0.2*in_grid[INDEX(t_6,t_7,t_8+1)]));

;}}}

return Qtrue;}

