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Layering vs. “Stovepiping” 

• Layering: one or a few common intermediate 

languages 

• Must be flexible enough to support many DSLs 

• And map to wide variety of HW 

 

 

 

 

 

 

 

 

 

 

  

• Stovepiping: specialize structural computation 

patterns (motifs, not domains) directly to HW 

Other Opportunities 

• Autotuning 
• SEJITS can intercept calls and substitute autotuned code 

(see PySKI) 

• Locus of control for making co-tuning decisions 

•Cloud Computing 

• Generate Hadoop (Java) code expressing PLL 

computation as MapReduce 

• Generate code for multiple cloud frameworks 

 

Early case study: Python + CUDA 
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Efficiency programmers, autotuner writers: target 

computation patterns to hardware 

 stencil/SIMD codes => GPUs  

  sparse matrix => communication-avoiding algo’s on 

multicore 

 “Big finance” Monte Carlo sim => MapReduce 

Libraries?  Useful, but don’t raise abstraction level 

How to make ELL work accessible to more PLL 

programmers?  

SEJITS in a nutshell: Selective,  Embedded 

Just-in-Time Specialization 

Productivity programmers write in general 

purpose, modern, high level PLL 

SEJITS infrastructure specializes computation 

patterns selectively at runtime 

Specialization uses runtime info to generate and 

JIT-compile ELL code targeted to hardware 

Embedded because PLL’s own machinery 

enables (vs. extending PLL interpreter) 
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SEJITS Exploits Productivity Level Language (PLL) Mechanisms 
 

 

 

 

 

 

 

 

  

 

1. Some functions in productivity app annotated as potentially 

specializable 

2. SEJITS intercepts calls using dynamic language features, 

uses introspection to examine function's Abstract Syntax Tree 

    If AST contains function call or pattern known in local catalog, 

specializer is invoked and handed AST 

3.  Specializer generates source code in an efficiency language 

(C, OpenMP, CUDA, ...), compiles & links 

4. Specialized function binary is called, results returned to 

productivity language 

5. (Optional) performance recorded, code cached for future 

calls 

 
Selective specialization:  If any step fails, fall back to 

PLL (no need to JIT or specialize the whole app)   

Embedded: SEJITS machinery uses PLL features, 

no need to modify or extend PLL interpreter 

Productivity language code 

Efficiency language code 

Berkeley ParLab 

Status, Ongoing Work, Challenges 

 Conclusions 

 

 

 

 

 

 

 Enables code-generation strategy per-function, not per-app 

 Uniform approach to productive programming 

 same app on cloud, multicore, autotuned libraries 

 Research enabler 

 Incrementally develop specializers for different motifs, prototype HW 

 Don’t need full compiler & toolchain just to get started 

Subverting PLL Mechanisms 

 Observation: mechanisms intended to promote reuse 

also enable SEJITS 

 Metaprogramming: generate & JIT-compile efficiency code to 

replace PLL code for this function 

 Make decisions at runtime based on available HW, argument values, etc., vs. 

“static” autotuning 

 Introspection: intercept & analyze function to see if can specialize 

 Extend PLL without modifying interpreter 

 Higher-order programming: patterns at higher levels of abstraction  

 capture reusable motifs as well as low-level functions 

 

 Prototypes working for NVidia, x86 multicore, RAMP (SPARC 

v8) 

 Generalize infrastructure for catalog, pattern matching, call site 

annotation, history 

 Integrate with PySKI/autotuning 

 Cloud computing: Integrate with Nexus 

 Cloud/multicore synergy: specialize intra-node as well as 

generate cloud code 

 Capture additional motifs as specializers 

 

 

 Ruby => OpenMP on multicore x86 

(S. Kamil) 

  ~1000-2000x faster than pure Ruby 

 Minimal per-call overhead at runtime 

 Python => NVidia GPU (B. Catanzaro, 

Y. Lee) 

 Stencils & Category-reduce (image 

processing) 

 Python decorators denote 

specializable functions 

  ~1000x Faster than pure Python 

 3x-12x slower than handcrafted CUDA 

(including specialization overhead) 

 Overheads: Naive code generation & 

caching, Type propagation, CUDA 

compilation, data marshalling 

 Productivity programmer only writes 

Python/Ruby, not CUDA or OpenMP 

class LaplacianKernel < Kernel 

 def kernel(in_grid, out_grid) 

  in_grid.each_interior do |point| 

   in_grid.neighbors(point,1).each  

      do |x| 

     out_grid[point] += 0.2*x.val 

   end 

 end 

end 

 

VALUE kern_par(int argc, VALUE* argv, VALUE 

self) { 

unpack_arrays into in_grid and out_grid; 

 

#pragma omp parallel for default(shared)  

private (t_6,t_7,t_8) 

for (t_8=1; t_8<256-1; t_8++) { 

 for (t_7=1; t_7<256-1; t_7++) { 

  for (t_6=1; t_6<256-1; t_6++) { 

   int center = INDEX(t_6,t_7,t_8); 

   out_grid[center] = (out_grid[center] 

      +(0.2*in_grid[INDEX(t_6-1,t_7,t_8)])); 

   ... 

   out_grid[center] = (out_grid[center] 

      +(0.2*in_grid[INDEX(t_6,t_7,t_8+1)])); 

;}}} 

return Qtrue;} 


