OVERVIEW

Verifying parallel programs is very challenging.

0 Painful to reason simultaneously about correctness
of parallelism and about functional correctness.

0 Functional correctness often largely sequential.

Goal: Decompose effort of verifying parallelism

and verifying functional correctness.

0 Prove parallel correctness simply — not entangled
iIn complex sequential functional correctness.

0 Verify functional correctness in a sequential way.

Question: What is parallel correctness?

SPECIFYING DETERMINISM

Previous work: Deterministic specifications.

[Burnim and Sen, FSE 2009]
0 ldea: Parallel correctness means every thread

schedule gives semantically equivalent results.
0 Internal nondeterminism, but deterministic output.

OUR APPROACH

For a parallel program, use a sequential but
nondeterministic version as a specification.
0 User annotates intended algorithmic nondeterminism
0 We interpret parallel constructs as nondeterministic

and sequential.

Parallelism is correct if it adds no

unintended nondeterminism.
0 l.e., if parallel and nondeterministic sequential
versions of the program are equivalent.

ﬂoarallel-for (w in queue):

O Assert that parallel code yields semantically
equivalent outputs for equivalent inputs.

fdeterministic assume (data data’) { \

// Parallel branch-and-bound
= min phylo tree(N, data);

Tree t =
} assert (t.cost t’.cost());

Figure 1. Deterministic spec for parallel breanch-and-
bound search to find minimum-cost phyogenetic trees.
Q)ifferent runs may return different optimal trees. /

Lightweight spec of parallel correctness.
0 Independent of complex functional correctness.

0 Great for testing (with, e.g., active testing).

0 Can automatically infer likely specifications
[Burnim and Sen, ICSE 2010].

Not a complete spec of parallel correctness.

0 Specification ignores tree t in Figure 1.
0 For complex programs, determinism proof attempts
get entangled in details of sequential correctness.

Figure 2. Generic parallel
\\branch-and-bound searcy

.

if (lower _bnd(w) >= best):
continue

if (size(w) <T):
(soln, cost) = find_min(w)

continue

if (size(w) <T):
(soln, cost) = find_min(w)

atomic: atomic:
if cost < best: If cost < best:
best = cost best = cost
best _soln = soln best _soln = soln

else:

else:
queue.addAll(split(w))

queue.addAll(split(w))

JACOB BURNIM, GEORGE NECULA, KOUSHIK SEN

Reduction: Method for proving atomicity.

mndet-for (w in queue): \\
if (lower _bnd(w) >= best && *):

Figure 3. Nondeterministic bu

t
\sequential branch-and-bound. /

]

P

PROVING
PARALLEL CORRECTNESS

Goal: Prove each execution of a parallel
program is equivalent to a nondeterministic

sequential (ndseq) execution.

/Parallel execution trace:

dequeue(b)

\
W update(b)
Ndseq execution trace:
sisoueo el Lot BTG B O TRRE T

Added nondeterminism allows prune? (a) to

be moved past update (b) without changing
the program’s behavior.

BERKELEY PARLAB

PROOF BY REDUCTION

[Lipton, CACM 1974]
0 Program operations classified as right-movers and
left-movers if they commute to the right/left with all

operations that can run in parallel with them.

0 Code block is atomic if a sequence of right-movers,
one non-mover, and a sequence of left-movers.

O Implies all parallel runs equivalent to ones where
atomic code block is run serially.

/parallel-for (.. .):\

op

1 right- (nondet-for (...): A
Opk_1}movers op:

opy

™ o

movers /
op,,

_ /

Idea: Statically prove that operations are right-

and left-movers using SMT solving.
0 Encode: Are all behaviors of op, ; op, also

behaviors of op, ; op; ?
0 Like [EImas, Qadeer, and Tasiran, POPL 2009].

FUTURE WORK

Formal proof rules for parallel and
nondeterministic sequential equivalence.

Automated proofs of parallel correctness.

Combine with verification tools for sequential

programs with nondeterminism.
0 Model checking with predicate abstraction (CEGAR).

0 Can verify functional correctness on sequential code!

Apply above to real parallel benchmarks.

Applications to debugging?
0 Allow programmer to sequentially debug a parallel
execution by mapping a parallel trace to a
nondeterministic sequential one.

