
SPECIFYING DETERMINISM!
  Previous work: Deterministic specifications. 

[Burnim and Sen, FSE 2009]#
  Idea: Parallel correctness means every thread

schedule gives semantically equivalent results.#
  Internal nondeterminism, but deterministic output.#
  Assert that parallel code yields semantically

equivalent outputs for equivalent inputs.#

  Lightweight spec of parallel correctness.#
  Independent of complex functional correctness.#
  Great for testing (with, e.g., active testing).#
  Can automatically infer likely specifications 

[Burnim and Sen, ICSE 2010].#

  Not a complete spec of parallel correctness.#
  Specification ignores tree t in Figure 1.#
  For complex programs, determinism proof attempts

get entangled in details of sequential correctness.#

Separating Parallel and Functional Correctness
Jacob Burnim, George Necula, Koushik Sen

OVERVIEW!
  Verifying parallel programs is very challenging.#

  Painful to reason simultaneously about correctness
of parallelism and about functional correctness.#

  Functional correctness often largely sequential.#

  Goal: Decompose effort of verifying parallelism
and verifying functional correctness.!
  Prove parallel correctness simply – not entangled

in complex sequential functional correctness.#
  Verify functional correctness in a sequential way.#

  Question: What is parallel correctness?!

OUR APPROACH!
  For a parallel program, use a sequential but

nondeterministic version as a specification.#
  User annotates intended algorithmic nondeterminism#
  We interpret parallel constructs as nondeterministic

and sequential.#

  Parallelism is correct if it adds no
unintended nondeterminism.#
  I.e., if parallel and nondeterministic sequential

versions of the program are equivalent.#

FUTURE WORK!
  Formal proof rules for parallel and

nondeterministic sequential equivalence.#

  Automated proofs of parallel correctness.#

  Combine with verification tools for sequential
programs with nondeterminism.#
  Model checking with predicate abstraction (CEGAR).#
  Can verify functional correctness on sequential code!#

  Apply above to real parallel benchmarks.#

  Applications to debugging?#
  Allow programmer to sequentially debug a parallel

execution by mapping a parallel trace to a
nondeterministic sequential one.#

PROVING 
PARALLEL CORRECTNESS!

  Goal: Prove each execution of a parallel
program is equivalent to a nondeterministic
sequential (ndseq) execution.#

  Added nondeterminism allows prune?(a) to
be moved past update(b) without changing
the programʼs behavior.!

parallel-for (w in queue):
 if (lower_bnd(w) >= best):
 continue
 if (size(w) < T):
 (soln, cost) = find_min(w)
 atomic:
 if cost < best:
 best = cost
 best_soln = soln
 else:
 queue.addAll(split(w))

 Figure 2. Generic parallel  
 branch-and-bound search.!

nondet-for (w in queue):
 if (lower_bnd(w) >= best && *):
 continue
 if (size(w) < T):
 (soln, cost) = find_min(w)
 atomic:
 if cost < best:
 best = cost
 best_soln = soln
 else:
 queue.addAll(split(w))

Figure 3. Nondeterministic but#
 sequential branch-and-bound.

deterministic assume (data == data’) {!
 // Parallel branch-and-bound!
 Tree t = min_phylo_tree(N, data);!
} assert (t.cost == t’.cost());!

Figure 1. Deterministic spec for parallel breanch-and-
bound search to find minimum-cost phyogenetic trees.
Different runs may return different optimal trees.!

PROOF BY REDUCTION!
  Reduction: Method for proving atomicity. 

[Lipton, CACM 1974]!
  Program operations classified as right-movers and

left-movers if they commute to the right/left with all
operations that can run in parallel with them.#

  Code block is atomic if a sequence of right-movers,
one non-mover, and a sequence of left-movers.#

  Implies all parallel runs equivalent to ones where
atomic code block is run serially.#

  Idea: Statically prove that operations are right-
and left-movers using SMT solving.#
  Encode: Are all behaviors of op1 ; op2 also

behaviors of op2 ; op1 ?#
  Like [Elmas, Qadeer, and Tasiran, POPL 2009].#

dequeue(a)# dequeue(b)# prune?(a)# prune?(b)# update(a)#update(b)#

dequeue(a)# prune?(a)# update(a)#update(b)#prune?(b)#dequeue(b)#

Parallel execution trace:#

Ndseq execution trace:#

parallel-for (…):
 op1
 …
 opk-1
 opk
 opk+1
 …
 opn

right-­‐	

movers	

le.-­‐	

movers	

nondet-for (…):
 op1
 …
 opn

equivalent!

