
  Software developers write programs with
intentional data races"
  Highly-concurrent libraries, lock-free data structures"
  Custom synchronization operations"
  Avoid cost of synchronization on certain frequent

operations"

  In the presence of data races, sequential
consistency is no longer guaranteed"

  Sequential Consistency (SC)"
  Lamport: “… the result of any execution is the same as if

the operations of all of the processors were executed in some
sequential order, and the operations of each individual
processor appear in this sequence in the order specified by
its program."

  Relaxed memory consistency:"
  Total Store Order (TSO): allows stores to be

reordered past later loads, but maintains a
total order over stores"

  Partial Store Order (PSO): TSO + allows
stores to be reordered past later stores of
different addresses"

  Reasoning about memory models can be hard: "
" Initially x = y = 0"

 thread1: thread2:"
 1: x = 1 3: y=1"
 2: t1 = y 4: t2 = x"
 assert(t1 == 1 || t2 == 1)"

"assertion can fail under TSO or PSO"

!Idea!
  Despite ah-hoc synchronization, programmers

expect their program to be sequentially
consistent"
  Sequential Consistency (SC) violations are

likely to be bugs"
  Can we find SC violations just by exploring SC

executions of a program? [Burckhardt et al.]!

!Our Approach!
  Devise monitoring algorithms for TSO and PSO"
  Monitor algorithms are sound and complete"
  Given SC violation, re-execute program and

check if violation exposes a bug or not"
  Based on intuitive operational simulation instead

of complex axiomatic semantics"
  Yields simple algorithms (complex proofs)"

!Problem"
  Quickly find and reproduce memory model bugs"
  Model checking can be expensive even with

monitor"
  Violations of sequential consistency are not

always bugs"

Bench
mark

Cycles
predicted

Cycles Confirmed # of Bugs Probability of
confirming cycle

TSO PSO PSLO TSO PSO PSLO TSO PSO PSLO

dekker 112 47 45 69 39 38 65 0.69 0.81 0.84

bakery 222 36 75 100 33 68 96 0.85 0.84 0.82

msn 459 0 117 144 0 117 144 - 0.84 0.72

ms2 75 0 2 5 0 2 5 - 1.00 0.57

lazylist 192 0 8 10 0 8 9 - 0.96 0.62

harris 172 0 54 49 0 48 49 - 0.35 0.68

snark 1800 0 647 404 0 419 191 - 0.60 0.59

!Problem!
  Model-checking is intractable with added non-

determinism from underlying memory-model"

!Our Solution: Active Testing"
  2-phase analysis and testing approach for

predicting and confirming concurrency bugs"
  Phase I: run program once and predict potential

violations of sequential consistency"
  Phase II: attempt to create potential violation by

actively controlling thread schedule and
underlying memory"

Introduction	

 Monitoring	

 Active Testing	

LOC # SC schedules TSO
cycles

TSO bugs PSO
cycles

PSO bugs

dekker 23 220 3 2 5 2

bakery 31 1434 3 1 4 1

msn 83 616 0 - 3 3

ms2 78 500 0 - 2 1

lazylist 155 1764 0 - 2 1

harris 121 802 0 - 4 2

snark 150 1208 0 - 4 0

