

Parallel Robust Principal Component Analysis

Michael J. Anderson, Stephan J. Ritter, James Demmel

100,000

Challenge: QR decomposition of a tallskinny matrix

Implementation	Time	Speedup
LAPACK QR (SGEQRF)	0.71 sec.	-
GPU QR	.072 sec.	9.9x

Matrix Dimensions Determine the Algorithms

- Matrix is generally not wide enough to provide enough parallelism in the 'n' direction. Must also divide in the 'm' direction and use atomic add when necessary.
- Best results came from minimizing the number of parallel reductions in our SGEMV
- □ Global barrier could potentially be avoided, but synchronization costs were a second-order concern for this size matrix

Implementation	Time	Speedup
LAPACK without optimization	1.54 sec	-
LAPACK with optimization	0.81 sec	1.9x
GPU with optimization	0.093 sec	17x

Robust PCA Speedup

Can process 10 seconds of video in 11 seconds

Went from 28x **slower** than real-time to near real-time