ASP: A SEJITS Implementation for Python

Electrical Engineering and
Computer Sciences

Status, Lessons & Future Plans

Selective

.PY — - Py
f() | ho |
cc/ld
e
1T 5 Embedded
g | SEJITS | g ecure)
c ! c Specialization
i | | Specialize > g0 i |
OS/HW OS/HW
Specializer == pattern-specific JIT compiler

» Code templates hand-authored by efficiency
programmers in efficiency language (eg C++)

« AST transformation of VHLL code to instantiate
templates

» Compile & run specialized code, return results
to PLL

 Occurs invisibly to programmer

* Programmers write their apps in Python
» Supports code generation in C/C++/CUDA
« Under rapid development (patches welcome!)
» Public source repo:
git://github.com/shoaibkamil/asp.git
» Wiki:
http://aspsejits.pbwiki.com/
» Graduate course project: implement a specializer
used in one of the ParlLab apps

QUESTIONS

* How hard to convert existing efficiency code into a
specializer? (Do you need to be a compiler jock?)

» Can specializers be composed, or will we end up
with O(n?) specializers if n patterns?

Shoaib Kamil, Armando Fox, Katherine Yelick, and many others

« Computes Krylov subspace basis vectors {x, Ax, A2X,
, A*x} using parallel and communication-avoiding
methods
» Building block for many sparse solvers
* Depending on matrix properties, different methods
give better performance
* Built by turning existing implementations into
parameterized templates for 3 algorithms

ad 2 Thread 3 d 1 Thread 2 Thread 3
g | | | ‘

RS X
Parallel Algorithm Comrpunication-Avoiding Cach_e-blocked
Algorithm Algorithm

» Speedup vs Serial: 2.8x to 11.7x on tested matrices

Block 1 Block 2 Block 3

XXX

« Combination of stencil and Newton-Raphson
specializers
* Artery interior points computed using stencils,

junction points using nonlinear N-R solve
Example of artery and junction,

showing border points (blue),

Interior points (red), and junction ® o o ® © o
points (green).

* Multilevel parallelism
* pthread per artery/junction, OpenMP parallelism
in stencil
« >10x faster than pure Python with large room for
improvement if composability of parallel libraries is
improved

» Expectation-Maximization algorithm for Gaussian
Mixture Modeling on CUDA-based GPUs
» See poster by Henry Cook and Ekaterina Gonina

~

o
2 SR - e J

» Motivation: activating OpenMP parallelism in the
stencil portion of bloodflow simulation causes
overprovisioning of hardware contexts
 pthreads and OpenMP both think they “own”
all available hardware contexts
*problem is not unique to ASP!
* Lithe: Par Lab answer to composable libraries
* Provides hart (hardware thread) abstraction that
corresponds 1:1 with hardware context
* Modified OpenMP/pthreads/TBB etc run on top
of Lithe
« Composability of specializers will depend on using
Lithe abstractions

 Currently, due to limitations of Python interpreter,
can’t call back interpreted functions from parallel
regions

» Current workaround: mutual exclusion around
gueue of work going to interpreter thread

» Long term: improve AST analysis & code
generation to cover most “simple” functions handed
to specializer

» SaaS-based database to aggregate knowledge about
optimal parameters for specializers

» Specializers submit own results to ASPdb, query for
hints about tuning parameters for current platform

\

Conclusions

* Wrapping existing ELL code in specializers doesn't
require compiler-fu

« But more challenging if need new abstraction
* ASP is viable way to deliver autotuned code
« Composition presents resource-management
challenges, but optimistic that Lithe can help

End-to-end Python+ASP apps now feasible & running/

