
SEJITS Overview 

EECS 
Electrical Engineering and 

Computer Sciences BERKELEY PAR LAB 

ASP: A SEJITS Implementation for Python 
Status, Lessons & Future Plans 

Shoaib Kamil, Armando Fox, Katherine Yelick, and many others 
P    A    R    A    L    L    E    L        C    O    M    P    U    T    I    N    G        L    A    B   O    R    A    T    O    R    Y 

.py 

OS/HW 

f() h() 

Specializer 

.c 
j() 

P
LL

 In
te

rp
 

g() 

SEJITS 

Productivity app


.so 

cc/ld 

$ 

.py 

OS/HW 

f() h() 

Specializer 

.c 
j() 

P
LL

 In
te

rp
 

g() 

SEJITS 

Productivity app


.so 

cc/ld 

$ 

Selective


Embedded


JIT


Specialization


Specializer == pattern-specific JIT compiler

•  Code templates hand-authored by efficiency 
programmers in efficiency language (eg C++) 

•   AST transformation of VHLL code to instantiate 
templates

•  Compile & run specialized code, return results 
to PLL

•  Occurs invisibly to programmer


ASP: A SEJITS Implementation for Python 

•  Programmers write their apps in Python

•  Supports code generation in C/C++/CUDA

•  Under rapid development (patches welcome!)


•  Public source repo:  
    git://github.com/shoaibkamil/asp.git 
•  Wiki:

  http://aspsejits.pbwiki.com/ 
•  Graduate course project: implement a specializer 
used in one of the ParLab apps


QUESTIONS

•  How hard to convert existing efficiency code into a 
specializer?  (Do you need to be a compiler jock?)

•  Can specializers be composed, or will we end up 
with O(n2) specializers if n patterns?


Akx Specializer 
•  Computes Krylov subspace basis vectors {x, Ax, A2x, 
… , Akx} using parallel and communication-avoiding 
methods


•  Building block for many sparse solvers

•  Depending on matrix properties, different methods 
give better performance


•  Built by turning existing implementations into 
parameterized templates for 3 algorithms


•  Speedup vs Serial: 2.8x to 11.7x on tested matrices

Parallel Algorithm
 Communication-Avoiding 


Algorithm

Cache-blocked 

Algorithm


Bloodflow Simulation (Circle of Willis) 
 in Stroke Victims 

•  Combination of stencil and Newton-Raphson 
specializers


•  Artery interior points computed using stencils, 
junction points using nonlinear N-R solve


•  Multilevel parallelism

•  pthread per artery/junction, OpenMP parallelism 
in stencil


•  >10x faster than pure Python with large room for 
improvement if composability of parallel libraries is 
improved


Example of artery and junction, 
showing border points (blue), 
interior points (red), and junction 
points (green).


Gaussian Mixture Model  Specializer 

•  Expectation-Maximization algorithm for Gaussian 
Mixture Modeling on CUDA-based GPUs

•  See poster by Henry Cook and Ekaterina Gonina


Future Plans: ASPdb 

•  Motivation: activating OpenMP parallelism in the 
stencil portion of bloodflow simulation causes 
overprovisioning of hardware contexts


•  pthreads and OpenMP both think they “own” 
all available hardware contexts

• problem is not unique to ASP!


•  Lithe: Par Lab answer to composable libraries

•  Provides hart (hardware thread) abstraction that 
corresponds 1:1 with hardware context

•  Modified OpenMP/pthreads/TBB etc run on top 
of Lithe


•  Composability of specializers will depend on using 
Lithe abstractions


Future Plans: Composition 

•  SaaS-based database to aggregate knowledge about 
optimal parameters for specializers 

•  Specializers submit own results to ASPdb, query for 
hints about tuning parameters for current platform


Future Plans: Calling Back Into Python 

•  Currently, due to limitations of Python interpreter, 
canʼt call back interpreted functions from parallel 
regions

•  Current workaround: mutual exclusion around 
queue of work going to interpreter thread

•  Long term: improve AST analysis & code 
generation to cover most “simple” functions handed 
to specializer


Conclusions


•  Wrapping existing ELL code in specializers doesnʼt 
require compiler-fu


•  But more challenging if need new abstraction

•  ASP is viable way to deliver autotuned code

•  Composition presents resource-management 
challenges, but optimistic that Lithe can help

End-to-end Python+ASP apps now feasible & running



