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Background 

 Berkeley Par Lab ending (Wrap May 23, 2013). 
 Talk today is early look at next project, ASPIRE 
 Faculty participants: 
 Elad Alon 
 Krste Asanovic (PI) 
 Jim Demmel 
 Armando Fox 
 Kurt Keutzer 
 Borivoje Nikolic 
 David Patterson 
 Koushik Sen 
 John Wawrzynek 

 
 

2 

Algorithms 

Circuits 

Circuits 

Applications/Patterns 

Programming Systems 

Programming Systems 

Architecture 

Architecture 

Reconfigurable 
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Efficiency Matters 

 Even if  <<1% of programmers understand it 
 

Humanity’s capabilities limited by biggest 
machines running most efficient code. 

Natural user interfaces are performance limited. 
More efficient primitives support more sloppy code 

above (e.g., Lua game scripting, or mashups built 
on top of warehouse-scale computer services) 
 

 Efficient systems => Parallel systems 
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Par Lab Software Stack Highlights 

Organize software around parallel patterns 
 Maximize reuse since patterns common across 

domains 
Communication-Avoiding Algorithms for patterns 
 Implement each pattern with highly efficient 

specializers using SEJITS-based autotuners 
 Programmer composes functionality at high-level 

using productivity language 
 System composes resource usage using 2-level 

scheduling: 1) Tessellation OS at coarse-grain and 
2) Lithe user-level scheduler at fine-grain 
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Motifs common across applications 

App 1 App 2 App 3 

Dense Sparse Graph Trav. 
Berkeley View 

Motifs 
(“Dwarfs”) 
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How do compelling apps relate to 13 motifs? 
  

  Motif (nee “Dwarf”) Popularity  
  (Red Hot  Blue Cool) 

Presenter
Presentation Notes
Some people might subdivide, some might combine them together


Trying to stretch a computer architecture then you can do subcategories as well
Graph Traversal = Probabilistic Models
N-Body = Particle Methods, …
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Graph-Algorithms 

Dynamic-Programming 

Dense-Linear-Algebra 

Sparse-Linear-Algebra 

Unstructured-Grids 

Structured-Grids 

Model-View-Controller  

Iterative-Refinement 

Map-Reduce 

Layered-Systems 

Arbitrary-Static-Task-Graph 

Pipe-and-Filter 

Agent-and-Repository 

Process-Control 

Event-Based/Implicit-
Invocation 

Puppeteer  

Graphical-Models 

Finite-State-Machines 

Backtrack-Branch-and-
Bound 

N-Body-Methods 

Circuits 

Spectral-Methods 

Monte-Carlo 

Applications 

Structural Patterns  Computational Patterns 

Task-Parallelism 
Divide and Conquer 

Data-Parallelism 
Pipeline 

Discrete-Event  
Geometric-Decomposition 
Speculation 

SPMD 
Data-Par/index-space 

Fork/Join 
Actors 

Distributed-Array 
Shared-Data 

Shared-Queue 
Shared-map 
Partitioned Graph 

MIMD 
SIMD 

Parallel Execution Patterns 

Concurrent Algorithm Strategy Patterns 

Implementation Strategy Patterns 

Message-Passing 
Collective-Comm. 

  

Thread-Pool 
Task-Graph 

Data structure Program structure 

Point-To-Point-Sync. (mutual exclusion) 
collective sync. (barrier) 

  

Loop-Par. 
Task-Queue 

Transactions 

Thread creation/destruction 
Process creation/destruction 
 

Concurrency Foundation constructs (not expressed as patterns) 

“Our” Pattern Language (OPL-2010) 
(Kurt Keutzer, Tim Mattson) 

A = M x V 

Refine Towards 
Implementation 
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Mapping Patterns to Hardware 

App 1 App 2 App 3 

Dense Sparse Graph Trav. 

Multicore GPU “Cloud” 

Only a few types of hardware platform 
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High-level pattern constrains space 
of reasonable low-level mappings 

(Insert latest OPL chart showing path) 
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Specializers: Pattern-specific and 
platform-specific compilers 

Multicore GPU “Cloud” 

App 1 App 2 App 3 

Dense Sparse Graph Trav. 

Allow maximum efficiency and expressibility in 
specializers by avoiding mandatory intermediary layers 
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aka. “Stovepipes” 

Asp infrastructure supports specializer authors 
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Par Lab Stack Overview 
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Lithe User-Level Scheduling ABI 

Tessellation OS 
Hardware Resources (Cores, Cache/Local Store, Bandwidth) 

Module 1 
Scheduler 

TBB 
Scheduler 

Efficiency 
Level Code TBB Code 

OpenMP 
Scheduler 

Legacy OpenMP 

Application 1 

Module 3 

Module 2 Module 1 

Application 2 
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The Next Challenge 

 Technology scaling slowing down/stopping 
No savior device technology on horizon 
 Parallelism was one-time gain, using more, 

lower-performance cores for better energy 
efficiency 
 Simpler general-purpose microarchitectures 

• Limited by smallest sensible core 
 Lower Vdd/Frequency 

• Limited by Vdd/Vt scaling, errors 
Now what? Only option appears to be more 

specialized hardware running more optimized 
software. 
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ASPIRE* Project 

What is the best we can do? 
 For a fixed target technology (e.g., 7nm): 
Can we prove a bound? 
Can we design an implementation to approach 

that bound? 
 => Provably Optimal Implementations! 

14 

*ASPIRE: Algorithms and Specializers for Provably 
Optimal Implementations with Resiliency and Efficiency 
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Algorithm Costs 

1. Arithmetic (FLOPS) 
2. Communication: moving data between  
 levels of a memory hierarchy (sequential case)  
 processors over a network (parallel case).  
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CPU 
Cache 

DRAM 

CPU 
DRAM 

CPU 
DRAM 

CPU 
DRAM 

CPU 
DRAM 
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Communication-Avoiding Algorithms 
(Jim Demmel & BEBOP Group) 

 Communication = moving data, between levels of 
memory or between processors over a network 

 Cost of communication >> cost of arithmetic 
 True for cost = time, or cost = energy per operation 
 Cost gap growing over time 

 Goals 
 Identify lower bounds on communication required by 

widely used algorithms 
• Many widely used libraries (eg Sca/LAPACK) 

communicate asymptotically more than necessary 
 Design new algorithms that attain lower bounds 

• Possible for dense and sparse linear algebra, n-body, 
… 

• Big speedups and energy savings possible 
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Ex: Lower bound for all “direct” 
linear algebra 

 Holds for 
 Matmul, BLAS, LU, QR, eig, SVD, tensor contractions, 

… 
 Some whole programs (sequences of  these operations, 

no matter how individual ops are interleaved, e.g. Ak) 
 Dense and sparse matrices (where #flops  <<  n3 ) 
 Sequential and parallel algorithms 
 Some graph-theoretic algorithms (e.g. Floyd-Warshall) 

17 

•  Let M = “fast” memory size (per processor) 
 

#words_moved (per processor) = Ω(#flops (per processor) / M1/2 ) 
 

#messages_sent  ≥  #words_moved / largest_message_size 
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A few examples of speedups 
 Matrix multiplication 

 Up to 12x on IBM BG/P for n=8K on 64K cores; 95% less communication 
 QR decomposition (used in least squares, data mining, …) 

 Up to 8x on 8-core dual-socket Intel Clovertown, for 10M x 10 
 Up to 6.7x on 16-proc. Pentium III cluster, for 100K x 200 
 Up to 13x on Tesla C2050 / Fermi, for 110k x 100 
 Up to 4x on Grid of 4 cities (Dongarra, Langou et al) 
 “infinite speedup” for out-of-core on PowerPC laptop  

• LAPACK thrashed virtual memory, didn’t finish 
 Eigenvalues of band symmetric matrices 

 Up to 17x on Intel Gainestown, 8 core, vs MKL 10.0 (up to 1.9x sequential) 
 Iterative sparse linear equations solvers (GMRES) 

 Up to 4.3x on Intel Clovertown, 8 core 
 N-body (direct particle interactions with cutoff distance) 

 Up to 10x on Cray XT-4 (Hopper), 24K particles on 6K procs. 
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Presenter
Presentation Notes
Note for “infinite speedup”: new algorithm ran half as fast as though the
  whole matrix fit in DRAM, even though it also needed to access disk

Note for eigenvalue problem: MKL 10.0 is not parallel,
   so speedup partly from being able to parallelize, partly communication
   problem is n = 12000, matrix bandwidth = 500

Note for N-body: 24K particles on 6K procs may sound silly,   
   with just 4 particles per processor, but the data shows that
   communication and computation costs are similar,
   so using this many processors is actually efficient
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Recent Prizes for CA Work 

 SIAM Linear Algebra Prize 2012, for best paper 
in previous 3 years, deriving lower bounds 

 SPAA’11 Best Paper Award, for Strassen lower 
bounds 

 EuroPar’11 Distinguished Paper Award, for 
asymptotically faster “2.5D” matmul and LU 

Citation in 2012 DOE Budget Request … 
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“New Algorithm Improves Performance and Accuracy on Extreme-
Scale Computing Systems. On modern computer architectures, 
communication between processors takes longer than the 
performance of a floating point arithmetic operation by a given 
processor. ASCR researchers have developed a new method, 
derived from commonly used linear algebra methods, to minimize 
communications between processors and the memory 
hierarchy, by reformulating the communication patterns 
specified within the algorithm. This method has been 
implemented in the TRILINOS framework, a highly-regarded suite of 
software, which provides functionality for researchers around the 
world to solve large scale, complex multi-physics problems.” 
 

FY 2010 Congressional Budget, Volume 4, FY2010 Accomplishments, Advanced Scientific 
Computing Research (ASCR), pages 65-67. 

President Obama cites Communication-Avoiding 
Algorithms in the FY 2012 Department of Energy Budget 

Request to Congress: 

CA-GMRES (Hoemmen, Mohiyuddin, Yelick, Demmel) 
“Tall-Skinny” QR (Grigori, Hoemmen, Langou,  Demmel) 
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From C-A Algorithms to Provably 
Optimal Systems? 

 1) Prove lower bounds on communication for a 
computation 

 2) Develop algorithm that achieves lower bound 
on a system 

 3) Find that communication time/energy cost is 
>90% of resulting implementation 

 4) We know we’re within 10% of optimal 
 

 Supporting technique: Optimize cores so that 
they get sufficiently low energy to ignore 
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ESP Architecture: Ensembles of 
Specialized Processors 

General-purpose hardware, flexible but inefficient 
 Fixed-function hardware, efficient but inflexible 
 Insight: Patterns capture common operations 

across many applications, each with unique 
computation/communication structure 

 Build an ensemble of specialized engines, each 
individually optimized for particular pattern but 
collectively covering application needs 

 Bet: Will give us efficiency plus flexibility 
 Any given core can have a different mix of these 

depending on workload 
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ESP Engines 

Optimize compute and data movement per 
pattern 
 

Dense Engine: Provide sub-matrix load/store 
operations, support in-register reuse 

 Structured Grid Engine: Supports in-register 
operand reuse across neighborhood 

 Sparse Engine: Support load/store of various 
sparse data structures 

Graph Engine: Provide load/store of bitmap vertex 
representations, support many outstanding 
requests 
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H
ar
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So
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e Computational and Structural Patterns 

ASPIRE Initial Stack Bet 
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Dense Graph Sparse … 

ESP (Ensembles of 
Specialized Processors) 

Architecture 

C++ 
Simulation 

FPGA 
Emulation 

Validation/Verification 

Applications/Domains Audio 
Recognition 

Object 
Recognition 

Scene 
Analysis 

Hardware Cache Coherence 

ASIC 
SoC 

FPGA 
Computer 
Implementation Technologies 

Communication-Avoiding Algorithms 
C-A GEMM C-A BFS C-A SpMV 

Deep HW/SW 
Design-Space 
Exploration 

Pipe&Filter Map-Reduce … 

 Hardware Generators using Chisel HDL 

ILP 
Engine 

Dense 
Engine 

Sparse
Engine 

Graph 
Engine 

ESP 
Core 

Local Stores + DMA 

Glue 
Code 

Dense 
Code 

Sparse
Code 

Graph 
Code 

ESP 
Code 

Specializers with SEJITS Implementations and Autotuning 
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Questions? Thoughts? 
Feedback? 
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Research supported by Microsoft (Award 
#024263) and Intel (Award #024894) funding 
and by matching funding by U.C. Discovery 
(Award #DIG07-10227). 

 Additional support comes from Par Lab affiliates 
National Instruments, NEC, Nokia, NVIDIA, 
Samsung, and Oracle/Sun. 
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