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Background 

 Berkeley Par Lab ending (Wrap May 23, 2013). 
 Talk today is early look at next project, ASPIRE 
 Faculty participants: 
 Elad Alon 
 Krste Asanovic (PI) 
 Jim Demmel 
 Armando Fox 
 Kurt Keutzer 
 Borivoje Nikolic 
 David Patterson 
 Koushik Sen 
 John Wawrzynek 
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Efficiency Matters 

 Even if  <<1% of programmers understand it 
 

Humanity’s capabilities limited by biggest 
machines running most efficient code. 

Natural user interfaces are performance limited. 
More efficient primitives support more sloppy code 

above (e.g., Lua game scripting, or mashups built 
on top of warehouse-scale computer services) 
 

 Efficient systems => Parallel systems 
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Par Lab Software Stack Highlights 

Organize software around parallel patterns 
 Maximize reuse since patterns common across 

domains 
Communication-Avoiding Algorithms for patterns 
 Implement each pattern with highly efficient 

specializers using SEJITS-based autotuners 
 Programmer composes functionality at high-level 

using productivity language 
 System composes resource usage using 2-level 

scheduling: 1) Tessellation OS at coarse-grain and 
2) Lithe user-level scheduler at fine-grain 
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Motifs common across applications 

App 1 App 2 App 3 

Dense Sparse Graph Trav. 
Berkeley View 

Motifs 
(“Dwarfs”) 

6 



BERKELEY PAR LAB 

7 

How do compelling apps relate to 13 motifs? 
  

  Motif (nee “Dwarf”) Popularity  
  (Red Hot  Blue Cool) 

Presenter
Presentation Notes
Some people might subdivide, some might combine them togetherTrying to stretch a computer architecture then you can do subcategories as wellGraph Traversal = Probabilistic ModelsN-Body = Particle Methods, …
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Graph-Algorithms 

Dynamic-Programming 

Dense-Linear-Algebra 

Sparse-Linear-Algebra 

Unstructured-Grids 

Structured-Grids 

Model-View-Controller  

Iterative-Refinement 

Map-Reduce 

Layered-Systems 

Arbitrary-Static-Task-Graph 

Pipe-and-Filter 

Agent-and-Repository 

Process-Control 

Event-Based/Implicit-
Invocation 

Puppeteer  

Graphical-Models 

Finite-State-Machines 

Backtrack-Branch-and-
Bound 

N-Body-Methods 

Circuits 

Spectral-Methods 

Monte-Carlo 

Applications 

Structural Patterns  Computational Patterns 

Task-Parallelism 
Divide and Conquer 

Data-Parallelism 
Pipeline 

Discrete-Event  
Geometric-Decomposition 
Speculation 

SPMD 
Data-Par/index-space 

Fork/Join 
Actors 

Distributed-Array 
Shared-Data 

Shared-Queue 
Shared-map 
Partitioned Graph 

MIMD 
SIMD 

Parallel Execution Patterns 

Concurrent Algorithm Strategy Patterns 

Implementation Strategy Patterns 

Message-Passing 
Collective-Comm. 

  

Thread-Pool 
Task-Graph 

Data structure Program structure 

Point-To-Point-Sync. (mutual exclusion) 
collective sync. (barrier) 

  

Loop-Par. 
Task-Queue 

Transactions 

Thread creation/destruction 
Process creation/destruction 
 

Concurrency Foundation constructs (not expressed as patterns) 

“Our” Pattern Language (OPL-2010) 
(Kurt Keutzer, Tim Mattson) 

A = M x V 

Refine Towards 
Implementation 
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Mapping Patterns to Hardware 

App 1 App 2 App 3 

Dense Sparse Graph Trav. 

Multicore GPU “Cloud” 

Only a few types of hardware platform 

9 



BERKELEY PAR LAB 

High-level pattern constrains space 
of reasonable low-level mappings 

(Insert latest OPL chart showing path) 
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Specializers: Pattern-specific and 
platform-specific compilers 

Multicore GPU “Cloud” 

App 1 App 2 App 3 

Dense Sparse Graph Trav. 

Allow maximum efficiency and expressibility in 
specializers by avoiding mandatory intermediary layers 
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aka. “Stovepipes” 

Asp infrastructure supports specializer authors 
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Par Lab Stack Overview 
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Lithe User-Level Scheduling ABI 

Tessellation OS 
Hardware Resources (Cores, Cache/Local Store, Bandwidth) 

Module 1 
Scheduler 

TBB 
Scheduler 

Efficiency 
Level Code TBB Code 

OpenMP 
Scheduler 

Legacy OpenMP 

Application 1 

Module 3 

Module 2 Module 1 

Application 2 
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The Next Challenge 

 Technology scaling slowing down/stopping 
No savior device technology on horizon 
 Parallelism was one-time gain, using more, 

lower-performance cores for better energy 
efficiency 
 Simpler general-purpose microarchitectures 

• Limited by smallest sensible core 
 Lower Vdd/Frequency 

• Limited by Vdd/Vt scaling, errors 
Now what? Only option appears to be more 

specialized hardware running more optimized 
software. 
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ASPIRE* Project 

What is the best we can do? 
 For a fixed target technology (e.g., 7nm): 
Can we prove a bound? 
Can we design an implementation to approach 

that bound? 
 => Provably Optimal Implementations! 
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*ASPIRE: Algorithms and Specializers for Provably 
Optimal Implementations with Resiliency and Efficiency 
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Algorithm Costs 

1. Arithmetic (FLOPS) 
2. Communication: moving data between  
 levels of a memory hierarchy (sequential case)  
 processors over a network (parallel case).  
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CPU 
DRAM 
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Communication-Avoiding Algorithms 
(Jim Demmel & BEBOP Group) 

 Communication = moving data, between levels of 
memory or between processors over a network 

 Cost of communication >> cost of arithmetic 
 True for cost = time, or cost = energy per operation 
 Cost gap growing over time 

 Goals 
 Identify lower bounds on communication required by 

widely used algorithms 
• Many widely used libraries (eg Sca/LAPACK) 

communicate asymptotically more than necessary 
 Design new algorithms that attain lower bounds 

• Possible for dense and sparse linear algebra, n-body, 
… 

• Big speedups and energy savings possible 
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Ex: Lower bound for all “direct” 
linear algebra 

 Holds for 
 Matmul, BLAS, LU, QR, eig, SVD, tensor contractions, 

… 
 Some whole programs (sequences of  these operations, 

no matter how individual ops are interleaved, e.g. Ak) 
 Dense and sparse matrices (where #flops  <<  n3 ) 
 Sequential and parallel algorithms 
 Some graph-theoretic algorithms (e.g. Floyd-Warshall) 
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•  Let M = “fast” memory size (per processor) 
 

#words_moved (per processor) = Ω(#flops (per processor) / M1/2 ) 
 

#messages_sent  ≥  #words_moved / largest_message_size 
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A few examples of speedups 
 Matrix multiplication 

 Up to 12x on IBM BG/P for n=8K on 64K cores; 95% less communication 
 QR decomposition (used in least squares, data mining, …) 

 Up to 8x on 8-core dual-socket Intel Clovertown, for 10M x 10 
 Up to 6.7x on 16-proc. Pentium III cluster, for 100K x 200 
 Up to 13x on Tesla C2050 / Fermi, for 110k x 100 
 Up to 4x on Grid of 4 cities (Dongarra, Langou et al) 
 “infinite speedup” for out-of-core on PowerPC laptop  

• LAPACK thrashed virtual memory, didn’t finish 
 Eigenvalues of band symmetric matrices 

 Up to 17x on Intel Gainestown, 8 core, vs MKL 10.0 (up to 1.9x sequential) 
 Iterative sparse linear equations solvers (GMRES) 

 Up to 4.3x on Intel Clovertown, 8 core 
 N-body (direct particle interactions with cutoff distance) 

 Up to 10x on Cray XT-4 (Hopper), 24K particles on 6K procs. 
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Presenter
Presentation Notes
Note for “infinite speedup”: new algorithm ran half as fast as though the  whole matrix fit in DRAM, even though it also needed to access diskNote for eigenvalue problem: MKL 10.0 is not parallel,   so speedup partly from being able to parallelize, partly communication   problem is n = 12000, matrix bandwidth = 500Note for N-body: 24K particles on 6K procs may sound silly,      with just 4 particles per processor, but the data shows that   communication and computation costs are similar,   so using this many processors is actually efficient
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Recent Prizes for CA Work 

 SIAM Linear Algebra Prize 2012, for best paper 
in previous 3 years, deriving lower bounds 

 SPAA’11 Best Paper Award, for Strassen lower 
bounds 

 EuroPar’11 Distinguished Paper Award, for 
asymptotically faster “2.5D” matmul and LU 

Citation in 2012 DOE Budget Request … 
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“New Algorithm Improves Performance and Accuracy on Extreme-
Scale Computing Systems. On modern computer architectures, 
communication between processors takes longer than the 
performance of a floating point arithmetic operation by a given 
processor. ASCR researchers have developed a new method, 
derived from commonly used linear algebra methods, to minimize 
communications between processors and the memory 
hierarchy, by reformulating the communication patterns 
specified within the algorithm. This method has been 
implemented in the TRILINOS framework, a highly-regarded suite of 
software, which provides functionality for researchers around the 
world to solve large scale, complex multi-physics problems.” 
 

FY 2010 Congressional Budget, Volume 4, FY2010 Accomplishments, Advanced Scientific 
Computing Research (ASCR), pages 65-67. 

President Obama cites Communication-Avoiding 
Algorithms in the FY 2012 Department of Energy Budget 

Request to Congress: 

CA-GMRES (Hoemmen, Mohiyuddin, Yelick, Demmel) 
“Tall-Skinny” QR (Grigori, Hoemmen, Langou,  Demmel) 
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From C-A Algorithms to Provably 
Optimal Systems? 

 1) Prove lower bounds on communication for a 
computation 

 2) Develop algorithm that achieves lower bound 
on a system 

 3) Find that communication time/energy cost is 
>90% of resulting implementation 

 4) We know we’re within 10% of optimal 
 

 Supporting technique: Optimize cores so that 
they get sufficiently low energy to ignore 

21 



BERKELEY PAR LAB 

ESP Architecture: Ensembles of 
Specialized Processors 

General-purpose hardware, flexible but inefficient 
 Fixed-function hardware, efficient but inflexible 
 Insight: Patterns capture common operations 

across many applications, each with unique 
computation/communication structure 

 Build an ensemble of specialized engines, each 
individually optimized for particular pattern but 
collectively covering application needs 

 Bet: Will give us efficiency plus flexibility 
 Any given core can have a different mix of these 

depending on workload 
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ESP Engines 

Optimize compute and data movement per 
pattern 
 

Dense Engine: Provide sub-matrix load/store 
operations, support in-register reuse 

 Structured Grid Engine: Supports in-register 
operand reuse across neighborhood 

 Sparse Engine: Support load/store of various 
sparse data structures 

Graph Engine: Provide load/store of bitmap vertex 
representations, support many outstanding 
requests 
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ASPIRE Initial Stack Bet 
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Dense Graph Sparse … 

ESP (Ensembles of 
Specialized Processors) 

Architecture 

C++ 
Simulation 

FPGA 
Emulation 

Validation/Verification 

Applications/Domains Audio 
Recognition 

Object 
Recognition 

Scene 
Analysis 

Hardware Cache Coherence 

ASIC 
SoC 

FPGA 
Computer 
Implementation Technologies 

Communication-Avoiding Algorithms 
C-A GEMM C-A BFS C-A SpMV 

Deep HW/SW 
Design-Space 
Exploration 

Pipe&Filter Map-Reduce … 

 Hardware Generators using Chisel HDL 

ILP 
Engine 

Dense 
Engine 

Sparse
Engine 

Graph 
Engine 

ESP 
Core 

Local Stores + DMA 

Glue 
Code 

Dense 
Code 

Sparse
Code 

Graph 
Code 

ESP 
Code 

Specializers with SEJITS Implementations and Autotuning 
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Questions? Thoughts? 
Feedback? 
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