
BERKELEY PAR LAB BERKELEY PAR LAB

Towards Provably Optimal
Parallel Systems

Krste Asanovic
UC Berkeley

MATEO-2012, Barcelona

June 29, 2012

1

BERKELEY PAR LAB

Background

 Berkeley Par Lab ending (Wrap May 23, 2013).
 Talk today is early look at next project, ASPIRE
 Faculty participants:
 Elad Alon
 Krste Asanovic (PI)
 Jim Demmel
 Armando Fox
 Kurt Keutzer
 Borivoje Nikolic
 David Patterson
 Koushik Sen
 John Wawrzynek

2

Algorithms

Circuits

Circuits

Applications/Patterns

Programming Systems

Programming Systems

Architecture

Architecture

Reconfigurable

BERKELEY PAR LAB

Efficiency Matters

 Even if <<1% of programmers understand it

Humanity’s capabilities limited by biggest
machines running most efficient code.

Natural user interfaces are performance limited.
More efficient primitives support more sloppy code

above (e.g., Lua game scripting, or mashups built
on top of warehouse-scale computer services)

 Efficient systems => Parallel systems

4

BERKELEY PAR LAB

Par Lab Software Stack Highlights

Organize software around parallel patterns
 Maximize reuse since patterns common across

domains
Communication-Avoiding Algorithms for patterns
 Implement each pattern with highly efficient

specializers using SEJITS-based autotuners
 Programmer composes functionality at high-level

using productivity language
 System composes resource usage using 2-level

scheduling: 1) Tessellation OS at coarse-grain and
2) Lithe user-level scheduler at fine-grain

5

BERKELEY PAR LAB
Motifs common across applications

App 1 App 2 App 3

Dense Sparse Graph Trav.
Berkeley View

Motifs
(“Dwarfs”)

6

BERKELEY PAR LAB

7

How do compelling apps relate to 13 motifs?

 Motif (nee “Dwarf”) Popularity
 (Red Hot  Blue Cool)

Presenter
Presentation Notes
Some people might subdivide, some might combine them together

Trying to stretch a computer architecture then you can do subcategories as well
Graph Traversal = Probabilistic Models
N-Body = Particle Methods, …

BERKELEY PAR LAB

8

Graph-Algorithms

Dynamic-Programming

Dense-Linear-Algebra

Sparse-Linear-Algebra

Unstructured-Grids

Structured-Grids

Model-View-Controller

Iterative-Refinement

Map-Reduce

Layered-Systems

Arbitrary-Static-Task-Graph

Pipe-and-Filter

Agent-and-Repository

Process-Control

Event-Based/Implicit-
Invocation

Puppeteer

Graphical-Models

Finite-State-Machines

Backtrack-Branch-and-
Bound

N-Body-Methods

Circuits

Spectral-Methods

Monte-Carlo

Applications

Structural Patterns Computational Patterns

Task-Parallelism
Divide and Conquer

Data-Parallelism
Pipeline

Discrete-Event
Geometric-Decomposition
Speculation

SPMD
Data-Par/index-space

Fork/Join
Actors

Distributed-Array
Shared-Data

Shared-Queue
Shared-map
Partitioned Graph

MIMD
SIMD

Parallel Execution Patterns

Concurrent Algorithm Strategy Patterns

Implementation Strategy Patterns

Message-Passing
Collective-Comm.

Thread-Pool
Task-Graph

Data structure Program structure

Point-To-Point-Sync. (mutual exclusion)
collective sync. (barrier)

Loop-Par.
Task-Queue

Transactions

Thread creation/destruction
Process creation/destruction

Concurrency Foundation constructs (not expressed as patterns)

“Our” Pattern Language (OPL-2010)
(Kurt Keutzer, Tim Mattson)

A = M x V

Refine Towards
Implementation

BERKELEY PAR LAB

Mapping Patterns to Hardware

App 1 App 2 App 3

Dense Sparse Graph Trav.

Multicore GPU “Cloud”

Only a few types of hardware platform

9

BERKELEY PAR LAB

High-level pattern constrains space
of reasonable low-level mappings

(Insert latest OPL chart showing path)

10

BERKELEY PAR LAB

Specializers: Pattern-specific and
platform-specific compilers

Multicore GPU “Cloud”

App 1 App 2 App 3

Dense Sparse Graph Trav.

Allow maximum efficiency and expressibility in
specializers by avoiding mandatory intermediary layers

11

aka. “Stovepipes”

Asp infrastructure supports specializer authors

BERKELEY PAR LAB

Par Lab Stack Overview

12

Lithe User-Level Scheduling ABI

Tessellation OS
Hardware Resources (Cores, Cache/Local Store, Bandwidth)

Module 1
Scheduler

TBB
Scheduler

Efficiency
Level Code TBB Code

OpenMP
Scheduler

Legacy OpenMP

Application 1

Module 3

Module 2 Module 1

Application 2

BERKELEY PAR LAB

The Next Challenge

 Technology scaling slowing down/stopping
No savior device technology on horizon
 Parallelism was one-time gain, using more,

lower-performance cores for better energy
efficiency
 Simpler general-purpose microarchitectures

• Limited by smallest sensible core
 Lower Vdd/Frequency

• Limited by Vdd/Vt scaling, errors
Now what? Only option appears to be more

specialized hardware running more optimized
software.

13

BERKELEY PAR LAB

ASPIRE* Project

What is the best we can do?
 For a fixed target technology (e.g., 7nm):
Can we prove a bound?
Can we design an implementation to approach

that bound?
 => Provably Optimal Implementations!

14

*ASPIRE: Algorithms and Specializers for Provably
Optimal Implementations with Resiliency and Efficiency

BERKELEY PAR LAB

Algorithm Costs

1. Arithmetic (FLOPS)
2. Communication: moving data between
 levels of a memory hierarchy (sequential case)
 processors over a network (parallel case).

15

CPU
Cache

DRAM

CPU
DRAM

CPU
DRAM

CPU
DRAM

CPU
DRAM

BERKELEY PAR LAB

Communication-Avoiding Algorithms
(Jim Demmel & BEBOP Group)

 Communication = moving data, between levels of
memory or between processors over a network

 Cost of communication >> cost of arithmetic
 True for cost = time, or cost = energy per operation
 Cost gap growing over time

 Goals
 Identify lower bounds on communication required by

widely used algorithms
• Many widely used libraries (eg Sca/LAPACK)

communicate asymptotically more than necessary
 Design new algorithms that attain lower bounds

• Possible for dense and sparse linear algebra, n-body,
…

• Big speedups and energy savings possible

BERKELEY PAR LAB

Ex: Lower bound for all “direct”
linear algebra

 Holds for
 Matmul, BLAS, LU, QR, eig, SVD, tensor contractions,

…
 Some whole programs (sequences of these operations,

no matter how individual ops are interleaved, e.g. Ak)
 Dense and sparse matrices (where #flops << n3)
 Sequential and parallel algorithms
 Some graph-theoretic algorithms (e.g. Floyd-Warshall)

17

• Let M = “fast” memory size (per processor)

#words_moved (per processor) = Ω(#flops (per processor) / M1/2)

#messages_sent ≥ #words_moved / largest_message_size

BERKELEY PAR LAB

A few examples of speedups
 Matrix multiplication

 Up to 12x on IBM BG/P for n=8K on 64K cores; 95% less communication
 QR decomposition (used in least squares, data mining, …)

 Up to 8x on 8-core dual-socket Intel Clovertown, for 10M x 10
 Up to 6.7x on 16-proc. Pentium III cluster, for 100K x 200
 Up to 13x on Tesla C2050 / Fermi, for 110k x 100
 Up to 4x on Grid of 4 cities (Dongarra, Langou et al)
 “infinite speedup” for out-of-core on PowerPC laptop

• LAPACK thrashed virtual memory, didn’t finish
 Eigenvalues of band symmetric matrices

 Up to 17x on Intel Gainestown, 8 core, vs MKL 10.0 (up to 1.9x sequential)
 Iterative sparse linear equations solvers (GMRES)

 Up to 4.3x on Intel Clovertown, 8 core
 N-body (direct particle interactions with cutoff distance)

 Up to 10x on Cray XT-4 (Hopper), 24K particles on 6K procs.

18

Presenter
Presentation Notes
Note for “infinite speedup”: new algorithm ran half as fast as though the
 whole matrix fit in DRAM, even though it also needed to access disk

Note for eigenvalue problem: MKL 10.0 is not parallel,
 so speedup partly from being able to parallelize, partly communication
 problem is n = 12000, matrix bandwidth = 500

Note for N-body: 24K particles on 6K procs may sound silly,
 with just 4 particles per processor, but the data shows that
 communication and computation costs are similar,
 so using this many processors is actually efficient

BERKELEY PAR LAB

Recent Prizes for CA Work

 SIAM Linear Algebra Prize 2012, for best paper
in previous 3 years, deriving lower bounds

 SPAA’11 Best Paper Award, for Strassen lower
bounds

 EuroPar’11 Distinguished Paper Award, for
asymptotically faster “2.5D” matmul and LU

Citation in 2012 DOE Budget Request …

BERKELEY PAR LAB

“New Algorithm Improves Performance and Accuracy on Extreme-
Scale Computing Systems. On modern computer architectures,
communication between processors takes longer than the
performance of a floating point arithmetic operation by a given
processor. ASCR researchers have developed a new method,
derived from commonly used linear algebra methods, to minimize
communications between processors and the memory
hierarchy, by reformulating the communication patterns
specified within the algorithm. This method has been
implemented in the TRILINOS framework, a highly-regarded suite of
software, which provides functionality for researchers around the
world to solve large scale, complex multi-physics problems.”

FY 2010 Congressional Budget, Volume 4, FY2010 Accomplishments, Advanced Scientific
Computing Research (ASCR), pages 65-67.

President Obama cites Communication-Avoiding
Algorithms in the FY 2012 Department of Energy Budget

Request to Congress:

CA-GMRES (Hoemmen, Mohiyuddin, Yelick, Demmel)
“Tall-Skinny” QR (Grigori, Hoemmen, Langou, Demmel)

BERKELEY PAR LAB

From C-A Algorithms to Provably
Optimal Systems?

 1) Prove lower bounds on communication for a
computation

 2) Develop algorithm that achieves lower bound
on a system

 3) Find that communication time/energy cost is
>90% of resulting implementation

 4) We know we’re within 10% of optimal

 Supporting technique: Optimize cores so that
they get sufficiently low energy to ignore

21

BERKELEY PAR LAB

ESP Architecture: Ensembles of
Specialized Processors

General-purpose hardware, flexible but inefficient
 Fixed-function hardware, efficient but inflexible
 Insight: Patterns capture common operations

across many applications, each with unique
computation/communication structure

 Build an ensemble of specialized engines, each
individually optimized for particular pattern but
collectively covering application needs

 Bet: Will give us efficiency plus flexibility
 Any given core can have a different mix of these

depending on workload

22

BERKELEY PAR LAB

ESP Engines

Optimize compute and data movement per
pattern

Dense Engine: Provide sub-matrix load/store
operations, support in-register reuse

 Structured Grid Engine: Supports in-register
operand reuse across neighborhood

 Sparse Engine: Support load/store of various
sparse data structures

Graph Engine: Provide load/store of bitmap vertex
representations, support many outstanding
requests

23

BERKELEY PAR LAB

H
ar

dw
ar

e
So

ftw
ar

e Computational and Structural Patterns

ASPIRE Initial Stack Bet

24

Dense Graph Sparse …

ESP (Ensembles of
Specialized Processors)

Architecture

C++
Simulation

FPGA
Emulation

Validation/Verification

Applications/Domains Audio
Recognition

Object
Recognition

Scene
Analysis

Hardware Cache Coherence

ASIC
SoC

FPGA
Computer
Implementation Technologies

Communication-Avoiding Algorithms
C-A GEMM C-A BFS C-A SpMV

Deep HW/SW
Design-Space
Exploration

Pipe&Filter Map-Reduce …

 Hardware Generators using Chisel HDL

ILP
Engine

Dense
Engine

Sparse
Engine

Graph
Engine

ESP
Core

Local Stores + DMA

Glue
Code

Dense
Code

Sparse
Code

Graph
Code

ESP
Code

Specializers with SEJITS Implementations and Autotuning

BERKELEY PAR LAB

Questions? Thoughts?
Feedback?

25

Research supported by Microsoft (Award
#024263) and Intel (Award #024894) funding
and by matching funding by U.C. Discovery
(Award #DIG07-10227).

 Additional support comes from Par Lab affiliates
National Instruments, NEC, Nokia, NVIDIA,
Samsung, and Oracle/Sun.

	Towards Provably Optimal Parallel Systems
	Background
	Efficiency Matters
	Par Lab Software Stack Highlights
	Motifs common across applications
	 Motif (nee “Dwarf”) Popularity �		(Red Hot  Blue Cool)
	“Our” Pattern Language (OPL-2010)�(Kurt Keutzer, Tim Mattson)
	Mapping Patterns to Hardware
	High-level pattern constrains space of reasonable low-level mappings
	Specializers: Pattern-specific and platform-specific compilers
	Par Lab Stack Overview
	The Next Challenge
	ASPIRE* Project
	Algorithm Costs
	Communication-Avoiding Algorithms�(Jim Demmel & BEBOP Group)
	Ex: Lower bound for all “direct” linear algebra
	A few examples of speedups
	Recent Prizes for CA Work
	Slide Number 20
	From C-A Algorithms to Provably Optimal Systems?
	ESP Architecture: Ensembles of Specialized Processors
	ESP Engines
	ASPIRE Initial Stack Bet
	Questions? Thoughts? Feedback?

