‘ Motivation |

“Communication” means

e Parallel: Data movement between processors
e Sequential: Data movement between levels of memory hierarchy
e # words (inverse bandwidth) and # messages (latency)

Communication matters because:

e Much slower than flops, and getting exponentially slower over time

e Moving data much more energy-intensive than computing on it

e Sparse linear algebra kernels already communication-bound

e Dense linear algebra: strong scaling demands increase relative comm. cost

‘ Direct Methods |

Summary

e New communication lower bounds for (nearly) all dense or sparse, sequential or parallel,
direct linear algebra problems

e New algorithms that attain lower bounds (dense only, sequential and parallel)
e Measured and modeled speedups, not just asymptotics

Dense Matrix Multiplication
Lower bound on: | Lower bound

# words () (# flops / (local/fast memory size)'/?
# messages () (# flops / (local/fast memory size)?/?
¢ Results due to Hong-Kung [HK81], lrony/Tishkin/Toledo [ITT04]

e Attained by usual block algorithm (sequential) and Cannon’s algorithm (parallel)
Extensions to (nearly) all direct problems

e Theorem: same lower bounds hold for LU, Cholesky, QR, eigenproblems, and SVD

— Sequential or parallel, dense or sparse
— See [BDHS09Db] for details and proof

e Existing (Sca)LAPACK routines not both bandwidth and latency optimal

— ScalLAPACK: only Cholesky is optimal; LAPACK: Cholesky bandwidth only
— See [BDHS09a] for details on Cholesky algorithms

e New algorithms to attain lower bounds (up to polylog factors)

— CAQR (QR factorization): new panel factorization & representation of ()
— CALU (LU factorization): new pivoting scheme (still stable)

— Eigenproblems and SVD: constant factor more flops, and randomization (see
[DDHO7])

New algorithm - Communication-Avoiding LU (CALU)

e Factor panel once with “Tall Skinny LU” (like a block reduction) to choose pivots

e Swap pivot rows to top and factor again without pivoting — O(n?) extra computation
e Measured speedup of parallel TSLU: up to 5.58 x on Cray XT4

e Measured speedup of parallel CALU (size 10* x 10%): 1.31x on Cray XT4

e See [DGX08] for details, models, and more performance results

New algorithm - Communication-Avoiding QR (CAQR)

e Panel factorization: “Tall Skinny QR” (TSQR) — block reduction with QR as operator
e Measured speedup of parallel TSQR: up to 6.7x on 16 procs of a Pentium Il cluster
e Modeled speedup of parallel CAQR: up to 9.7x on an IBM Power5 system

e See [DGHLO8] for details, models, and more performance results

e Standalone TSQR useful for iterative methods (orthogonalize basis vectors)

TSQR performance results

e Single node of 8-core Intel Clovertown
(we have cluster and out-of-core ver-
sions tOO) 1.20E+7

1.00E+/
8.00E+6 : #@gﬁ,cgf
6.00E+46 . ESE' Ej
e Best number of threads for LAPACK 4.00E+6 B TSQR, p=8
QR (Intel MKL and stock LAPACK): 1 200846 ' J ]
0.00E+40 l

e Even better measured and modeled 10000 100000 1000000 10000000
#rows in matrix (10 columns)
speedups on clusters

LAPACK QR \s. TSQR (factor and Q)
8-core Intel Clovertown node

e Includes factorization and assembling
explicit () factor

#rows /runtime (in seconds)
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‘ lterative Methods |

& Subject of Mark Hoemmen’s 11:30 talk

Based on 2 (or 3) communication-bound kernels

1. Sparse matrix-vector multiplication (SpMV)
2. (Possibly also preconditioning)
3. Orthogonalization (explicit, like Gram-Schmidt, or implicit, like in CG)

Our new algorithms

e Communicate factor of s times less than existing iterative methods (this is optimal)

e Work as long as sparse matrix structure partitions well (true for structured and unstruc-
tured meshes, as well as other matrices)

e Mathematically equivalent to existing methods and stable in practice

Based on two new kernels

e Matrix powers kernel: use (possibly) redundant computation to compute a basis of
spanf{v, Av, A, ..., Adv}
e TSQR: orthogonalize this basis accurately in 1 reduction

e See [MHDY09] for implementation and performance details of a GMRES algorithm us-
iIng these two kernels

Matrix powers kernel performance results
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e Matrix powers kernel on a variety of sparse matrices, symmetric and nonsymmetric

e Red (on bottom) is tuned A - x, green (next) is matrix powers kernel, blue (top) is upper
bound

e Performance relative to in L2 cache A - x (“instruction throughput measured peak”)
e Two different bases computed:

1.\ = 0 is “power basis” v, Av, A%v, ...
2.\ # 0 is “Newton basis” v, (A — A\ 1)v, (A — Xol)(A— X\ T)v, ...
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