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Motivation

“Communication” means
• Parallel: Data movement between processors
• Sequential: Data movement between levels of memory hierarchy
• # words (inverse bandwidth) and # messages (latency)

Communication matters because:
•Much slower than flops, and getting exponentially slower over time
•Moving data much more energy-intensive than computing on it
• Sparse linear algebra kernels already communication-bound
•Dense linear algebra: strong scaling demands increase relative comm. cost

Direct Methods

Summary
•New communication lower bounds for (nearly) all dense or sparse, sequential or parallel,

direct linear algebra problems
•New algorithms that attain lower bounds (dense only, sequential and parallel)
•Measured and modeled speedups, not just asymptotics

Dense Matrix Multiplication
Lower bound on: Lower bound
# words Ω

(
# flops / (local/fast memory size)1/2

)
# messages Ω

(
# flops / (local/fast memory size)3/2

)
•Results due to Hong-Kung [HK81], Irony/Tishkin/Toledo [ITT04]
• Attained by usual block algorithm (sequential) and Cannon’s algorithm (parallel)

Extensions to (nearly) all direct problems
• Theorem: same lower bounds hold for LU, Cholesky, QR, eigenproblems, and SVD

– Sequential or parallel, dense or sparse
– See [BDHS09b] for details and proof
• Existing (Sca)LAPACK routines not both bandwidth and latency optimal

– ScaLAPACK: only Cholesky is optimal; LAPACK: Cholesky bandwidth only
– See [BDHS09a] for details on Cholesky algorithms
•New algorithms to attain lower bounds (up to polylog factors)

– CAQR (QR factorization): new panel factorization & representation of Q
– CALU (LU factorization): new pivoting scheme (still stable)
– Eigenproblems and SVD: constant factor more flops, and randomization (see

[DDH07])

New algorithm - Communication-Avoiding LU (CALU)
• Factor panel once with “Tall Skinny LU” (like a block reduction) to choose pivots
• Swap pivot rows to top and factor again without pivoting – O(n2) extra computation
•Measured speedup of parallel TSLU: up to 5.58× on Cray XT4
•Measured speedup of parallel CALU (size 104 × 104): 1.31× on Cray XT4
• See [DGX08] for details, models, and more performance results

New algorithm - Communication-Avoiding QR (CAQR)
• Panel factorization: “Tall Skinny QR” (TSQR) – block reduction with QR as operator
•Measured speedup of parallel TSQR: up to 6.7× on 16 procs of a Pentium III cluster
•Modeled speedup of parallel CAQR: up to 9.7× on an IBM Power5 system
• See [DGHL08] for details, models, and more performance results
• Standalone TSQR useful for iterative methods (orthogonalize basis vectors)

TSQR performance results

• Single node of 8-core Intel Clovertown
(we have cluster and out-of-core ver-
sions too)

• Includes factorization and assembling
explicit Q factor

• Best number of threads for LAPACK
QR (Intel MKL and stock LAPACK): 1

• Even better measured and modeled
speedups on clusters
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LAPACK QR vs. TSQR (factor and Q)
8-core Intel Clovertown node
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Iterative Methods

♦ Subject of Mark Hoemmen’s 11:30 talk

Based on 2 (or 3) communication-bound kernels

1. Sparse matrix-vector multiplication (SpMV)

2. (Possibly also preconditioning)

3. Orthogonalization (explicit, like Gram-Schmidt, or implicit, like in CG)

Our new algorithms

•Communicate factor of s times less than existing iterative methods (this is optimal)

•Work as long as sparse matrix structure partitions well (true for structured and unstruc-
tured meshes, as well as other matrices)

•Mathematically equivalent to existing methods and stable in practice

Based on two new kernels

•Matrix powers kernel: use (possibly) redundant computation to compute a basis of
span{v, Av, A2v, . . . , Asv}
• TSQR: orthogonalize this basis accurately in 1 reduction

• See [MHDY09] for implementation and performance details of a GMRES algorithm us-
ing these two kernels

Matrix powers kernel performance results
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Upper bound
Our implementation
SpMV
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•Matrix powers kernel on a variety of sparse matrices, symmetric and nonsymmetric

•Red (on bottom) is tuned A · x, green (next) is matrix powers kernel, blue (top) is upper
bound

• Performance relative to in L2 cache A · x (“instruction throughput measured peak”)

• Two different bases computed:

1. λ = 0 is “power basis” v, Av, A2v, . . .
2. λ 6= 0 is “Newton basis” v, (A− λ1I)v, (A− λ2I)(A− λ1I)v, . . .

Credits

•Research supported by Microsoft (Award #024263) and Intel (Award #024894) funding
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