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Abstract

The communication complexity of algorithms is shown to be closely related to the expansion
properties of the corresponding computation graphs. We demonstrate this on Strassen’s fast
matrix multiplication algorithm, and obtain the first lower bound on its communication cost.
This bound is optimal.



1 Introduction

The communication of an algorithm (e.g., transferring data between the CPU and memory devices,
or between parallel processors) often costs significantly more than its arithmetic1. It is therefore
of interest to design algorithms minimizing communication2 on the one hand, and to obtain lower
bounds for the communication needed, on the other hand.

While Moore’s law predicts an exponential speedup of hardware in general, the annual im-
provement rate of time-per-arithmetic-operation has over the years consistently exceeded that of
time-per-word read/write [GSP04]. The fraction of running time spent on communication is thus
expected to increase further.

Previous Work.

Some well-studied problems have seen new faster algorithms, obtained by minimizing communica-
tion. Consider, for example, the classic Θ(n3) algorithm for matrix-multiplication. While many
of its implementations are communication inefficient, communication-avoiding sequential and par-
allel variants of this algorithm were constructed, and proved optimal, by matching lower bounds
[Can69, HK81, FLPR99, ITT04].

In [BDHS09a, BDHS09b] we generalize the results of [HK81, ITT04] regarding matrix multipli-
cation, to attain new communication lower bounds for a much wider variety of algorithms (most
of the bounds were shown to be tight). This includes classical algorithms for LU factorization,
Cholesky factorization, LDLT factorization, QR factorization, as well as algorithms for eigenvalues
and singular values. Thus we essentially cover all direct methods of linear algebra. The results hold
for dense matrix algorithms (most of them are of cubic time), as well as sparse matrix algorithms
(whose running time depends on the number of non-zero elements). They apply to sequential and
parallel algorithms, to compositions of linear algebra operations (like computing the powers of a
matrix), and to certain graph theoretic problems3.

In [BDHS09a, BDHS09b] we use the approach of [ITT04], based on the Loomis-Whitney ge-
ometric theorem [LW49, BZ88], by embedding segments of the computation process into a three
dimensional cube. This approach, however, is not suitable when distributivity is used, as is the
case in Strassen [Str69] and Strassen-like algorithms [CW90, CKSU05].

Communication Cost of Fast Matrix Multiplication.

Upper bound. The communication bandwidth cost BW (n) of Strassen’s algorithm (see Algo-
rithm 1, Appendix), applied to n-by-n matrices on a machine with fast memory of size M , can
be bounded above as follows: Run the recursion until matrices are sufficiently small. Then, read
the two input matrices into the fast memory, perform the matrix multiplication inside the fast
memory, then write the result into the slow memory. We thus have BW (n) ≤ 7 ·BW

(
n
2

)
+ O(n2)

1Communication time varies by orders of magnitude, from 0.5 × 10−9 second for L1 cache reference, to 10−2

second for disk access. The variation is even more dramatic when communication occurs over networks or the
internet [GSP04].

2Communication requires much more energy than arithmetic, and saving energy may be even more important
than saving time.

3See our [BDHS09b] for a detailed list of previously known and recently designed sequential and parallel algorithms
that attain these lower bounds.

1



and BW
(√

M
3

)
= O(M). Thus

BW (n) = O

((
n√
M

)lg 7

·M
)

. (1)

Lower bound. In this paper, we obtain a tight lower bound:

Theorem 1. (Main Theorem) The bandwidth cost BW (n) of Strassen’s algorithm on a machine
with fast memory of size M is

BW (n) = Ω

((
n√
M

)lg 7

·M
)

. (2)

Corollary 2. The bandwidth cost BW (n) of Strassen’s algorithm on a machine with p processors,
each with a local memory of size M ≥ 2n2

p , is

BW (n) = Ω

((
n√
M

)lg 7

· M

p

)
= Ω

(
n2

p2− lg 7
2

)
.

While the lower bound for the sequential algorithm is tight, we are not aware of a matching upper
bound for the parallel case. Although our lower bound for the sequential case contradicts the
upper bound from FOCS’99 [FLPR99] (and later in [BCG+08]), their upper bound turned out to
be erroneously low [Lei08].

The Expansion Approach.

The proof of the main theorem is based on estimating the combinatorial (edge) expansion of the
computation graph of an algorithm (where we have a vertex for each input / intermediate / output
argument, and edges according to dependencies). This is similar to the approach taken by [HK81],
where they use the pebbles model. The bandwidth cost is shown to be tightly connected to the
edge expansion properties of this graph. As the graph has a recursive structure, the expansion can
be analyzed directly (combinatorially, similarly to what we do in [ASS08]) or by spectral analysis
(in the spirit of what was done for the Zig-Zag expanders [RVW02]). There is however, a new
technical challenge. While in the replacement and Zig-Zag products a recursive step acts similarly
on all vertices, it does not in our case: multiplication and addition vertices are treated differently.

Paper organization Section 2 contains preliminaries on the computation models and notions of
graph expansion. In Section 3 we state and prove the connection between communication bandwidth
cost and the expansion properties of the computation graph. In Section 4 we analyze the expansion
for Strassen’s algorithm. We present conclusions and open problems in Section 5.

2 Preliminaries

Communication in Various Computation Models. In the sequential model 4, we assume
two levels of memory, between which the communication occurs: fast-small and slow-large (e.g.,

4Also known as the two-level I/O model or disk access machine (DAM) model [AV88, BBF+07, CR06].

2



RAM and disk). The communication bandwidth cost measures the number of words communicated,
while the communication latency cost counts messages (packages of words) sent.

In the Sequential Model with Memory Hierarchy we assume multiple levels of memory, (e.g., L1,
L2, L3 caches, main memory, and disk). In this case, an optimal algorithm should simultaneously
minimize communication between all pairs of adjacent levels of memory hierarchy.

In the Parallel Model we are interested in the communication among the p computing entities
(e.g., processors, computers on a network, or multi-cores on a single processor). Here M stands
for the size of local memory of each processor. In this model, no other memory is available, so
M ≥ 2n2

P as the local memories have to at least hold the entire input. To measure the communication
complexity of a parallel algorithm, we count words communicated simultaneously as one word only.
This is the bandwidth cost. The latency cost here is when we similarly count messages transferred.

Edge expansion. The edge expansion h(G) of a d-regular undirected graph G = (V, E) is:

h(G) ≡ min
U⊆V,|U |≤|V |/2

|E(U, V \ U)|
d · |U | (3)

where E(A,B) ≡ EG(A,B) is the set of edges connecting the vertex sets A and B. We omit the
subscript G when the context makes it clear.

Expansion of small sets. For many graphs, small sets of vertices have better expansion guar-
antee. Let hs(G) denote the edge expansion guarantee for sets of size at most s in G:

hs(G) ≡ min
U⊆V,|U |≤s

|E(U, V \ U)|
d · |U | . (4)

In many cases, hs(G) does not depend on |V (G)|, although it may decrease when s increases. One
way of bounding hs(G) is by decomposing G into small subgraphs of large edge expansion.

Definition 1 (Graph decomposition). We say that the set of graphs {G′
i = (Vi, Ei)}i∈[l] is an

edge disjoint decomposition of G = (V, E) if V =
⋃

i Vi and E =
⊎

i Ei.

Claim 3. Let G = (V, E) be a d-regular graph that can be decomposed into edge-disjoint (but not
necessarily vertex disjoint) copies of a d′-regular graph G′ = (V ′, E′). Then the edge expansion
guarantee of G for sets of size at most |V ′|/2 is h(G′) · d′

d , namely

h |V ′|
2

(G) ≡ min
U⊆V,|U |≤|V ′|/2

|EG(U, V \ U)|
d · |U | ≥ h(G′) · d′

d
.

Proof. Let U ⊆ V be of size U ≤ |V ′|/2. Let {G′
i = (Vi, Ei)}i∈[l] be an edge disjoint decomposition

of G, where every Gi is isomorphic to G′. Then

|EG(U, V \ U)| =
∑

i∈[l]

|EG′i(Ui, Vi \ Ui)|

≥
∑

i∈[l]

h(G′
i) · d′ · |Ui| = h(G′) · d′ ·

∑

i∈[l]

|Ui|

≥ h(G′) · d′ · |U | .

Therefore

|EG(U, V \ U)|
d · |U | ≥ h(G′) · d′

d
.
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When G is not regular. If G = (V, E) is not regular but has a constant maximal degree d, then
we can add (< d) loops to vertices of degree < d, obtaining a regular graph G′. Note that for any
S ∈ V , we have |EG(S, V \ S)| = |EG′(S, V \ S)|, as none of the added edges (loops) contributes to
the edge expansion of G′.

3 Bandwidth Cost and Edge Expansion

In this section we recall the computation graph of an algorithm, then show how a partition argument
connects between the expansion properties of the graph and the communication bandwidth cost
of the algorithm. A similar partition argument already appeared in [ITT04], and then in our
[BDHS09b]. In both cases it was used to connect communication bandwidth cost with Loomis-
Whitney geometric bound [LW49], which can be viewed, in this context, as an expansion guarantee
for the corresponding graphs.

The computation graph. For a given algorithm, we consider the computation (directed) graph
G = (V, E), where there is a vertex for each arithmetic operation (AO) performed, and for every
input element. G contains a directed edge (u, v), if the output operand of the AO corresponding
to u (or the input element corresponding to u), is an input operand to the AO corresponding to v.
The in-degree of any vertex of G is, therefore, at most 2. The out-degree is, in general, unbounded
(i.e., it may be a function of |V |). We next show how an expansion analysis of this graph can be
used to obtain the communication lower bound for the corresponding algorithm.

The partition argument. Let M be the size of the fast memory. Let O be any total ordering
of the vertices that respects the partial ordering of the DAG G, i.e., all the edges are going from
left to right. This ordering can be thought of as the actual order in which the computations are
performed. Let P be any partition of V into segments S1, S2, ..., where a segment S ∈ P is a subset
of the vertices which are contiguous in the ordering O.

Let RS and WS be the set of read and write operands, respectively (see Figure 1). Namely,
RS is the set of vertices outside S that have an edge going into S, and WS is the set of vertices
in S that have an edge going outside of S. Then the total bandwidth cost due to reads of AOs
in S is at least |RS | −M , as at most M of the needed |RS | operands are already in fast memory
when the execution of the segment’s AOs starts. Similarly, S causes at least |WS |−M actual write
operations, as at most M of the operands needed by other segments are left in the fast memory
when the execution of the segment’s AOs ends. The communication bandwidth cost is therefore
bounded below by5

BW ≥ max
P

∑

S∈P

(|RS |+ |WS | − 2M) . (5)

Edge expansion and communication bandwidth cost. Consider a segment S and its read
and write operands RS and WS (see Figure 1). If the graph G containing S has h(G) edge expan-
sion6, maximum degree d and at least 2|S| vertices, then (by the definition of h(G)), we have

5One can think of this as a game: the first player orders the vertices. The second player partitions the vertices
into contiguous segments. The objective of the first player (e.g., a good programmer) is to order the vertices so that
any consecutive partitioning by the second player leads to a small communication count.

6The direction of the edges does not matter much for the expansion-bandwidth argument: treating all edges as
undirected, changes the bandwidth cost estimate by a factor of 2 at most. For simplicity, we will treat G as undirected.

4



S

RS

WS

V

Figure 1: A subset (segment) S and its corresponding read operands RS , and write operands WS .

Claim 4. |RS |+ |WS | ≥ h(G) · |S| .

Proof. We have |E(S, V \S)| ≥ h(G) ·d · |S|. Either (at least) half of the edges E(S, V \S) touch RS

or half of them touch WS . As every vertex is of degree d, we have |RS |+ |WS | ≥ max{|RS |, |WS |} ≥
1
d · 1

2 · |E(S, V \ S)| ≥ h(G) · |S|/2.

Combining this with (5) and choosing to partition V into |V |/s segments of equal size s, we obtain:

BW ≥ max
s

|V |
s
·
(

h(G) · s
2

− 2M

)
.

In many cases h(G) is too small to attain the desired bandwidth cost lower bound. Typically,
h(G) is a decreasing function in |V (G)|, namely the edge expansion deteriorates with the increase
of the input size and running time of the corresponding algorithm. This is the case with matrix
multiplication algorithms: the cubic, as well as the Strassen and Strassen-like algorithms. In such
cases it is better to consider the expansion of G on small sets only:

BW ≥ max
s

|V |
s
·
(

hs(G) · s
2

− 2M

)
.

Choosing7 the minimal s so that

hs(G) · s
2

≥ 3M (6)

we obtain

BW ≥ |V |
s
·M . (7)

In some cases, the computation graph G does not fit this analysis: it may be non-regular (with
vertices of unbounded degree), or its edge expansion may be hard to analyze. In such cases, we
may consider some subgraph G′ of G instead, to obtain a lower bound on the bandwidth cost:

Claim 5. Let G = (V, E) be a computation graph of an algorithm Alg. Let G′ = (V ′, E′) be a
subgraph of G, i.e., V ′ ⊆ V and E′ ⊆ E. If G′ is d regular and α = |V ′|

|V | , then the communication
bandwidth cost of Alg is

BW ≥ α
|V |
s
·M where s is chosen so that

hs(G′) · αs

2
≥ 3M . (8)

7The existence of an s that satisfies the condition is not always guaranteed. In the next section we confirm this for
Strassen, for sufficiently large |V (G)| (in particular, |V (G)| has to be larger than M). Indeed this is the interesting
case, as otherwise all computations can be performed inside the fast memory, with no communication except for
reading the input once.
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The correctness of this claim follows from Equations (6) and (7), and from the fact that at least
an α fraction of the segments have at least α · s of their vertices in G′. We therefore have:

Lemma 6 (Central lemma). Let Alg be a recursive algorithm with AO(N) arithmetic operations
(N being the total input size) and computation graph G(N) = (V,E). Let G′(N) = (V ′, E′) be a
regular constant degree subgraph of G, with |V ′|

|V | = Θ(1). Then the bandwidth cost of Alg8 on a
machine with fast memory of size M is

BW = Ω
(
AO(N) · h(G′(M))

)

or, equivalently,
BW = Ω

(|V ′| · hs(G′(N))
)

for s = AO(
√

M) .

4 Expansion Properties of Strassen’s Algorithm

Enlg nBEnlg nA

Declg nC

n2

n2

nω

lg n

A B

C

Dec1C
11 12 21 22

7 5 4 1 3 2 6

Figure 2: The computation graph of Strassen’s algorithm (See Algorithm 1 in Appendix).
Top right: the graph for 2×2 matrices.
Bottom right: schematics of the n×n matrices.
Top left: decoding the C part of the graph for 2×2 matrices.
Bottom left: schematics of decoding the C part of the graph for n×n matrices.
Vertices drawn with in-degrees larger that 2 indicate a (weighted) summation. A vertex v with l
incoming edges represents a full binary tree (not necessarily balanced) with root v and l leaves.

Recall Strassen’s algorithm for Matrix multiplication (see Algorithm 1 in Appendix A) and
consider its computation graph (see Figure 2). Let Hlg n be the computational graph of Strassen’s
algorithm on input matrices of size n × n. Hlg n has the following structure: encode A: generate
weighted sums of elements of A. Similarly encode B. Then multiply the encodings of A and
B element-wise. Finally, decode C, by taking weighted sums of the multiplications. This is the
structure of all the fast matrix multiplication algorithms that were later obtained9.

8In Strassen’s algorithm, N = 2n2 is the number of input matrices elements and T (N) = Θ (nω) = Θ
�
Nω/2

�
.

G′ is the graph DeckC for k = lg M , see Section 4 for the definition of DeckC.
9Indeed any arithmetic fast matrix multiplication algorithm can be converted into one with this form [Raz03].
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Assume w.l.o.g. that n is an integer power of 2. Denote by Enlg nA the part of Hlg n that
corresponds to the encoding of the matrix A. Similarly, Enlg nB, and Declg nC correspond to the
parts of Hlg n that compute the encoding of B and the decoding of C, respectively.

Given Hlg n, one can obtain Hlg n+1 as follows: (1) duplicate Hlg n four times, (2) replace every
set of four vertices corresponding to a multiplication vertex in Hlg n with a copy of H1. Similarly,
given DeciC, one can construct Deci+1C by duplicating DeciC four times and connecting the
multiplication layer of vertices with a cross-layer of Dec1C (one can similarly obtain Eni+1A from
EniA and En1A, and the same for EniB). In Strassen’s algorithm, the graph Dec1C is bipartite,
therefore Declg nC is of constant bounded degree (six). However, En1A and En1B have vertices
which are both input and output (e.g., A11), therefore Enlg nA and Enlg nB have vertices of out-
degree Θ(lg n). All in-degrees are at most 2, as an arithmetic operation has at most two inputs.

As Hlg n contains vertices of large degrees, it is easier to consider Declg nC: it contains only
vertices of constant bounded degree, yet at least one third of the vertices of Hlg n are in it.

Lemma 7. The edge expansion of DeckC is

h(DeckC) = Ω

((
4
7

)k
)

Assume w.l.o.g. that n is an integer power of
√

M .10 Then, Declg nC can be split into edge disjoint
copies of Declg M/2C. Using Claim 3, we thus deduce the expansion of Declg nC on small sets:

Corollary 8. hs(Declg nC) ≥ 3M for s = 9 ·Mω/2.

As Declg nC contains α = 1
3 of the vertices of Hlg n, Central Lemma 6 now yields Main Theorem 1.

4.1 Expansion Estimation: Combinatorial Approach

We are now in a position to prove our main lemma:

Proof of Lemma 7. Let Gk = (V,E) be DeckC, and let S ⊆ V, |S| ≤ |V |/2. We next show that
|E(S, V \S)| ≥ c · d · |S| · (4

7

)k, where c is some universal constant, and d = 6 is the constant degree
of DeckC (after adding loops to make it regular).

The proof works in two steps. We argue (1) that each level of Gk contains about the same
fraction of S vertices, or we have many edges leaving S and we are done. We then show that (2)
the homogeneity (of a fraction of S vertices) holds between the distinct parts of each level as well,
or, again, we have many edges leaving S and we are done. But on the lowest/highest levels, each
part of each level is a single vertex, and therefore has fraction 0 or 1 in S. Let us start with (1).

Let li be the ith level of vertices of Gk, so 4k = |l1| < |l2| < ... < |li| = 4k−i+17i−1 < ... <
|lk+1| = 7k. Let Si ≡ S ∩ li. Let σ be the fractional size of S and σi the fractional size of S in level
i, namely, σ ≡ |S|

|V | and σi ≡ |Si|
|li| . Due to averaging, we observe the following:

Fact 9. There exist i and i′ such that σi ≤ σ ≤ σi′.

From the geometric sum, we now have:

Fact 10. |V (Gk)| =
∑k

i=0 |lk| ·
(

4
7

)i = |lk| ·
(
1− (

4
7

)k+1
)
· 3

7 so 3
7 −

(
4
7

)k+1 ≤ |lk|
|V (Gk)| ≤ 3

7 , and

10We may assume this, as we are dealing with a lower bound here, so it suffices to prove the assertion for infinite
number of n’s. Alternatively, in the following decomposition argument, we leave out a few of the top or bottom levels
of vertices of Declg nC, so that n is an integer power of

√
M and so that at most |S|/2 vertices of S are cut off.
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Fact 11.
(

3
7 −

(
4
7

)k+1
)
· (4

7

)k ≤ |l1|
|V (Gk)| ≤ 3

7 ·
(

4
7

)k
.

Claim 12 (Step (1)). If there exists i so that |σ−σi|
σ ≥ 1

10 , then

|E(S, V \ S)| ≥ c · d · |S| ·
(

4
7

)k

.

Proof. Let δi ≡ σi+1 − σi. A G1 component connecting li with li+1 has no edges in E(S, V \ S) if
all or none of its vertices are in S. Otherwise it contributes at least one edge. Thus, we proved

Claim 13.

|E(S, V \ S) ∩ E(li, li+1)| ≥ c′ · d · |δi| · |li| where c′ ≡ 1
d · |E(G1)| .

By Claim 13, we have

|E(S, V \ S)| ≥
∑

i∈[k]

|E(S, V \ S) ∩ E(li, li+1)|

≥
∑

i∈[k]

c′ · d · |δi| · |li|

≥ c′ · d · |l1|
∑

i∈[k]

|δi|

≥ c′ · d · |l1| ·
(

max
i∈[k+1]

σi − min
i∈[k+1]

σi

)
.

If maxi σi −mini σi ≥ 1
10σ, then

|E(S, V \ S)| ≥ c′ · d · |l1| · 1
10

σ

≥ c′ · d
10

σ ·
(

3
7

)2

· |V (Gk)| ·
(

4
7

)k

≥ c′ · d
10

·
(

3
7

)2

· |S| ·
(

4
7

)k

and we are done.

We next show (2), i.e., that a similar homogeneity argument holds between distinct parts of
each level. Consider the graph Gk. If we remove the vertices lk+1, we are left with four copies of
Gk−1. Let us denote them by G

(1)
k−1, G

(2)
k−1, G

(3)
k−1, and G

(4)
k−1. Let l

(j)
i be the ith level of G

(j)
k−1, and

σ
(j)
i = |S∩l

(j)
i |

|l(j)i | . We argue that the fraction of S vertices in the four parts l
(1)
k , l

(2)
k , l

(3)
k , l

(4)
k is about

the same, or we have many edges leaving S, namely,

Claim 14 (Step (2)).

|E(S, V \ S)|
|l1| ≥ c′ · d · (σ1 · (1− σk+1) + σk+1 · (1− σ1)) .
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In S

Not in S

Mixed

Figure 3: The DAG of a recursive algorithm: Strassen’s matrix multiplication

Proof. Let Tk(σk+1) denote the minimal possible number of edges leaving S in Gk, given that the
fraction of S vertices in lk+1 is σk+1. Observe that the G1 components connecting lk with lk+1

contributes to |E(S, V \S)∩E(li, li+1)| according to the largest discrepancy between σk+1 and the
four σi

k (recall the recursive construction of DeckC in Figure 3). We therefore have proved

Claim 15.
|E(S, V \ S) ∩ E(lk, lk+1)| ≥ c′ · d ·max

i∈[4]
|σk+1 − σi

k| · |l(i)k | .

Thus,

Tk(σk+1) ≥
∑

i∈[4]

Tk−1

(
σ

(i)
k

)
+ c′ · d ·max

i∈[4]
|δi

k| · |l(i)k | .

As G1 is connected, we have

T1(σ2) ≥
{

1 if σ2 /∈ {0, 1}
0 otherwise.

Consider the recursion tree T = Tk(σk+1). It has |l1| leaves, of which σ1 · |l1| correspond to vertices
in S, namely, with fraction of vertices in S being 1. As the fraction of S vertices changes from σk+1

in the root to 1 in the leaves, these vertices contribute at least c′ · d · (1− σk+1)σ1 · |l1|. Similarly,
T has (1 − σ1) · |l1| leaves with fraction of vertices in S being 0. These leaves contribute at least
c′ · d · σk+1(1− σ1) · |l1|. Thus

|E(S, V \ S)|
|l1| ≥ c′ · d · ((1− σk+1)σ1 + σk+1(1− σ1)) .

By Claim 12, w.l.o.g, |σ − σ1| ≤ σ
10 , and |σ − σk+1| ≤ σ

10 . As σ ≤ 1
2 , by Claim 15 we have

|E(S,V \S)|
|l1| ≥ c′ · d · 9

10 · 8
10 · σ, so |E(S, V \ S)| ≥ c′·d·72

10 · σ · |l1| ≥ 72
120 · σ · |S| ·

(
4
7

)k. This finishes the
proof of Lemma 7.

5 Conclusions and Open Problems

We obtained a tight lower bound for the communication cost of Strassen’s fast matrix multiplication
algorithm. This bound is optimal for the sequential model with memory hierarchy.

Our lower bounds, as well as most of the previous lower bounds [HK81, ITT04, BDHS09a,
BDHS09b] deal with linear algebra and numerical analysis algorithms11. Our new approach, how-
ever, is general enough to address communication lower bounds of other recursive algorithms.

11With the exception of a few graph theoretic related results, e.g., [MPP02] and in our [BDHS09b].
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Consider, for example any Strassen-like fast matrix multiplication algorithms with AOs count
Θ(nω) for some 2 < ω < 3 (e.g., the fastest known, in [CW90, CKSU05] with ω ≈ 2.376). That
is, a recursive algorithm that uses a base case: multiplying two n0-by-n0 matrices using m(n0)
multiplications. The running time of the recursive Strassen-like algorithm is then T (n) = m(n0) ·
T

(
n
n0

)
+ O(n2), so T (n) = Θ(nω) where ω = logn0

m(n0). Using the same argument that leads to
Equation (1) we obtain a bandwidth upper bound on Strassen-like algorithms: BW (n) ≤ m(n0) ·
BW

(
n
n0

)
+ O(n2) and BW

(√
M
3

)
= O(M). Thus

BW (n) = O

((
n√
M

)ω

·M
)

. (9)

The lower bound obtained using our approach is:

Theorem 16.

BW (n) = Ω̃
((

n√
M

)ω

·M
)

.

Here Ω̃ hides a logarithmic factor, arising because of the vertices of high degree in the computation
graph. We believe that this loss can be in fact avoided.

For parallel algorithms, using a reduction between the parallel and sequential models (see e.g.,
[ITT04] or our [BDHS09b]) this yields:

Corollary 17.

BW (n) = Ω̃
((

n√
M

)ω

· M

p

)

= Ω̃
(

n2

p2−ω
2

)
.

Note that the numerator does not depend on ω. Thus, a change in ω influences only the power of
p in the denominator. Finding a parallel algorithm matching this bound remains an open problem.

In many cases, the simplest recursive algorithm for a problem turns out to be communication
optimal (e.g., in the cases of matrix multiplication [FLPR99] and Cholesky decomposition [AP00,
BDHS09a], but not in the case of LU decomposition [Tol97]). This leads to the question whether
the communication optimality of these algorithms is determined by the expansion properties of the
corresponding computation graphs.

It is of great interest to construct new models general enough to capture the rich and evolving
design space of current and predictable future computers. Such models can be homogeneous, con-
sisting of many layers, where the components of each layer are the same (e.g., a supercomputer with
many identical multi-core chips on a board, many identical boards in a rack, many identical racks,
and many identical levels of associated memory hierarchy); or heterogeneous, with components with
different properties residing on the same level (e.g., CPUs alongside GPUs, where the latter can do
some computations very quickly but are much slower to communicate with).

Some experience has been acquired on such systems (e.g., using GPU assisted linear algebra
computation [VD08]). However, there is currently no systematic-theoretic way of obtaining upper
and lower bounds for such models. For example, recursive algorithms tend to be cache oblivious
and communication optimal for the sequential hierarchy model. Finding an equivalent technique
that would work for arbitrary architecture is a fundamental open problem.

Constructing models for complex hardware, that will be simple enough to analyze, yet reflect
the actual hardware’s properties sufficiently well, is one of our most challenging tasks. Such models

10



will allow wiser use of available computational resources. Moreover, it is likely to help expos-
ing communication bottlenecks in complex hardware architecture, thus focusing effort on ways of
improving its efficiency.

6 Acknowledgment

We would like to thank Eran Rom for helpful discussions.

A Strassen’s Fast Matrix Multiplication Algorithm

Algorithm 1 Matrix Multiplication: Strassen’s Algorithm
Input: Two n× n matrices, A and B.
1: if n = 1 then
2: C11 = A11 ·B11

3: else

4: {Decompose A into four equal square blocks A =
(

A11 A12

A21 A22

)

and the same for B.}
5: M1 = (A11 + A22) · (B11 + B22)
6: M2 = (A21 + A22) ·B11

7: M3 = A11 · (B12 −B22)
8: M4 = A22 · (B21 −B11)
9: M5 = (A11 + A12) ·B22

10: M6 = (A21 −A11) · (B11 + B12)
11: M7 = (A12 −A22) · (B21 + B22)
12: C11 = M1 + M4 −M5 + M7

13: C12 = M3 + M5

14: C21 = M2 + M4

15: C22 = M1 −M2 + M3 + M6

16: end if
17: return C
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