
BERKELEY PAR LAB BERKELEY PAR LAB

Architectures
Beyond Moore

Krste Asanovic
The Parallel Computing Laboratory

EECS Dept., UC Berkeley

Beyond Moore’s Law Workshop
SRI, Menlo Park, CA
February 10, 2011

BERKELEY PAR LAB

Information Processing
Systems

2

Application

Physics

Gap too large to
bridge in one step

BERKELEY PAR LAB

Abstraction Layers in
Modern Systems

3

Algorithm

Gates/Register-Transfer Level (RTL)

Application

Instruction Set Architecture (ISA)

Operating System/Virtual Machines

Microarchitecture

Devices

Programming Language

Circuits

Physics

?
If devices
change, how
much else needs
to change?
(& do we need all
these layers?)

BERKELEY PAR LAB

A Seductive Example

4

Application

Physics

Magnetic compass

BERKELEY PAR LAB

Modern Compass

5

Algorithm

Gates/Register-Transfer Level (RTL)

Application

Instruction Set Architecture (ISA)

Operating System/Virtual Machines

Microarchitecture

Devices

Programming Language

Circuits

Physics

It’s not this complicated because we want a compass.
It’s this complicated because we want augmented reality
applications.

BERKELEY PAR LAB

Power 7 [IBM 2009]

6

32KB L1 I$/core
32KB L1 D$/core
3-cycle latency

256KB Unified L2$/core
8-cycle latency

32MB Unified Shared L3$
Embedded DRAM
25-cycle latency to local
slice

BERKELEY PAR LAB

General-Purpose Architectures

 Programmable, reliable, digital computation that
supports a large software base

 “Von-Neumann” architectures, aka instruction-
stream processors, are the best way we know
how to do this
 Time-multiplexing essential to efficiency, and instruction streams

are how to manage complexity of controlling time-multiplexing

Not to say that there aren’t many interesting
fixed-function information processing systems
 Sensors + analog processing for real-world I/O
 Hardwired digital accelerators

• more complex ones are instruction-stream processors

7

BERKELEY PAR LAB

What do applications need?

8

BERKELEY PAR LAB
Motifs common across applications

App 1 App 2 App 3

Dense Sparse Graph Trav.
Berkeley View

Motifs
(“Dwarfs”)

9

BERKELEY PAR LAB

10

How do compelling apps relate to 12 motifs?

 Motif (nee “Dwarf”) Popularity
 (Red Hot Blue Cool)

Presenter
Presentation Notes
Some people might subdivide, some might combine them togetherTrying to stretch a computer architecture then you can do subcategories as wellGraph Traversal = Probabilistic ModelsN-Body = Particle Methods, …

BERKELEY PAR LAB

11

Graph-Algorithms

Dynamic-Programming

Dense-Linear-Algebra

Sparse-Linear-Algebra

Unstructured-Grids

Structured-Grids

Model-View-Controller

Iterative-Refinement

Map-Reduce

Layered-Systems

Arbitrary-Static-Task-Graph

Pipe-and-Filter

Agent-and-Repository

Process-Control

Event-Based/Implicit-
Invocation

Puppeteer

Graphical-Models

Finite-State-Machines

Backtrack-Branch-and-
Bound

N-Body-Methods

Circuits

Spectral-Methods

Monte-Carlo

Applications

Structural Patterns Computational Patterns

Task-Parallelism
Divide and Conquer

Data-Parallelism
Pipeline

Discrete-Event
Geometric-Decomposition
Speculation

SPMD
Data-Par/index-space

Fork/Join
Actors

Distributed-Array
Shared-Data

Shared-Queue
Shared-map
Partitioned Graph

MIMD
SIMD

Parallel Execution Patterns

Concurrent Algorithm Strategy Patterns

Implementation Strategy Patterns

Message-Passing
Collective-Comm.

Thread-Pool
Task-Graph

Data structure Program structure

Point-To-Point-Sync. (mutual exclusion)
collective sync. (barrier)

Loop-Par.
Task-Queue

Transactions

Thread creation/destruction
Process creation/destruction

Concurrency Foundation constructs (not expressed as patterns)

“Our” Pattern Language (OPL-2010)
(Kurt Keutzer, Tim Mattson)

A = M x V

Refine Towards
Implementation

BERKELEY PAR LAB

Architecture Trends

 Multicore, multiple processors per chip
 +Manylane – wide vector units common

 Heterogeneous cores, specialized for subset of workload
 Data-parallel versus thread-parallel versus instruction-

parallel
 High-performance versus low-energy
 App-specific: Video codec, crypto

 Heterogeneous memory hierarchies/interconnect
 Hardware-managed versus software-managed

 Integration, System-on-a-Chip/Package
 Smartphone SoC, Server SoC

 Drive for energy-proportionality (servers), low standby
power (handheld)

12

BERKELEY PAR LAB

How will computer architects
benchmark technologies?

(Following slides from earlier presentation for ISAT
Nanometer Computing Study, at AAAS,
Cambridge, MA, July 2002)

13

Metrics for Nanometer Technology

Krste Asanovic
krste@mit.edu

Computer Architecture Group
MIT Laboratory for Computer Science

ISAT Nanometer Computing Study, Third Workshop

American Academy of Arts and Sciences,
Cambridge, 19 July 2002

Metrics

 Delay
 Energy per Operation
separate switching power from leakage power

 Cost per Function
for CMOS, depends on area, yield, power dissipation,

...

 Physical Size
volume, weight
affects possible applications

Constraints

Must compare circuits optimized for chosen metric
keeping others constant

 E.G., delay of CMOS gate varies as a function of:
inputs’ slew rate
output load
switching energy/operation
leakage current
noise margin
temperature (function of package cost)
MTBF (overdriven gate voltage)
speed binning (use fastest out of batch of 1,000,000?)
designer skill

Nanocircuit Benchmarks

 Ring Oscillator
tests simple gates

 Wire Oscillator
tests wire latency

 Accumulator
tests clocked circuit and complex logic

 Memory Pointer Chaser
tests memory for read latency

 Memory Streamer
tests memory at peak read and write bandwidth

Ring Oscillator

 Self-loading
 Fanout of 1 (plus local wiring)
 Measures basic device speed and energy
result is plot of delay versus energy

Wire Oscillator

 Self-loading
 Can use repeaters in wire
 Vary wire length in units of gate size
gate width = gate area½

 Measures wire speed and energy
result is plot of delay versus length for different

energies

Accumulator

 N-bit wraparound accumulator
 Self-loading
 Can vary bit width N
 Tests complex synchronous logic with fanout
 result is plot of delay versus energy for various N

 Possible alternative or additional benchmark
 Checksum circuit with XOR/shift

+

Memory Read Latency

 Follow chain of random addresses preloaded into
memory

 Self-loading
 Can vary RAM size and bit width
 Data port can be wider than address input

 Measures “pointer-chasing” latency
result is plot of delay versus access energy for

different RAM sizes

Addr.
Data

Memory Bandwidth

 Stream data into/out of sequential addresses
 NOT self-loading (room to cheat)
 Can vary RAM size and bit width
 Data port can be wider than address input

 Measures peak memory bandwidth
results is plot of bandwidth versus energy for various

capacities

Addr.
Data

Addr.

Data

Read Write

Example Result Plots

Energy (fJ)

Delay (ps)

Energy-delay curves for one stage of
ring oscillator.

Latency
(ns)

RAM Capacity (bits)

Latency/Capacity curves for
memory structures. (Also,
access energy versus delay)

Distance (gates)

Latency
(ns)

Latency versus distance for
wires.

Handling Constraints

 Inputs’ slew rate and output load
 use self-loading circuits

 Switching energy/operation and leakage current
 show energy-delay curves

 Noise margin and MTBF
 10 years MTBF? 1 day MTBF? (Cray-1 had 100 hour

MTBF)

 Temperature
 report temperature in results

 Process variation
 show speed distribution

 Designer skill
 use simple benchmark circuits

BERKELEY PAR LAB

Difficult Technical Hurdles for
New Technology

 “It’s lower energy/op, but 100x slower – just add
parallelism”
 Need to interconnect 100x components (size?)
 Need to find/control 100x parallelism
 Amdahl’s Law

 “It only works with local interconnect – make all
computations local”
 Some computations provably need global communication

 “Need both 100x parallelism and purely local
communication”
 Highly unlikely to get both in any piece of computation

25

BERKELEY PAR LAB

Alternative architectures?
 Artificial neural nets, cellular automata, …

 These are all usable with current technologies, i.e., supposed
benefit should have shown up already.

 Too specialized, i.e., even if Turing-Complete, really bad at many
common computational patterns

 Quantum Computing
 This does warrant a change in abstraction layers up through

algorithms
 Very, very specialized (one app?)

 The “Brain”
 We don’t actually know how it works.
 Great at some things we’d like to do.
 Lousy at most (“invert this 1000x1000 matrix”)
 Nature would probably have built something different if had to use a

modern fab.

26

BERKELEY PAR LAB

Past: Radical Hybrid
Technologies

Microcoding evolved, and was a good idea, in
the era when
 Logic was expensive (tubes)
 ROM was cheap/fast (diode matrix)
 RAM was expensive/slow (core memory)

CISC->RISC was mostly about SRAM being
now built out of same stuff as ROM/logic

27

BERKELEY PAR LAB

Promising Device Technologies
for General-Purpose Architectures

 Photonic interconnects
 Cut energy cost of chip-chip communication
 Massive improvement in bandwidth density,

relaxation of packaging constraints
 Fast, non-volatile memories
 Reduce power to hold large amounts of state

28

BERKELEY PAR LAB

How Else to Improve Systems?

Communication-Avoiding Algorithms (Demmel,
Yelick, UCB)
 Integer factor improvements on dense matrix multiply

 Better software stacks
 More optimized, customizable
 2-10x?

 Better architectures
 Parallel, heterogeneous
 Possible 2-10x improvements for certain apps

 Helps any future technology (CMOS or not)

29

BERKELEY PAR LAB

Summary

General-purpose computing architectures are
quite unforgiving of new technolgies’ limitations

Not because of legacy or poor design, but
because of intrinsic application needs and
programmer productivity costs

30

	Architectures Beyond Moore
	Information Processing Systems
	Abstraction Layers in Modern Systems
	A Seductive Example
	Modern Compass
	Power 7 [IBM 2009]
	General-Purpose Architectures
	What do applications need?
	Motifs common across applications
	 Motif (nee “Dwarf”) Popularity �		(Red Hot Blue Cool)
	“Our” Pattern Language (OPL-2010)�(Kurt Keutzer, Tim Mattson)
	Architecture Trends
	How will computer architects benchmark technologies?
	Metrics for Nanometer Technology
	Metrics
	Constraints
	Nanocircuit Benchmarks
	Ring Oscillator
	Wire Oscillator
	Accumulator
	Memory Read Latency
	Memory Bandwidth
	Example Result Plots
	Handling Constraints
	Difficult Technical Hurdles for New Technology
	Alternative architectures?
	Past: Radical Hybrid Technologies
	Promising Device Technologies for General-Purpose Architectures
	How Else to Improve Systems?
	Summary

