

PARAL

RAT

Architectures Beyond Moore

PUTING

Krste Asanovic The Parallel Computing Laboratory EECS Dept., UC Berkeley

Beyond Moore's Law Workshop SRI, Menlo Park, CA February 10, 2011

Abstraction Layers in Modern Systems

3

A Seductive Example

Modern Compass

It's not this complicated because we want a compass. It's this complicated because we want augmented reality applications.

Power 7 [IBM 2009]

- Programmable, reliable, digital computation that supports a large software base
- "Von-Neumann" architectures, aka instructionstream processors, are the best way we know how to do this
 - Time-multiplexing essential to efficiency, and instruction streams are how to manage complexity of controlling time-multiplexing
- Not to say that there aren't many interesting fixed-function information processing systems
 - Sensors + analog processing for real-world I/O
 - Hardwired digital accelerators
 - more complex ones *are* instruction-stream processors

What do applications need?

How do compelling apps relate to 12 motifs?

Program structure

Parallel Execution Patterns MIMD

Concurrency Foundation constructs (not expressed as patterns)

SIMD

Thread creation/destruction

Process creation/destruction

Message-Passing Collective-Comm.

Thread-Pool

Task-Graph

Point-To-Point-Sync. (mutual exclusion) collective sync. (barrier)

Transactions

Data structure

- Multicore, multiple processors per chip
 - +Manylane wide vector units common
- Heterogeneous cores, specialized for subset of workload
 - Data-parallel versus thread-parallel versus instructionparallel
 - High-performance versus low-energy
 - App-specific: Video codec, crypto
- Heterogeneous memory hierarchies/interconnect
 - Hardware-managed versus software-managed
- Integration, System-on-a-Chip/Package
 - Smartphone SoC, Server SoC
- Drive for energy-proportionality (servers), low standby power (handheld)

(Following slides from earlier presentation for ISAT Nanometer Computing Study, at AAAS, Cambridge, MA, July 2002)

Metrics for Nanometer Technology

Krste Asanovic

krste@mit.edu

Computer Architecture Group MIT Laboratory for Computer Science

ISAT Nanometer Computing Study, Third Workshop American Academy of Arts and Sciences, Cambridge, 19 July 2002

Metrics

Delay

Energy per Operation □separate switching power from leakage power

Cost per Function for CMOS, depends on area, yield, power dissipation, ...

Physical Size

volume, weightaffects possible applications

Constraints

Must compare circuits optimized for chosen metric keeping others constant

E.G., delay of CMOS gate varies as a function of:

- □inputs' slew rate
- □output load
- **Switching energy/operation**
- □leakage current
- □noise margin
- temperature (function of package cost)
- □MTBF (overdriven gate voltage)
- speed binning (use fastest out of batch of 1,000,000?)
 designer skill

Nanocircuit Benchmarks

Ring Oscillator

- Self-loading
- Fanout of 1 (plus local wiring)
- Measures basic device speed and energy result is plot of delay versus energy

Wire Oscillator

Self-loading

- Can use repeaters in wire
- Vary wire length in units of gate size
 gate width = gate area^{1/2}
- Measures wire speed and energy result is plot of delay versus length for different energies

Accumulator

- N-bit wraparound accumulator
- Self-loading
- Can vary bit width N
- Tests complex synchronous logic with fanout result is plot of delay versus energy for various N
- Possible alternative or additional benchmark
 Checksum circuit with XOR/shift

Memory Read Latency

- Follow chain of random addresses preloaded into memory
- Self-loading
- Can vary RAM size and bit width
 Data port can be wider than address input
- Measures "pointer-chasing" latency result is plot of delay versus access energy for different RAM sizes

Memory Bandwidth

Stream data into/out of sequential addresses

- NOT self-loading (room to cheat)
- Can vary RAM size and bit width
 Data port can be wider than address input
- Measures peak memory bandwidth
 results is plot of bandwidth versus energy for various capacities

Example Result Plots

Handling Constraints

- Inputs' slew rate and output load
 use self-loading circuits
- Switching energy/operation and leakage current
 show energy-delay curves
- Noise margin and MTBF 10 years MTBF? 1 day MTBF? (Cray-1 had 100 hour MTBF)
- Temperature
 - report temperature in results
- Process variation
 - show speed distribution
- Designer skill
 - use simple benchmark circuits

Difficult Technical Hurdles for New Technology

- "It's lower energy/op, but 100x slower just add parallelism"
 - Need to interconnect 100x components (size?)
 - Need to find/control 100x parallelism
 - Amdahl's Law
- "It only works with local interconnect make all computations local"
 - Some computations provably need global communication
- "Need both 100x parallelism and purely local communication"
 - Highly unlikely to get both in any piece of computation

- Artificial neural nets, cellular automata, ...
 - These are all usable with current technologies, i.e., supposed benefit should have shown up already.
 - Too specialized, i.e., even if Turing-Complete, really bad at many common computational patterns

Quantum Computing

- This does warrant a change in abstraction layers up through algorithms
- Very, very specialized (one app?)
- The "Brain"

Computer Sciences

- We don't actually know how it works.
- Great at some things we'd like to do.
- Lousy at most ("invert this 1000x1000 matrix")
- Nature would probably have built something different if had to use a modern fab.

Past: Radical Hybrid Technologies

- Microcoding evolved, and was a good idea, in the era when
 - Logic was expensive (tubes)
 - ROM was cheap/fast (diode matrix)
 - RAM was expensive/slow (core memory)
- CISC->RISC was mostly about SRAM being now built out of same stuff as ROM/logic

Electrical Engineering and Computer Sciences For General-Purpose Architectures

- Photonic interconnects
 - Cut energy cost of chip-chip communication
 - Massive improvement in bandwidth density, relaxation of packaging constraints
- Fast, non-volatile memories
 - Reduce power to hold large amounts of state

- Communication-Avoiding Algorithms (Demmel, Yelick, UCB)
 - Integer factor improvements on dense matrix multiply
- Better software stacks
 - More optimized, customizable
 - 2-10x?
- Better architectures
 - Parallel, heterogeneous
 - Possible 2-10x improvements for certain apps

Helps any future technology (CMOS or not)

Summary

- General-purpose computing architectures are quite unforgiving of new technologies' limitations
- Not because of legacy or poor design, but because of intrinsic application needs and programmer productivity costs