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Information Processing 
Systems 
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Application 

Physics 

Gap too large to 
bridge in one step 
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Abstraction Layers in 
Modern Systems 
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Algorithm 

Gates/Register-Transfer Level (RTL) 

Application 

Instruction Set Architecture (ISA) 

Operating System/Virtual Machines 

Microarchitecture 

Devices 

Programming Language 

Circuits 

Physics 

? 
If devices 
change, how 
much else needs 
to change? 
(& do we need all 
these layers?) 
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A Seductive Example 
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Application 

Physics 

Magnetic compass 



BERKELEY PAR LAB 

Modern Compass 
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Algorithm 

Gates/Register-Transfer Level (RTL) 

Application 

Instruction Set Architecture (ISA) 

Operating System/Virtual Machines 

Microarchitecture 

Devices 

Programming Language 

Circuits 

Physics 

It’s not this complicated because we want a compass. 
It’s this complicated because we want augmented reality 
applications.  
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Power 7 [IBM 2009] 
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32KB L1 I$/core 
32KB L1 D$/core 
3-cycle latency 

256KB Unified L2$/core 
8-cycle latency 

32MB Unified Shared L3$ 
Embedded DRAM 
25-cycle latency to local 
slice 
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General-Purpose Architectures 

 Programmable, reliable, digital computation that 
supports a large software base 

 “Von-Neumann” architectures, aka instruction-
stream processors, are the best way we know 
how to do this 
 Time-multiplexing essential to efficiency, and instruction streams 

are how to manage complexity of controlling time-multiplexing 

Not to say that there aren’t many interesting 
fixed-function information processing systems 
 Sensors + analog processing for real-world I/O 
 Hardwired digital accelerators 

• more complex ones are instruction-stream processors 
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What do applications need? 
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Motifs common across applications 

App 1 App 2 App 3 

Dense Sparse Graph Trav. 
Berkeley View 

Motifs 
(“Dwarfs”) 

9 



BERKELEY PAR LAB 

10 

How do compelling apps relate to 12 motifs? 
  

  Motif (nee “Dwarf”) Popularity  
  (Red Hot  Blue Cool) 

Presenter
Presentation Notes
Some people might subdivide, some might combine them together


Trying to stretch a computer architecture then you can do subcategories as well
Graph Traversal = Probabilistic Models
N-Body = Particle Methods, …
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Graph-Algorithms 

Dynamic-Programming 

Dense-Linear-Algebra 

Sparse-Linear-Algebra 

Unstructured-Grids 

Structured-Grids 

Model-View-Controller  

Iterative-Refinement 

Map-Reduce 

Layered-Systems 

Arbitrary-Static-Task-Graph 

Pipe-and-Filter 

Agent-and-Repository 

Process-Control 

Event-Based/Implicit-
Invocation 

Puppeteer  

Graphical-Models 

Finite-State-Machines 

Backtrack-Branch-and-
Bound 

N-Body-Methods 

Circuits 

Spectral-Methods 

Monte-Carlo 

Applications 

Structural Patterns  Computational Patterns 

Task-Parallelism 
Divide and Conquer 

Data-Parallelism 
Pipeline 

Discrete-Event  
Geometric-Decomposition 
Speculation 

SPMD 
Data-Par/index-space 

Fork/Join 
Actors 

Distributed-Array 
Shared-Data 

Shared-Queue 
Shared-map 
Partitioned Graph 

MIMD 
SIMD 

Parallel Execution Patterns 

Concurrent Algorithm Strategy Patterns 

Implementation Strategy Patterns 

Message-Passing 
Collective-Comm. 

  

Thread-Pool 
Task-Graph 

Data structure Program structure 

Point-To-Point-Sync. (mutual exclusion) 
collective sync. (barrier) 

  

Loop-Par. 
Task-Queue 

Transactions 

Thread creation/destruction 
Process creation/destruction 
 

Concurrency Foundation constructs (not expressed as patterns) 

“Our” Pattern Language (OPL-2010) 
(Kurt Keutzer, Tim Mattson) 

A = M x V 

Refine Towards 
Implementation 
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Architecture Trends 

 Multicore, multiple processors per chip 
 +Manylane – wide vector units common 

 Heterogeneous cores, specialized for subset of workload 
 Data-parallel versus thread-parallel versus instruction-

parallel 
 High-performance versus low-energy 
 App-specific: Video codec, crypto 

 Heterogeneous memory hierarchies/interconnect 
 Hardware-managed versus software-managed 

 Integration, System-on-a-Chip/Package 
 Smartphone SoC, Server SoC 

 Drive for energy-proportionality (servers), low standby 
power (handheld) 
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How will computer architects 
benchmark technologies? 

(Following slides from earlier presentation for ISAT 
Nanometer Computing Study, at AAAS, 
Cambridge, MA, July 2002) 
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Metrics for Nanometer Technology 
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Metrics 

 Delay 
 Energy per Operation 
separate switching power from leakage power 

 Cost per Function 
for CMOS, depends on area, yield, power dissipation, 

... 

 Physical Size 
volume, weight 
affects possible applications 



Constraints 

Must compare circuits optimized for chosen metric 
keeping others constant 

 E.G., delay of CMOS gate varies as a function of: 
inputs’ slew rate 
output load 
switching energy/operation 
leakage current 
noise margin 
temperature (function of package cost) 
MTBF (overdriven gate voltage) 
speed binning (use fastest out of batch of 1,000,000?) 
designer skill 

 



Nanocircuit Benchmarks 

 Ring Oscillator 
tests simple gates 

 Wire Oscillator 
tests wire latency 

 Accumulator 
tests clocked circuit and complex logic 

 Memory Pointer Chaser 
tests memory for read latency 

 Memory Streamer 
tests memory at peak read and write bandwidth 



Ring Oscillator 

 Self-loading 
 Fanout of 1 (plus local wiring) 
 Measures basic device speed and energy 
result is plot of delay versus energy 



Wire Oscillator 

 Self-loading 
 Can use repeaters in wire 
 Vary wire length in units of gate size 
gate width = gate area½ 

 Measures wire speed and energy 
result is plot of delay versus length for different 

energies 



Accumulator 

 N-bit wraparound accumulator 
 Self-loading 
 Can vary bit width N 
 Tests complex synchronous logic with fanout 
 result is plot of delay versus energy for various N 

 Possible alternative or additional benchmark 
 Checksum circuit with XOR/shift 

+ 



Memory Read Latency 

 Follow chain of random addresses preloaded into 
memory 

 Self-loading 
 Can vary RAM size and bit width 
 Data port can be wider than address input 

 Measures “pointer-chasing” latency 
result is plot of delay versus access energy for 

different RAM sizes 

Addr. 
Data 



Memory Bandwidth 

 Stream data into/out of sequential addresses 
 NOT self-loading (room to cheat) 
 Can vary RAM size and bit width 
 Data port can be wider than address input 

 Measures peak memory bandwidth 
results is plot of bandwidth versus energy for various 

capacities 

Addr. 
Data 

Addr. 

Data 

Read Write 



Example Result Plots 

Energy (fJ) 

Delay (ps) 

Energy-delay curves for one stage of 
ring oscillator. 

Latency 
(ns) 

RAM Capacity (bits) 

Latency/Capacity curves for 
memory structures. (Also, 
access energy versus delay) 

Distance (gates) 

Latency 
(ns) 

Latency versus distance for 
wires. 



Handling Constraints 

 Inputs’ slew rate and output load 
 use self-loading circuits 

 Switching energy/operation and leakage current 
 show energy-delay curves 

 Noise margin and MTBF 
 10 years MTBF? 1 day MTBF? (Cray-1 had 100 hour 

MTBF) 

 Temperature 
 report temperature in results 

 Process variation 
 show speed distribution 

 Designer skill 
 use simple benchmark circuits 
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Difficult Technical Hurdles for 
New Technology 

 “It’s lower energy/op, but 100x slower – just add 
parallelism” 
 Need to interconnect 100x components (size?) 
 Need to find/control 100x parallelism 
 Amdahl’s Law 

 “It only works with local interconnect – make all 
computations local” 
 Some computations provably need global communication 

 “Need both 100x parallelism and purely local 
communication” 
 Highly unlikely to get both in any piece of computation 
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Alternative architectures? 
 Artificial neural nets, cellular automata, … 

 These are all usable with current technologies, i.e., supposed 
benefit should have shown up already. 

 Too specialized, i.e., even if Turing-Complete, really bad at many 
common computational patterns 

 Quantum Computing 
 This does warrant a change in abstraction layers up through 

algorithms 
 Very, very specialized (one app?) 

 The “Brain” 
 We don’t actually know how it works. 
 Great at some things we’d like to do. 
 Lousy at most (“invert this 1000x1000 matrix”) 
 Nature would probably have built something different if had to use a 

modern fab. 

 
 

26 



BERKELEY PAR LAB 

Past: Radical Hybrid 
Technologies 

Microcoding evolved, and was a good idea, in 
the era when 
 Logic was expensive (tubes) 
 ROM was cheap/fast (diode matrix) 
 RAM was expensive/slow (core memory) 

CISC->RISC was mostly about SRAM being 
now built out of same stuff as ROM/logic 

27 
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Promising Device Technologies 
for General-Purpose Architectures 

 Photonic interconnects 
 Cut energy cost of chip-chip communication 
 Massive improvement in bandwidth density, 

relaxation of packaging constraints 
 Fast, non-volatile memories 
 Reduce power to hold large amounts of state 

28 
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How Else to Improve Systems? 

Communication-Avoiding Algorithms (Demmel, 
Yelick, UCB) 
 Integer factor improvements on dense matrix multiply 

 Better software stacks 
 More optimized, customizable 
 2-10x? 

 Better architectures 
 Parallel, heterogeneous 
 Possible 2-10x improvements for certain apps 

 
 Helps any future technology (CMOS or not) 
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Summary 

General-purpose computing architectures are 
quite unforgiving of new technolgies’ limitations 

Not because of legacy or poor design, but 
because of intrinsic application needs and 
programmer productivity costs 
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