
PARLab Parallel Boot Camp

Computational Patterns

and Autotuning

Jim Demmel

EECS and Mathematics

University of California, Berkeley

PARLab Parallel Boot Camp

Outline
• Productive parallel computing depends on recognizing and

exploiting known useful patterns
– Mathematical, Computational (7 Motifs), Structural

• Optimizing (some of) the 7 Motifs
– To minimize time, minimize communication (moving data)

• Between levels of the memory hierarchy
• Between processors over a network

– Autotuning to explore large design spaces
• Too hard (tedious) to write by hand, let machine do it

- SEJITS – how to deliver autotuning to more programmers
• For more details, see

– Related courses:
– CS267: www.cs.berkeley.edu/~demmel/cs267_Spr11
– Ma221: “Advanced Matrix Computions”, this semester
– CS294: “Communication Avoiding Algorithms,” this semester

– 10-hour short course: www.ba.cnr.it/ISSNLA2010/Courses.htm
– Papers at bebop.cs.berkeley.edu

8/21/2009 Motifs: 2 James Demmel

http://www.cs.berkeley.edu/~demmel/cs267_Spr11
http://www.ba.cnr.it/ISSNLA2010/Courses.htm

“7 Motifs” of High Performance Computing

• Phil Colella (LBL) identified 7 kernels of which most
simulation and data-analysis programs are composed:

Motifs: 3

1. Dense Linear Algebra
• Ex: Solve Ax=b or Ax = λx where A is a dense matrix

2. Sparse Linear Algebra
• Ex: Solve Ax=b or Ax = λx where A is a sparse matrix (mostly zero)

3. Operations on Structured Grids
• Ex: Anew(i,j) = 4*A(i,j) – A(i-1,j) – A(i+1,j) – A(i,j-1) – A(i,j+1)

4. Operations on Unstructured Grids
• Ex: Similar, but list of neighbors varies from entry to entry

5. Spectral Methods
• Ex: Fast Fourier Transform (FFT)

6. Particle Methods
• Ex: Compute electrostatic forces on n particles

7. Monte Carlo
• Ex: Many independent simulations using different inputs

Jim Demmel 8/17/2011

“7 Motifs” of High Performance Computing

• Phil Colella (LBL) identified 7 kernels of which most
simulation and data-analysis programs are composed:

Motifs: 4

1. Dense Linear Algebra
• Ex: Solve Ax=b or Ax = λx where A is a dense matrix

2. Sparse Linear Algebra
• Ex: Solve Ax=b or Ax = λx where A is a sparse matrix (mostly zero)

3. Operations on Structured Grids
• Ex: Anew(i,j) = 4*A(i,j) – A(i-1,j) – A(i+1,j) – A(i,j-1) – A(i,j+1)

4. Operations on Unstructured Grids
• Ex: Similar, but list of neighbors varies from entry to entry

5. Spectral Methods
• Ex: Fast Fourier Transform (FFT)

6. Particle Methods
• Ex: Compute electrostatic forces on n particles

7. Monte Carlo
• Ex: Many independent simulations using different inputs

Jim Demmel 8/17/2011

What you (might) want to know about a motif

• How to use it

– What problems does it solve?

– How to choose solution approach, if more than one?

• How to find the best software available now

– Best: fastest? most accurate? fewest keystrokes?

• How are the best implementations built?

– What is the “design space” (wrt math and CS)?

– How do we search for best (autotuning)?

• Open problems, current work, thesis problems…

8/21/2009 James Demmel Motifs: 5

Organizing Linear Algebra Motifs -
in books and on-line

www.netlib.org/lapack www.netlib.org/scalapack

www.cs.utk.edu/~dongarra/etemplates www.netlib.org/templates

gams.nist.gov

8/21/2009 James Demmel Motifs: 6

Motivation for new
 “Communication Avoiding” algorithms

• Running time of an algorithm is sum of 3 terms:
– # flops * time_per_flop

– # words moved / bandwidth

– # messages * latency

7

communication

• Exponentially growing gaps between
• Time_per_flop << 1/Network BW << Network Latency

• Improving 59%/year vs 26%/year vs 15%/year

• Time_per_flop << 1/Memory BW << Memory Latency

• Improving 59%/year vs 23%/year vs 5.5%/year

• Goal : reorganize motifs to avoid communication
• Between all memory hierarchy levels

• L1 L2 DRAM network, etc

• Not just overlapping communication and arithmetic (speedup  2x)

• Very large speedups possible

Summer School Lecture 3

“New Algorithm Improves Performance and Accuracy on Extreme-

Scale Computing Systems. On modern computer architectures,

communication between processors takes longer than the

performance of a floating point arithmetic operation by a given

processor. ASCR researchers have developed a new method,

derived from commonly used linear algebra methods, to minimize

communications between processors and the memory

hierarchy, by reformulating the communication patterns

specified within the algorithm. This method has been

implemented in the TRILINOS framework, a highly-regarded suite of

software, which provides functionality for researchers around the

world to solve large scale, complex multi-physics problems.”

FY 2010 Congressional Budget, Volume 4, FY2010 Accomplishments, Advanced Scientific

Computing Research (ASCR), pages 65-67.

President Obama cites Communication-Avoiding Algorithms in
the FY 2012 Department of Energy Budget Request to Congress:

CA-GMRES (Hoemmen, Mohiyuddin, Yelick, JD)

“Tall-Skinny” QR (Grigori, Hoemmen, Langou, JD)

Obstacle to avoiding communication:
Low “computational intensity”

• Let f = #arithmetic operations in an algorithm

• Let m = #words of data needed

• Def: q = f/m = computational intensity

• If q small, say q=1, so one op/word, then algorithm
can’t run faster than memory speed

• But if q large, so many ops/word, then algorithm can
(potentially) fetch data, do many ops while in fast
memory, only limited by (faster!) speed of arithmetic

• We seek algorithms with high q

– Still need to be clever to take advantage of high q

8/21/2009 James Demmel 9

DENSE LINEAR ALGEBRA MOTIF

8/21/2009

James Demmel Motifs: 10

 Brief history of (Dense) Linear Algebra software (1/6)

– Libraries like EISPACK (for eigenvalue problems)

• Then the BLAS (1) were invented (1973-1977)

– Standard library of 15 operations vectors

• Ex: y = α·x + y (“AXPY”) , dot product, etc

– Goals
• Common pattern to ease programming, efficiency, robustness

– Used in libraries like LINPACK (for linear systems)

• Source of the name “LINPACK Benchmark” (not the code!)

– Why BLAS 1 ? 1 loop, do O(n1) ops on O(n1) data

– Computational intensity = q = 2n/3n = 2/3 for AXPY
• Very low!

– BLAS1, and so LINPACK, limited by memory speed

– Need something faster …

• In the beginning was the do-loop…

8/21/2009 James Demmel Motifs: 11

Brief history of (Dense) Linear Algebra software (2/6)

• So the BLAS-2 were invented (1984-1986)

– Standard library of 25 operations (mostly) on matrix/vector pairs

• Ex: y = α·A·x + β·y (“GEMV”), A = A + α·x·yT (“GER”), y = T-1·x (“TRSV”)

– Why BLAS 2 ? 2 nested loops, do O(n2) ops on O(n2) data

– But q = computational intensity still just ~ (2n2)/(n2) = 2
• Was OK for vector machines, but not for machine with caches,

since q still just a small constant

8/21/2009 James Demmel Motifs: 12

Brief history of (Dense) Linear Algebra software (3/6)

• The next step: BLAS-3 (1987-1988)

– Standard library of 9 operations (mostly) on matrix/matrix pairs

• Ex: C = α·A·B + β·C (“GEMM”), C = α·A·AT + β·C (“SYRK”) , C = T-1·B (“TRSM”)

– Why BLAS 3 ? 3 nested loops, do O(n3) ops on O(n2) data

– So computational intensity q=(2n3)/(4n2) = n/2 – big at last!
• Tuning opportunities machines with caches, other mem. hierarchy levels

• How much faster can BLAS 3 go?

8/21/2009 James Demmel

Motifs: 13

Matrix-multiply, optimized several ways

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops

Reference

Implementation;

Full compiler opt.

Peak = 330 MFlops.

Optimized

Implementations:

Vendor (Sun) and

Autotuned (PHiPAC)

300

200

100

0

8/21/2009 James Demmel Motifs: 14

Faster Matmul C=A*B by “Blocking”

• Replace usual 3 nested loops …

• … by “blocked” version

8/21/2009 James Demmel 15

for I=1 to n/b

 for J=1 to n/b

 for K=1 to n/b

 C[I,J] = C[I,J] + A[I,K]*B[K,J]

Each C[I,J], A[I,K], B[K,J] is b x b

and all 3 blocks fit in fast memory

for i=1 to n

 for j=1 to n

 for k=1 to n

 C(i,j) = C(i,j) + A(i,k)*B(k,j)

i

j

=

i

j

I

J

=

I

J

C(i,j)

C[I,J]

*

*

B
(k

,j
) A(i,k)

A[I,K]

B
[K

,J
]

How hard is hand-tuning, anyway?

8/21/2009 James Demmel Motifs: 16

• Results of 22 student teams trying to tune matrix-multiply, in CS267 Spr09

• Students given “blocked” code to start with

• Still hard to get close to vendor tuned performance (ACML)

• For more discussion, see www.cs.berkeley.edu/~volkov/cs267.sp09/hw1/results/

• Naïve matmul: just 2% of peak

http://www.cs.berkeley.edu/~volkov/cs267.sp09/hw1/results/

How hard is hand-tuning, anyway?

8/21/2009 James Demmel Motifs: 17

8/21/2009 James Demmel Motifs: 18

What part of the Matmul Search Space Looks Like

A 2-D slice of a 3-D register-tile search space. The dark blue region was pruned.
(Platform: Sun Ultra-IIi, 333 MHz, 667 Mflop/s peak, Sun cc v5.0 compiler)

Number of rows in register block

8/21/2009 James Demmel Motifs: 19

Autotuning DGEMM with ATLAS (n = 500)

• ATLAS is faster than all other portable BLAS implementations and it is
comparable with machine-specific libraries provided by the vendor.

• ATLAS written by C. Whaley, inspired by PHiPAC, by Asanovic, Bilmes,Chin,D.

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

900.0

A
M

D A
th

lo
n-

60
0

D
EC

 e
v5

6-
53

3

D
EC

 e
v6

-5
00

H
P90

00
/7

35
/1

35

IB
M

 P
PC

60
4-

11
2

IB
M

 P
ow

er
2-

16
0

IB
M

 P
ow

er
3-

20
0

Pen
tiu

m
 P

ro
-2

00

Pen
tiu

m
 II

-2
66

Pen
tiu

m
 II

I-5
50

SG
I R

10
00

0i
p28

-2
00

SG
I R

12
00

0i
p30

-2
70

Sun
 U

ltr
aS

par
c2

-2
00

Architectures

M
F

L
O

P
S

Vendor BLAS

ATLAS BLAS

F77 BLAS

Source: Jack Dongarra

Lower bounds on Communication for Matmul

• Assume sequential n3 algorithm for C=A*B

– i.e. not Strassen-like

• Assume A, B and C fit in slow memory, but not in fast
memory of size M

• Thm: Lower bound on #words_moved to/from slow
memory, no matter the order n3 operations are done,
=  (n3 / M1/2) [Hong & Kung (1981)]

• Attained by “blocked” algorithm

– Some other algorithms attain it too

– Widely implemented in libraries (eg Intel MKL)

20

• Parallel case on P processors:

• Let 3n3 be total memory needed; assume load balanced

• Lower bound on #words_moved between processors
=  (n2 / P1/2) [Irony, Tiskin & Toledo (2004)]

• Lower bound on #messages between processors = O(P1/2)

• Attained by Cannon’s Algorithm

Summer School Lecture 3

Brief history of (Dense) Linear Algebra software (4/6)

• LAPACK – “Linear Algebra PACKage” - uses BLAS-3 (1989 – now)

– Ex: Obvious way to express Gaussian Elimination (GE) is adding multiples
of each row to other rows – BLAS-1

• Need to reorganize GE (and everything else) to use BLAS-3 instead

– Contents of current LAPACK (summary)

• Algorithms we can turn into (nearly) 100% BLAS 3 for large n

– Linear Systems: solve Ax=b for x

– Least Squares: choose x to minimize Si ri
2 where r=Ax-b

• Algorithms that are only up to ~50% BLAS 3, rest BLAS 1 & 2

– “Eigenproblems”: Find l and x where Ax = l x

– Singular Value Decomposition (SVD): ATAx=2x

• Error bounds for everything

• Lots of variants depending on A’s structure (banded, A=AT, etc)

– Widely used (list later)

– All at www.netlib.org/lapack

8/21/2009

James Demmel

Motifs: 21

http://www.netlib.org/lapack

Brief history of (Dense) Linear Algebra software (5/6)

• Is LAPACK parallel?

– Only if the BLAS are parallel (possible in shared
memory)

• ScaLAPACK – “Scalable LAPACK” (1995 – now)

– For distributed memory – uses MPI

– More complex data structures, algorithms than LAPACK

• Only subset of LAPACK’s functionality available

• Work in progress (contributions welcome!)

– All at www.netlib.org/scalapack

8/21/2009 James Demmel Motifs: 22

http://www.netlib.org/scalapack

Success Stories for Sca/LAPACK

Cosmic Microwave Background
Analysis, BOOMERanG collaboration,

MADCAP code (Apr. 27, 2000).

ScaLAPACK

• Widely used
– Adopted by Mathworks, Cray, Fujitsu,

HP, IBM, IMSL, Intel, NAG, NEC, SGI, …

– >100M web hits(in 2009, 56M in
2006) @ Netlib (incl. CLAPACK,
LAPACK95)

• New science discovered through
the solution of dense matrix
systems
– Nature article on the flat universe

used ScaLAPACK

– 1998 Gordon Bell Prize

– www.nersc.gov/news/reports/newNE
RSCresults050703.pdf

• Currently funded to improve,
update, maintain Sca/LAPACK

8/21/2009 James Demmel Motifs: 23

http://www.nersc.gov/news/reports/newNERSCresults050703.pdf
http://www.nersc.gov/news/reports/newNERSCresults050703.pdf

Do Sca/LAPACK Minimize Communication?
• Can extend lower bound for matmul to all
“direct methods” of linear algebra

• Lower bounds on #words_moved (bandwidth_cost)
and #messages (latency_cost) for

– BLAS, LU, QR, Eig, SVD, compositions…

– Dense and Sparse matrices

– Parallel and sequential

– 2 levels and hierarchies

• Almost none of Sca/LAPACK attains these lower bounds

• New (mostly dense) algorithms that do attain them

– Large measured and modeled speedups

• Time to reengineer all these algorithms!

• (Partially extends to Strassen-like algorithms)

24

TSQR: QR of a Tall, Skinny matrix

25

W =

Q00 R00

Q10 R10

Q20 R20

Q30 R30

W0

W1

W2

W3

Q00

 Q10

 Q20

 Q30

= = .

R00

R10

R20

R30

R00

R10

R20

R30

=
Q01 R01

Q11 R11

Q01

 Q11

= .
R01

R11

R01

R11

= Q02 R02

TSQR: QR of a Tall, Skinny matrix

26

W =

Q00 R00

Q10 R10

Q20 R20

Q30 R30

W0

W1

W2

W3

Q00

 Q10

 Q20

 Q30

= = .

R00

R10

R20

R30

R00

R10

R20

R30

=
Q01 R01

Q11 R11

Q01

 Q11
= .

R01

R11

R01

R11

= Q02 R02

Output = { Q00, Q10, Q20, Q30, Q01, Q11, Q02, R02 }

TSQR: An Architecture-Dependent Algorithm

W =

W0

W1

W2

W3

R00

R10

R20

R30

R01

R11

R02
Parallel:

W =

W0

W1

W2

W3

R01
R02

R00

R03

Sequential:

W =

W0

W1

W2

W3

R00

R01
R01

R11

R02

R11

R03

Dual Core:

Can choose reduction tree dynamically

Multicore / Multisocket / Multirack / Multisite / Out-of-core: ?

TSQR Performance Results

• Parallel
– Intel Clovertown

– Up to 8x speedup (8 core, dual socket, 10M x 10)
– Pentium III cluster, Dolphin Interconnect, MPICH

• Up to 6.7x speedup (16 procs, 100K x 200)
– BlueGene/L

• Up to 4x speedup (32 procs, 1M x 50)
– Tesla C 2050 / Fermi

• Up to 13x (110,592 x 100)

– Grid – 4x on 4 cities vs 1 city (Dongarra et al)

– Cloud – early result – up and running

• Sequential
– “Infinite speedup” for out-of-Core on PowerPC laptop

• As little as 2x slowdown vs (predicted) infinite DRAM

• LAPACK with virtual memory never finished

28

Data from Grey Ballard, Mark Hoemmen, Laura Grigori, Julien Langou, Jack

Dongarra, Michael Anderson

Brief history/future of (Dense) Linear Algebra software (6/6)

• Communication-Avoiding for everything (open problems…)

• Extensions for multicore
– PLASMA – Parallel Linear Algebra for Scalable Multicore Architectures

• Dynamically schedule tasks into which algorithm is decomposed, to
minimize synchronization, keep all processors busy

• Release 2.4 at icl.cs.utk.edu/plasma/

• Extensions for heterogeneous architectures, eg CPU + GPU

– “Benchmarking GPUs to tune Dense Linear Algebra”

• Best Student Paper Prize at SC08 (Vasily Volkov)

• Paper, slides and code at www.cs.berkeley.edu/~volkov

– Lower, matching upper bounds (SPAA’11 paper, at bebop.cs.berkeley.edu)

– MAGMA – Matrix Algebra on GPU and Multicore Architectures

• Release 1.0 at icl.cs.utk.edu/magma/

• How much code generation can we automate?
– MAGMA , and FLAME (www.cs.utexas.edu/users/flame/)

8/21/2009 James Demmel Motifs: 29

http://www.cs.berkeley.edu/~volkov
http://www.cs.utexas.edu/users/flame/

SPARSE LINEAR ALGEBRA MOTIF

8/21/2009 James Demmel Motifs: 30

Sparse Matrix Computations
• Similar problems to dense matrices

– Ax=b, Least squares, Ax = λx, SVD, …

• But different algorithms!

– Exploit structure: only store, work on nonzeros

– Direct methods

• LU, Cholesky for Ax=b, QR for Least squares

• See crd.lbl.gov/~xiaoye/SuperLU/SparseDirectSurvey.pdf
for a survey of available serial and parallel sparse solvers

• See crd.lbl.gov/~xiaoye/SuperLU/index.html for LU codes

– Iterative methods – for Ax=b, least squares, eig, SVD

• Use simplest operation: Sparse-Matrix-Vector-Multiply (SpMV)

• Krylov Subspace Methods: find “best” solution in space
spanned by vectors generated by SpMVs

8/21/2009

James Demmel Motifs: 31

http://crd.lbl.gov/~xiaoye/SuperLU/SparseDirectSurvey.pdf
http://crd.lbl.gov/~xiaoye/SuperLU/index.html

Choosing a Krylov Subspace Method for Ax=b

8/21/2009

James Demmel Motifs: 32

A symmetric?

AT available? A definite?

Storage

Expensive?

A well-

conditioned?

A well-

conditioned?

Largest/smallest

eigenvalues

known?

Try

GMRES

Try CGS,

BiCGStab,

or

GMRES(k)

Try

QMR

Try

CG on

normal

eqns.

Try

MINRES

or

Nonsymm.

method

Try

CG

Try CG with

Chebyshev

acceleration

No

No

No No Yes
No

Yes

No Yes

Yes Yes No
Yes

Yes

• All depend on SpMV

• See www.netlib.org/templates for Ax=b

• See www.cs.ucdavis.edu/~bai/ET/contents.html for Ax=λx and SVD

http://www.netlib.org/templates
http://www.cs.ucdavis.edu/~bai/ET/contents.html

Sparse Outline

• Approaches to Automatic Performance Tuning

• Results for sparse matrix kernels

– Sparse Matrix Vector Multiplication (SpMV)

– Sequential and Multicore results

• OSKI = Optimized Sparse Kernel Interface

• Tuning Entire Sparse Solvers

– Avoiding Communication

• What is a sparse matrix?

Approaches to Automatic Performance Tuning

• Goal: Let machine do hard work of writing fast code

• Why is tuning dense BLAS “easy”?
– Can do the tuning off-line: once per architecture, algorithm

– Can take as much time as necessary (hours, a week…)

– At run-time, algorithm choice may depend only on few parameters
(matrix dimensions)

• Can’t always do tuning off-line
– Algorithm and implementation may strongly depend on data only known

at run-time

– Ex: Sparse matrix nonzero pattern determines both best data structure
and implementation of Sparse-matrix-vector-multiplication (SpMV)

– Part of search for best algorithm must be done (very quickly!) at run-time

• Tuning FFTs and signal processing
– Seems off-line, but maybe not, because of code size

– www.spiral.net, www.fftw.org

http://www.spiral.net/
http://www.fftw.org/

Source: Accelerator Cavity Design Problem (Ko via Husbands)

Linear Programming Matrix

…

A Sparse Matrix You Use Every Day

Matrix-vector multiply kernel: y(i)  y(i) + A(i,j)*x(j)

for each row i

 for k=ptr[i] to ptr[i+1] do

 y[i] = y[i] + val[k]*x[ind[k]]

SpMV with Compressed Sparse Row (CSR) Storage

Matrix-vector multiply kernel: y(i)  y(i) + A(i,j)*x(j)

for each row i

 for k=ptr[i] to ptr[i+1] do

 y[i] = y[i] + val[k]*x[ind[k]]

Only 2 flops per

2 mem_refs:

Limited by getting

data from memory

Example: The Difficulty of Tuning

• n = 21200

• nnz = 1.5 M

• kernel: SpMV

• Source: NASA
structural
analysis problem

Example: The Difficulty of Tuning

• n = 21200

• nnz = 1.5 M

• kernel: SpMV

• Source: NASA
structural analysis
problem

• 8x8 dense substructure:
exploit this to limit
#mem_refs

Speedups on Itanium 2:
The Need for Search

Reference

Best: 4x2

Mflop/s

Mflop/s

Register Profile: Itanium 2

190 Mflop/s

1190 Mflop/s

Register Profiles: IBM and Intel IA-
64

Power3 - 17% Power4 - 16%

Itanium 2 - 33% Itanium 1 - 8%

252 Mflop/s

122 Mflop/s

820 Mflop/s

459 Mflop/s

247 Mflop/s

107 Mflop/s

1.2 Gflop/s

190 Mflop/s

Register Profiles: Sun and Intel x86

Ultra 2i - 11% Ultra 3 - 5%

Pentium III-M - 15% Pentium III - 21%

72 Mflop/s

35 Mflop/s

90 Mflop/s

50 Mflop/s

108 Mflop/s

42 Mflop/s

122 Mflop/s

58 Mflop/s

Another example of tuning challenges

• More complicated
non-zero structure in
general

• N = 16614

• NNZ = 1.1M

Zoom in to top corner

• More complicated
non-zero structure
in general

• N = 16614

• NNZ = 1.1M

3x3 blocks look natural, but…

• More complicated non-zero
structure in general

• Example: 3x3 blocking

– Logical grid of 3x3 cells

• But would lead to lots of
“fill-in”

Extra Work Can Improve Efficiency!

• More complicated non-zero
structure in general

• Example: 3x3 blocking

– Logical grid of 3x3 cells

– Fill-in explicit zeros

– Unroll 3x3 block multiplies

– “Fill ratio” = 1.5

• On Pentium III: 1.5x speedup!

– Actual mflop rate
1.52 = 2.25x higher

Selecting Register Block Size r x c
• Off-line benchmark

– Precompute Mflops(r,c) using dense A for each r x c

– Once per machine/architecture

• Run-time “search”
– Sample A to estimate Fill(r,c) for each r x c

– Control cost = O(s·nnz) by controlling fraction s  [0,1] sampled

– Control s automatically by computing statistical confidence intervals, by
monitoring variance

• Run-time heuristic model
– Choose r, c to minimize time ~ Fill(r,c) / Mflops(r,c)

• Cost of tuning
– Lower bound: convert matrix in 5 to 40 unblocked SpMVs

– Heuristic: 1 to 11 SpMVs

• Tuning only useful when we do many SpMVs
– Common case, eg in sparse solvers

Accuracy of the Tuning Heuristics
(1/4)

NOTE: “Fair” flops used (ops on explicit zeros not counted as “work”)

See p. 375 of Vuduc’s thesis for matrices

Accuracy of the Tuning Heuristics
(2/4)

DGEMV

Example: Bounds on Itanium 2
Upper bound counts only

compulsory memory traffic

PAPI upper bound

counts true traffic

Summary of Other Performance Optimizations

• Optimizations for SpMV
– Register blocking (RB): up to 4x over CSR

– Variable block splitting: 2.1x over CSR, 1.8x over RB

– Diagonals: 2x over CSR

– Reordering to create dense structure + splitting: 2x over CSR

– Symmetry: 2.8x over CSR, 2.6x over RB

– Cache blocking: 2.8x over CSR

– Multiple vectors (SpMM): 7x over CSR

– And combinations…

• Sparse triangular solve
– Hybrid sparse/dense data structure: 1.8x over CSR

• Higher-level kernels
– A·AT·x, AT·A·x: 4x over CSR, 1.8x over RB

– A2·x: 2x over CSR, 1.5x over RB

– [A·x, A2·x, A3·x, .. , Ak·x+ …. more to say later

Source: Accelerator Cavity Design Problem (Ko via Husbands)

Can we reorder the

rows and columns

to create dense blocks,

to accelerate SpMV?

Post-RCM (Breadth-first-search) Reordering

Moving nonzeros nearer

the diagonal should

create dense block, but

let’s zoom in and see…

100x100 Submatrix Along Diagonal

Here is the top 100x100

submatrix before RCM

Before: Green + Red
After: Green + Blue

“Microscopic” Effect of RCM Reordering

Here is the top 100x100

submatrix after RCM:

red entries move to the

blue locations.

More dense blocks, but

could be better, so let’s

try reordering again,

using TSP (Travelling

Saleman Problem)

“Microscopic” Effect of Combined RCM+TSP Reordering

Before: Green + Red
After: Green + Blue

Here is the top 100x100

submatrix after RCM and

TSP: red entries move

to the blue locations.

Lots of dense blocks,

as desired!

Speedups (using

symmetry too):

Itanium 2: 1.7x

Pentium 4: 2.1x

Power 4: 2.1x

Ultra 3: 3.3x

Optimized Sparse Kernel Interface - OSKI

• Provides sparse kernels automatically tuned for user’s matrix
& machine
– BLAS-style functionality: SpMV, Ax & ATy, TrSV

– Hides complexity of run-time tuning

– Includes new, faster locality-aware kernels: ATAx, Akx

• Faster than standard implementations

– Up to 4x faster matvec, 1.8x trisolve, 4x ATA*x

• For “advanced” users & solver library writers
– Available as stand-alone library (OSKI 1.0.1h, 6/07)

– Available as PETSc extension (OSKI-PETSc .1d, 3/06)

– Bebop.cs.berkeley.edu/oski

• Current work: adding multicore, other optimizations - pOSKI

How OSKI Tunes (Overview)

Benchmark

data

1. Build for

Target

Arch.

2. Benchmark

Heuristic

models

1. Evaluate

Models

Generated

code

variants

2. Select

Data Struct.

& Code

Library Install-Time (offline) Application Run-Time

To user:
Matrix handle

for kernel

calls

Workload

from program

monitoring

Extensibility: Advanced users may write & dynamically add “Code variants” and “Heuristic models” to system.

History

Matrix

How to Call OSKI: Basic Usage

• May gradually migrate existing apps
– Step 1: “Wrap” existing data structures

– Step 2: Make BLAS-like kernel calls

int* ptr = …, *ind = …; double* val = …; /* Matrix, in CSR format */

double* x = …, *y = …; /* Let x and y be two dense vectors */

/* Compute y = ·y + ·A·x, 500 times */

for(i = 0; i < 500; i++)

 my_matmult(ptr, ind, val, , x, , y);

How to Call OSKI: Basic Usage

• May gradually migrate existing apps
– Step 1: “Wrap” existing data structures

– Step 2: Make BLAS-like kernel calls

int* ptr = …, *ind = …; double* val = …; /* Matrix, in CSR format */

double* x = …, *y = …; /* Let x and y be two dense vectors */

/* Step 1: Create OSKI wrappers around this data */

oski_matrix_t A_tunable = oski_CreateMatCSR(ptr, ind, val, num_rows,

num_cols, SHARE_INPUTMAT, …);

oski_vecview_t x_view = oski_CreateVecView(x, num_cols, UNIT_STRIDE);

oski_vecview_t y_view = oski_CreateVecView(y, num_rows, UNIT_STRIDE);

/* Compute y = ·y + ·A·x, 500 times */

for(i = 0; i < 500; i++)

 my_matmult(ptr, ind, val, , x, , y);

How to Call OSKI: Basic Usage

• May gradually migrate existing apps
– Step 1: “Wrap” existing data structures

– Step 2: Make BLAS-like kernel calls

int* ptr = …, *ind = …; double* val = …; /* Matrix, in CSR format */

double* x = …, *y = …; /* Let x and y be two dense vectors */

/* Step 1: Create OSKI wrappers around this data */

oski_matrix_t A_tunable = oski_CreateMatCSR(ptr, ind, val, num_rows,

num_cols, SHARE_INPUTMAT, …);

oski_vecview_t x_view = oski_CreateVecView(x, num_cols, UNIT_STRIDE);

oski_vecview_t y_view = oski_CreateVecView(y, num_rows, UNIT_STRIDE);

/* Compute y = ·y + ·A·x, 500 times */

for(i = 0; i < 500; i++)

 oski_MatMult(A_tunable, OP_NORMAL, , x_view, , y_view);/* Step 2 */

How to Call OSKI: Tune with Explicit Hints

• User calls “tune” routine
– May provide explicit tuning hints (OPTIONAL)

oski_matrix_t A_tunable = oski_CreateMatCSR(…);

 /* … */

/* Tell OSKI we will call SpMV 500 times (workload hint) */

oski_SetHintMatMult(A_tunable, OP_NORMAL, , x_view, , y_view, 500);

/* Tell OSKI we think the matrix has 8x8 blocks (structural hint) */

oski_SetHint(A_tunable, HINT_SINGLE_BLOCKSIZE, 8, 8);

oski_TuneMat(A_tunable); /* Ask OSKI to tune */

for(i = 0; i < 500; i++)

 oski_MatMult(A_tunable, OP_NORMAL, , x_view, , y_view);

How the User Calls OSKI: Implicit Tuning

• Ask library to infer workload
– Library profiles all kernel calls

– May periodically re-tune

oski_matrix_t A_tunable = oski_CreateMatCSR(…);

 /* … */

for(i = 0; i < 500; i++) {

 oski_MatMult(A_tunable, OP_NORMAL, , x_view, , y_view);

 oski_TuneMat(A_tunable); /* Ask OSKI to tune */

}

66

Multicore SMPs Used for Tuning SpMV

AMD Opteron 2356 (Barcelona) Intel Xeon E5345 (Clovertown)

IBM QS20 Cell Blade Sun T2+ T5140 (Victoria Falls)

67

Multicore SMPs Used for Tuning SpMV

Intel Xeon E5345 (Clovertown)

• Cache based

• 8 Threads

AMD Opteron 2356 (Barcelona)

• Cache based

• 8 Threads

• NUMA

IBM QS20 Cell Blade Sun T2+ T5140 (Victoria Falls)

• Cache based • Local-Store based

• 128 Threads (CMT) • 16 Threads

• NUMA • NUMA

• 75 GFlops • 74 GFlops

• 19 GFlops • 29 Gflops (SPEs only)

• 21/10 GB/s R/W BW • 21 GB/s R/W BW

• 42/21 GB/s R/W BW • 51 GB/s R/W BW

68

Set of 14 test matrices

• All bigger than the caches of our SMPs

Dense

Protein
FEM /

Spheres

FEM /

Cantilever

Wind

Tunnel

FEM /

Harbor
QCD

FEM /

Ship
Economics Epidemiology

FEM /

Accelerator
Circuit webbase

LP

2K x 2K Dense matrix

stored in sparse format

Well Structured

(sorted by nonzeros/row)

Poorly Structured

hodgepodge

Extreme Aspect Ratio

(linear programming)

69

SpMV Performance: Naive parallelization

• Out-of-the box SpMV
performance on a suite of 14
matrices

• Scalability isn’t great:

 Compare to # threads

 8 8

 128 16

Naïve Pthreads

Naïve

SpMV Performance: NUMA and Software Prefetching

70

 NUMA-aware allocation is
essential on NUMA SMPs.

 Explicit software prefetching
can boost bandwidth and
change cache replacement
policies

 used exhaustive search

SpMV Performance: “Matrix Compression”

71

 Compression includes

 register blocking

 other formats

 smaller indices

 Use heuristic rather than
search

72

SpMV Performance: cache and TLB blocking

+Cache/LS/TLB Blocking

+Matrix Compression

+SW Prefetching

+NUMA/Affinity

Naïve Pthreads

Naïve

73

SpMV Performance: Architecture specific optimizations

+Cache/LS/TLB Blocking

+Matrix Compression

+SW Prefetching

+NUMA/Affinity

Naïve Pthreads

Naïve

74

SpMV Performance: max speedup

• Fully auto-tuned SpMV
performance across the suite of
matrices

• Included SPE/local store
optimized version

• Why do some optimizations work
better on some architectures?

+Cache/LS/TLB Blocking

+Matrix Compression

+SW Prefetching

+NUMA/Affinity

Naïve Pthreads

Naïve

2.7x 4.0x

2.9x 35x

Avoiding Communication in Sparse Linear Algebra

• k-steps of typical iterative solver for Ax=b or Ax=λx
– Does k SpMVs with starting vector (eg with b, if solving Ax=b)
– Finds “best” solution among all linear combinations of these k+1

vectors
– Many such “Krylov Subspace Methods”

• Conjugate Gradients, GMRES, Lanczos, Arnoldi, …

• Goal: minimize communication in Krylov Subspace Methods
– Assume matrix “well-partitioned,” with modest surface-to-volume ratio
– Parallel implementation

• Conventional: O(k log p) messages, because k calls to SpMV
• New: O(log p) messages - optimal

– Serial implementation
• Conventional: O(k) moves of data from slow to fast memory
• New: O(1) moves of data – optimal

• Lots of speed up possible (modeled and measured)
– Price: some redundant computation

1 2 3 4 … … 32

x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx]

• Replace k iterations of y = Ax with [Ax, A2x, …, Akx]

• Example: A tridiagonal, n=32, k=3

• Works for any “well-partitioned” A

1 2 3 4 … … 32

x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx]

• Replace k iterations of y = Ax with [Ax, A2x, …, Akx]

• Example: A tridiagonal, n=32, k=3

1 2 3 4 … … 32

x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx]

• Replace k iterations of y = Ax with [Ax, A2x, …, Akx]

• Example: A tridiagonal, n=32, k=3

1 2 3 4 … … 32

x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx]

• Replace k iterations of y = Ax with [Ax, A2x, …, Akx]

• Example: A tridiagonal, n=32, k=3

1 2 3 4 … … 32

x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx]

• Replace k iterations of y = Ax with [Ax, A2x, …, Akx]

• Example: A tridiagonal, n=32, k=3

1 2 3 4 … … 32

x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx]

• Replace k iterations of y = Ax with [Ax, A2x, …, Akx]

• Example: A tridiagonal, n=32, k=3

1 2 3 4 … … 32

x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx]

• Replace k iterations of y = Ax with [Ax, A2x, …, Akx]

• Sequential Algorithm

• Example: A tridiagonal, n=32, k=3

Step 1

1 2 3 4 … … 32

x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx]

• Replace k iterations of y = Ax with [Ax, A2x, …, Akx]

• Sequential Algorithm

• Example: A tridiagonal, n=32, k=3

Step 1 Step 2

1 2 3 4 … … 32

x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx]

• Replace k iterations of y = Ax with [Ax, A2x, …, Akx]

• Sequential Algorithm

• Example: A tridiagonal, n=32, k=3

Step 1 Step 2 Step 3

1 2 3 4 … … 32

x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx]

• Replace k iterations of y = Ax with [Ax, A2x, …, Akx]

• Sequential Algorithm

• Example: A tridiagonal, n=32, k=3

Step 1 Step 2 Step 3 Step 4

1 2 3 4 … … 32

x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx]

• Replace k iterations of y = Ax with [Ax, A2x, …, Akx]

• Parallel Algorithm

• Example: A tridiagonal, n=32, k=3

• Each processor communicates once with neighbors

Proc 1 Proc 2 Proc 3 Proc 4

1 2 3 4 … … 32

x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx]

• Replace k iterations of y = Ax with [Ax, A2x, …, Akx]

• Parallel Algorithm

• Example: A tridiagonal, n=32, k=3

• Each processor works on (overlapping) trapezoid

Proc 1 Proc 2 Proc 3 Proc 4

Same idea works for general sparse matrices

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx]

Partitioning by rows 

 Graph partitioning

Processing left to right 

 Traveling Salesman Problem

What about multicore?
• Two kinds of communication to minimize

– Between processors on the chip

– Between on-chip cache and off-chip DRAM

• Use hybrid of both techniques described so far

– Use parallel optimization so each core can work
independently

– Use sequential optimization to minimize off-chip
DRAM traffic of each core

89

Summer School Lecture 8

Speedups on Intel Clovertown (8 core)
Test matrices include stencils and practical matrices

See SC09 paper on bebop.cs.berkeley.edu for details

90

Summer School Lecture 8

Minimizing Communication of GMRES
Classical GMRES for Ax=b

 for i=1 to k
 w = A * v(i-1)
 MGS(w, v(0),…,v(i-1))
 … Modified Gram-Schmidt
 … to make w orthogonal
 update v(i), H
 … H = matrix of coeffs
 … from MGS
 endfor
 solve LSQ problem with H for x

Communication cost =
 k copies of A, vectors from
 slow to fast memory

Communication-Avoiding GMRES, ver. 1

 W = [v, Av, A2v, … , Akv]
 [Q,R] = TSQR(W)
 … “Tall Skinny QR”
 … new optimal QR discussed before
 Build H from R
 solve LSQ problem with H for x

Communication cost =
 O(1) copy of A, vectors from
 slow to fast memory

Let’s confirm that we still get the right answer …

8/21/2009 James Demmel 92

Right answer (converges)

Oops, doesn’t converge

Minimizing Communication of GMRES
(and getting the right answer)

Communication-Avoiding GMRES, ver. 2

 W = [v, p1(A)v, p2(A)v, … , pk(A)v]
 … where pi(A)v is a degree-i polynomial in A multiplied by v
 … polynomials chosen to keep vectors independent
 [Q,R] = TSQR(W)
 … “Tall Skinny QR”
 … new optimal QR discussed before
 Build H from R
 … slightly different R from before
 solve LSQ problem with H for x

Communication cost still optimal:
 O(1) copy of A, vectors from
 slow to fast memory

8/21/2009 James Demmel 94

Right answer (converges)

Oops, doesn’t converge

Converges again!

Speed ups on 8-core Clovertown
CA-GMRES = Communication-Avoiding GMRES

Paper by Mohiyuddin, Hoemmen, D. to appear in Supercomputing09

Summary of what is known (1/2), open

• GMRES
– Can independently choose k to optimize speed, restart length r to

optimize convergence

– Need to “co-tune” Akx kernel and TSQR

– Know how to use more stable polynomial bases

– Proven speedups

• Can similarly reorganize other Krylov methods
– Arnoldi and Lanczos, for Ax = λx and for Ax = λMx

– Conjugate Gradients (CG), for Ax = b

– Biconjugate Gradients (BiCG), CG Squared (CGS), BiCGStab for Ax=b

– Other Krylov methods?

96

Summer School Lecture 8

Summary of what is known (2/2), open

• Preconditioning: MAx = Mb

– Need different communication-avoiding kernel:
*x,Ax,MAx,AMAx,MAMAx,AMAMAx,…+

– For which preconditioners M can we minimize
communication?

• Easy: diagonal M

• A little harder: more general sparse M

• Works (in principle) for Hierarchically Semi-Separable M

• How does it work in practice?

• See Mark Hoemmen’s PhD thesis for details

– bebop.cs.berkeley.edu

97

Summer School Lecture 8

What is a sparse matrix?

• How much infrastructure (for code creation,
tuning or interfaces) can we reuse for all these
cases?

98

Sparse Conclusions

• Fast code must minimize communication
– Especially for sparse matrix computations because communication

dominates

• Generating fast code for a single SpMV
– Design space of possible algorithms must be searched at run-time,

when sparse matrix available

– Design space should be searched automatically

• Biggest speedups from minimizing communication in an
entire sparse solver
– Many more opportunities to minimize communication in multiple

SpMVs than in one

– Requires transforming entire algorithm

– Lots of open problems

• For more information, see bebop.cs.berkeley.edu

STRUCTURED GRID MOTIF

8/21/2009 James Demmel Motifs: 100

Source: Sam Williams

Structured Grids
Finite Difference Operators

• Applying the finite difference method to PDEs on structured grids produces stencil operators
that must be applied to all points in the discretized grid.

• Consider the 7-point Laplacian Operator

• Challenged by bandwidth, temporal reuse, efficient SIMD, etc…

 but trivial to (correctly) parallelize

• most optimizations can be independently implemented,

 (but not performance independent)

• core (cache) blocking and cache bypass were clearly integral to performance

101
+Thread

Blocking
+SW Prefetch

+Register

Blocking

+Core

Blocking

+NUMA &

Affinity
Naïve

+Cache

Bypass

+Array

Padding

+2nd Pass in

Greedy

Search

y+1

y-1

x-1

z-1

z+1

x+1
x,y,z

Structured Grids
Lattice Boltzmann Methods

• LBMHD simulates charged plasmas in a magnetic field (MHD) via Lattice Boltzmann Method
(LBM) applied to CFD and Maxwell’s equations.

• To monitor density, momentum, and magnetic field, it requires maintaining two “velocity”
distributions

– 27 (scalar) element velocity distribution for momentum

– 15 (Cartesian) element velocity distribution for magnetic field

– = 632 bytes / grid point / time step

• Jacobi-like time evolution requires ~1300 flops and ~1200 bytes of memory traffic

102

momentum distribution

14

4

13

16

5

8

9

21

12

+Y

2

25

1

3

24

23

22

26

0

18

6

17

19

7

10

11

20

15

+Z

+X

magnetic distribution

14

13

16

21

12

25

24

23

22

26

18

17

19

20

15

+Y

+Z

+X

macroscopic variables

+Y

+Z

+X

Structured Grids
Lattice Boltzmann Methods

103

 Challenged by:

 The higher flop:byte ratio of ~1.0 is still bandwidth-limiting

 TLB locality (touch 150 pages per lattice update)

 cache associativity (150 disjoint lines)

 efficient SIMDization

 easy to (correctly) parallelize

 explicit SIMDization & SW prefetch are dependent on unrolling

 Ultimately, 2 of 3 machines are bandwidth-limited

*collision() only

+Explicit

SIMDization
+SW Prefetch +Unrolling +Vectorization +Padding

Reference

+NUMA

+small

pages

Structured Grids
Lattice Boltzmann Methods

104

• Distributed Memory & Hybrid

• MPI, MPI+pthreads, MPI+OpenMP

 (SPMD, SPMD2, SPMD+Fork/Join)

• Observe that for this large problem,
auto-tuning flat MPI delivered
significant boosts (2.5x)

• Extending auto-tuning to include the
domain decomposition and balance
between threads and processes
provided an extra 17%

• 2 processes with 2 threads was best

 (true for Pthreads and OpenMP)

PARTICLE METHOD MOTIF

8/21/2009 James Demmel Motifs: 105

Source: Sam Williams

Particle Methods
Particle-In-Cell

106

• Rather than calculating O(N2) forces, calculate impact of particles on field and field
on particles -> O(N)

– particle-to-grid interpolation (scatter-add) <<< most challenging step

– Poisson solve

– grid-to-particle/push interpolation (gather) <<< EP

• Used in a number of simulations including Heart and Fusion

• Trivial simplification would be a 2D histogram

• These codes can be challenging to parallelize in shared memory

Particle Methods
Particle-In-Cell

107

 PIC codes can be particularly challenging to parallelize

 PIC codes can have different grid topologies, different particle
characteristics, and different particle distributions

 To mitigate these differences, we tune over 5 synchronization approaches
(3 locking, FP atomics, none) and 5 partial grid replication strategies
(none, partitioned, overlapping partitions, dynamic, full)

one charge grid shared

among all threads

ions (rings) partitioned

among threads

heart fibers partitioned

among threads

one fluid grid shared

among all threads

Particle Methods
Particle-In-Cell

108

 Results: vastly less memory than MPI on a node with some performance gains

 Clearly, optimization is dependent on the distribution of particles, available memory,
and architecture

Particle Methods
Particle-In-Cell

109

 Results: vastly less memory than MPI on a node with some performance gains

 Clearly, optimization is dependent on the distribution of particles, available memory,
and architecture

H
e

a
rt

 S
p

re
a

d
 F

o
rc

e

C
a
lc

u
la

ti
o

n

G
T

C
 C

h
a

rg
e

-t
o

-g
ri

d

In
te

rp
o

la
ti

o
n

Particle Methods
Particle-In-Cell

110

 Results: vastly less memory than MPI on a node with some performance gains

 Clearly, optimization is dependent on the distribution of particles, available memory,
and architecture

H
e

a
rt

 S
p

re
a

d
 F

o
rc

e

C
a
lc

u
la

ti
o

n

G
T

C
 C

h
a

rg
e

-t
o

-g
ri

d

In
te

rp
o

la
ti

o
n

Particle Methods
Fast Multipole Method

• Alternate (tree-based) approach for calculating forces

• Kernel Independent FMM (KIFMM) is challenged by 7 computational phases
(kernels) including list computations and tree traversals.

• List computations vary from those requiring direct particle-particle interactions, to
those based on many small FFTs

• Different architectures (CPUs, GPUs…) may require different codes for each phase.

• Additionally, FMM is parameterized by the number of particles per box in the oct-
tree.

– More particles/box => more flops (direct calculations)

– Fewer particle/box => fewer flops (but more work in tree traversals)

111

Fewer total flops,

more tree traversals

Particle Methods
Fast Multipole Method

112

• Different architectures showed speedups for different phases from conventional auto-tuning.

• Additionally, tuning algorithmic parameters showed different architectures preferred different
sweet spots…

– Nehalem’s sweet spot was around 250 particles/box

– GPUs required up to 4000 particles/box to attain similar performance. That is, to cope with poor tree
traversal performance GPU’s had to perform 16x as many flop’s

Particle Methods
Fast Multipole Method

113

• Different architectures showed speedups for different phases from conventional auto-tuning.

• Additionally, tuning algorithmic parameters showed different architectures preferred different
sweet spots…

– Nehalem’s sweet spot was around 250 particles/box

– GPUs required up to 4000 particles/box to attain similar performance. That is, to cope with poor tree
traversal performance GPU’s had to perform 16x as many flop’s

Reference

Sequential

Optimizations

OpenMP

Amortized Tree

Construction

runtimes in seconds

.py

OS/HW

f() h()

Specializer

.c

P
L
L
 I

n
te

rp

Productivity app

.so

cc/ld

$

Delivering Autotuning via SEJITS

Selective

Embedded

JIT

SEJITS
Specialization

Summary

• “Design spaces” for algorithms and
implementations are large and growing

• Finding the best algorithm/implementation by
hand is hard and getting harder

• Ideally, we would have a database of
“techniques” that would grow over time, and
be searched automatically whenever a new
input and/or machine comes along

• Lots of work to do…

8/21/2009 James Demmel 115

Extra slides

8/21/2009 James Demmel 116

BLAS 1/2/3 speeds on IBM RS6000/590

BLAS 3

BLAS 2

BLAS 1

BLAS 3 (n-by-n matrix matrix multiply) vs

BLAS 2 (n-by-n matrix vector multiply) vs

BLAS 1 (saxpy of n vectors)

Peak = 266 MFlops

0

100

200

300

8/21/2009 James Demmel Motifs: 117

8/21/2009 James Demmel Motifs: 118

Different Parallel Data Layouts for Matrices

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

1) 1D Column Blocked Layout 2) 1D Column Cyclic Layout

3) 1D Column Block Cyclic Layout

4) Row versions of the previous layouts

Generalizes others
Best load balance on submatrices

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3 6) 2D Row and Column Block
Cyclic Layout

0 1 2 3

0 1

2 3

5) 2D Row and Column Blocked Layout

b

Bad load balance on

many submatrices

• Can process DAG in any
order respecting
dependencies

• What is the best schedule?
– Static vs dynamic?

– Programmer builds DAG vs
compiler or run-time system?

– Build and schedule whole
DAG (size = O((n/b)3) or just
“front”

– Use locality hints?

• DAG = Directed Acyclic Graph, of tasks
• Tasks are multiplying submatrices, etc.
• Sample DAG for Cholesky with 5 blocks per row/column

DAG courtesy of Jakub Kurzak, UTK

PLASMA: Expressing Parallelism with a DAG

8/21/2009

James Demmel Motifs: 119

Cilk (www.cilk.com): programmer defined spawn and sync

SMPSs (www.bsc.es) :

compiler-based with

annotations of argument

dependencies

PLASMA: static schedule

supplied by programmer

Measured Results for Tiled Cholesky

• Measured on Intel Tigerton 2.4 GHz Slide courtesy of Jakub Kurzak, UTK

Time

C
o
re

s
 (

1
-1

6
)

8/21/2009

James Demmel Motifs: 120

http://www.cilk.com/
http://www.bsc.es/

More Measured Results for Tiled Cholesky

quad-socket, quad-core (16 cores total) Intel Tigerton 2.4 GHz

• PLASMA (static pipeline) –

best

• SMPSs – somewhat worse

• Cilk 2D – inferior

• Cilk 1D – still worse

Slide courtesy of Jakub Kurzak, UTK

8/21/2009

James Demmel Motifs: 121

122

Intel’s Clovertown Quad Core

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000

Problems Size

M
fl
o

p
/s

1. LAPACK (BLAS Fork-Join Parallelism)

2. ScaLAPACK (Mess Pass using mem copy)

3. DAG Based (PLASMA)

3 Implementations of LU factorization
Quad core w/2 sockets per board, w/ 8 Threads

8 Core Experiments

Source: Jack Dongarra

8/21/2009

James Demmel Motifs: 122

Scheduling on Multicore – Next Steps

• PLASMA 2.0.0 released

– Just Cholesky, QR, LU, using static scheduling

– LU does not do partial pivoting – Stability?

– icl.cs.utk.edu/plasma/

• Future of PLASMA

– Add dynamic scheduling, similar to SMPSs

• DAGs for eigenproblems are too complicated to do by hand

– Depend on user annotations and API, not compiler

– Still assume homogeneity of available cores

• Heterogeneous case: MAGMA

8/21/2009

James Demmel Motifs: 123

http://icl.cs.utk.edu/plasma/

Dense Linear Algebra on GPUs

• Source: Vasily Volkov’s SC08 paper

• New challenges

– More complicated memory hierarchy

– Not like “L1 inside L2 inside …”,

• Need to choose which memory to use carefully

• Need to move data explicitly

– GPU does some operations much faster than CPU,
but not all

– CPU and GPU like different data layouts

8/21/2009

James Demmel Motifs: 124

Motivation

• Goal: understand bottlenecks in the dense linear algebra kernels

• Requires detailed understanding of the GPU architecture

• Result 1: New coding recommendations for high performance on GPUs

• Result 2: New , fast variants of LU, QR, Cholesky, other routines

• NVIDIA released CUBLAS 1.0 in 2007: BLAS for GPUs

• Allows easy port of LAPACK to GPU (consider single precision only)

0 50 100 150 200 250 300 350

LAPACK
SGETRF

BLAS
SGEMM

peak in
a*b+c

Gflop/s

GeForce 8800 GTX

Core2 Quad 2.4GHz

CUBLAS 1.1

naive

MKL 10.0

MKL 10.0
2007 results

not so great in matrix-
matrix multiply

disappointing performance in
(naive) LU factorization

impressive sheer
compute power

8/21/2009

James Demmel Motifs: 125

(Some new) NVIDIA coding recommendations

• Minimize communication with CPU memory
• Keep as much data in registers as possible

– Largest, fastest on-GPU memory
– Vector-only operations

• Use as little shared memory as possible
– Smaller, slower than registers; use for communication, sharing only
– Speed limit: 66% of peak with one shared mem argument

• Use vector length VL=64, not max VL = 512
– Strip mine longer vectors into shorter ones
– Avoids wasting memory to replicate scalars

• Final matmul code similar to Cray X1 or IBM 3090 vector codes

8/21/2009

James Demmel Motifs: 126

Optimizing Matrix Factorizations on GPUs
• Use GPU to compute matrix-matrix multiplies only

– Do everything else, like factorizing panels, on the CPU

• Use look-ahead to overlap computations on CPU and GPU
• Batch Pivoting
• Use row-major layout on GPU, column-major on CPU

– Requires extra (but fast) matrix transpose for each CPU-GPU transfer

• Substitute triangular solves of LX=B by TRSM with multiply by L–1

– At worst squares pivot growth factor in error bound (assume small anyway)
– Can check ||L–1||, use TRSM if too large

• Use two-level and variable size blocking as finer tuning
– Thicker blocks impose lower bandwidth requirements in SGEMM
– Variable size blocking improves CPU/GPU load balance

• Use column-cyclic layout when computing using two GPUs
– Requires no data exchange between GPUs in pivoting
– Cyclic layout is used on GPUs only so does not affect panel factorization

8/21/2009

James Demmel Motifs: 127

Performance Results

0

50

100

150

200

250

300

350

64 128 256 512 1024 2048 4096 8192 16384

G
fl
o
p
/s

Order of Matrix

QR
Cholesky
LU

78%

49%

51%

Our solution runs at 50% of the system’s peak (shown on the right)
It is bound by SGEMM that runs at 60% of the GPU-only peak

8/21/2009

James Demmel Motifs: 128

Where does the time go?

• Time breakdown for LU on 8800 GTX

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

448 704 1088 1664 2496 3648 5312 7744 11264

T
im

e

Order of Matrix

CPU-GPU transfer

transpose

look-ahead

CPU/GPU
overlap

GPU

CPU

8/17/2011

Jim Demmel Motifs: 129

Importance of various optimizations on GPU

• Slowdown when omitting one of the optimizations on GTX 280

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

64 128 256 512 1024 2048 4096 8192 16384

S
lo

w
d
o
w

n

Order of Matrix

overlap CPU/GPU

transpose matrix

TRSM via GEMM

batch pivoting

Motifs: 130 Jim Demmel

8/17/2011

Results for matmul, LU on NVIDIA

• What we’ve achieved:

– Identified realistic peak speed of GPU architecture

– Achieved a large fraction of this peak in matrix multiply

– Achieved a large fraction of the matrix multiply rate in dense
factorizations

0 50 100 150 200 250 300 350

LAPACK
SGETRF

BLAS
SGEMM

peak in
a*b+c

Gflop/s

Core2 Quad

CUBLAS 1.1

naive

Core2 Quad

Core2 Quad

in registers
if using shared memory

our implementation (now in CUBLAS 2.0)

our implementation GeForce 8800 GTX

8/21/2009

James Demmel Motifs: 131

Performance results on 8-Core Clovertown

QR of a tall, skinny matrix is bottleneck;
Use TSQR instead: example using 4 procs

































































30

20

10

00

30

20

10

00

3

2

1

0

.

R

R

R

R

Q

Q

Q

Q

W

W

W

W

W







































11

01

11

01

30

20

10

00

.
R

R

Q

Q

R

R

R

R

0202

11

01
RQ

R

R










Q is represented implicitly as a product (tree of factors)

Minimizing Communication in TSQR

W =

W0

W1

W2

W3

R00

R10

R20

R30

R01

R11

R02
Parallel:

W =

W0

W1

W2

W3

R01
R02

R00

R03

Sequential:

W =

W0

W1

W2

W3

R00

R01
R01

R11

R02

R11

R03

Dual Core:

Can choose reduction tree dynamically

Multicore / Multisocket / Multirack / Multisite / Out-of-core: ?

Performance of TSQR vs Sca/LAPACK

• Parallel

– Intel Clovertown

– Up to 8x speedup (8 core, dual socket, 10M x 10)

– Pentium III cluster, Dolphin Interconnect, MPICH

• Up to 6.7x speedup (16 procs, 100K x 200)

– BlueGene/L

• Up to 4x speedup (32 procs, 1M x 50)

– Fermi GPU– early results (work in progress)

– 16x speedup (vs LAPACK on Nehalem)

– 6x speedup versus conventional algorithm (tuned!) on Fermi

• Sequential

– Out-of-Core on PowerPC laptop

•  x speedup vs LAPACK with virtual memory, which never finished

• As little as 2x slowdown vs (predicted) infinite DRAM

• Grid – 4x speedup on 4 cities (Dongarra et al)

• Cloud – early result – up and running using Mesos

Modeled Speedups of CAQR vs ScaLAPACK
Up to 22.9x speedup on modeled Petascale machine

 Petascale machine with 8192 procs, each at 500 GFlops/s, a bandwidth of 4 GB/s.

./102,10,102 9512 wordsss   

Additional OSKI Features

• Embedded scripting language for selecting
customized, complex transformations

– Mechanism to save/restore transformations
In file, “my_xform.txt”

Compute Afast = P*A*PT using

Pinar’s reordering algorithm

A_fast, P =

reorder_TSP(InputMat);

Split Afast = A1 + A2, where A1 in 2x2

block format, A2 in CSR

A1, A2 =

A_fast.extract_blocks(2, 2);

return transpose(P)*(A1+A2)*P;

/* In “my_app.c” */

fp = fopen(“my_xform.txt”, “rt”);

fgets(buffer, BUFSIZE, fp);

oski_ApplyMatTransform(A_tunable,

buffer);

oski_MatMult(A_tunable, …);

Requested new functionality for OSKI

 Users want to be able to

 Change non-zero pattern of the matrix
•Matrix may change or be perturbed during computation

•Currently not permitted in OSKI- would require retuning

 Assemble a matrix from fragments
•Common in finite element methods

•Fragments may overlap

Proposed OSKI Interface Changes

New data structure: List of matrices

 Allows a matrix to be expressed as a sum of

matrices (A=A1+...+An)
•Easily allows for assembly from fragments and variable splitting

•Pattern update: represent the changed entry as the addition of another

matrix

Merge method

 Merges the list A1+...+An into a single matrix

 User can decide when to merge matrices, or…

 In the future, merging may also be a tuning

decision made by OSKI
•Ex: combining matrices with only a few entries

139

x

Ax

A2x

A3x

A4x

A5x

A6x

A7x

A8x

Locally Dependent Entries for
[x,Ax], A tridiagonal, 2 processors

Can be computed without communication

 Proc 1 Proc 2

x

Ax

A2x

A3x

A4x

A5x

A6x

A7x

A8x

Can be computed without communication

Proc 1 Proc 2

Locally Dependent Entries for
[x,Ax,A2x], A tridiagonal, 2 processors

x

Ax

A2x

A3x

A4x

A5x

A6x

A7x

A8x

Can be computed without communication

Proc 1 Proc 2

Locally Dependent Entries for
*x,Ax,…,A3x], A tridiagonal, 2 processors

x

Ax

A2x

A3x

A4x

A5x

A6x

A7x

A8x

Can be computed without communication

Proc 1 Proc 2

Locally Dependent Entries for
*x,Ax,…,A4x], A tridiagonal, 2 processors

x

Ax

A2x

A3x

A4x

A5x

A6x

A7x

A8x

Locally Dependent Entries for
*x,Ax,…,A8x], A tridiagonal, 2 processors

Can be computed without communication
k=8 fold reuse of A

Proc 1 Proc 2

Remotely Dependent Entries for
*x,Ax,…,A8x], A tridiagonal, 2 processors

x

Ax

A2x

A3x

A4x

A5x

A6x

A7x

A8x

One message to get data needed to compute remotely dependent entries, not k=8
Minimizes number of messages = latency cost

Price: redundant work  “surface/volume ratio”

Proc 1 Proc 2

Remotely Dependent Entries for [x,Ax,A2x,A3x],
A irregular, multiple processors

Sequential *x,Ax,…,A4x], with memory hierarchy

v

One read of matrix from slow memory, not k=4
Minimizes words moved = bandwidth cost

No redundant work

In what order should the sequential algorithm
process a general sparse matrix?

• Process band matrix from left to

 right, to reuse data already in

 fast memory

• Best order not obvious for a general

 matrix: can formulate as

 Traveling Salesman Problem (TSP)

• One vertex per matrix partition

• Weight of edge (j, k) is memory cost of processing

 partition k right after partition j

• TSP: find lowest cost “tour” visiting all vertices

Nehalem Speedups

150

Graph Algorithms

Dynamic Programming

Dense Linear Algebra

Sparse Linear Algebra

Unstructured Grids

Structured Grids

Model-view controller

Iteration

Map reduce

Layered systems

Arbitrary Static Task Graph

Pipe-and-filter

Agent and Repository

Process Control

Event based, implicit

invocation

Graphical models

Finite state machines

Backtrack Branch and Bound

N-Body methods

Circuits

Spectral Methods

Task Decomposition ↔ Data Decomposition

Group Tasks Order groups data sharing data access

Applications

Pipeline

Discrete Event

Event Based

Divide and Conquer

Data Parallelism

Geometric Decomposition

Task Parallelism

Graph algorithms

Fork/Join

CSP

Master/worker

Loop Parallelism

BSP

Distributed Array

Shared Data

Shared Queue

Shared Hash Table

SPMD

Barriers

Mutex

Thread Creation/destruction

Process Creation/destruction

Message passing

Collective communication

Speculation

Transactional memory

Choose your high level

structure – what is the

structure of my

application?

 Guided expansion

Identify the key

computational patterns

– what are my key

computations?

Guided instantiation

Implementation methods – what are the building blocks of parallel programming? Guided implementation

Choose you high level architecture? Guided decomposition

Refine the structure - what concurrent approach do I use? Guided re-organization

Utilize Supporting Structures – how do I implement my concurrency? Guided mapping

P
ro

d
u

c
ti

v
it

y
 L

a
y
e

r
E

ff
ic

ie
n

c
y
 L

a
y
e

r

Digital Circuits

Semaphores

Our Pattern Language 2.0

Algorithms for 2D (3D) Poisson Equation (N = n2 (n3) vars)

Algorithm Serial PRAM Memory #Procs

• Dense LU N3 N N2 N2

• Band LU N2 (N7/3) N N3/2 (N5/3) N (N4/3)

• Jacobi N2 (N5/3) N (N2/3) N N

• Explicit Inv. N2 log N N2 N2

• Conj.Gradients N3/2 (N4/3) N1/2 (1/3) *log N N N

• Red/Black SOR N3/2 (N4/3) N1/2 (N1/3) N N

• Sparse LU N3/2 (N2) N1/2 N*log N (N4/3) N

• FFT N*log N log N N N

• Multigrid N log2 N N N

• Lower bound N log N N

For more details, Ma221 offered this semester!

8/21/2009 Motifs: 151 James Demmel

