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Outline 
• Productive parallel computing depends on recognizing and 

exploiting known useful patterns 
– Mathematical, Computational (7 Motifs), Structural 

• Optimizing (some of) the 7 Motifs 
– To minimize time, minimize communication (moving data) 

• Between levels of the memory hierarchy 
• Between processors over a network 

– Autotuning to explore large design spaces 
• Too hard (tedious) to write by hand, let machine do it 

-  SEJITS – how to deliver autotuning to more programmers  
• For more details, see 

– Related courses: 
– CS267: www.cs.berkeley.edu/~demmel/cs267_Spr11 
– Ma221: “Advanced Matrix Computions”, this semester 
– CS294: “Communication Avoiding Algorithms,” this semester 

– 10-hour short course: www.ba.cnr.it/ISSNLA2010/Courses.htm 
– Papers at bebop.cs.berkeley.edu 
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“7 Motifs”  of High Performance Computing 

• Phil Colella (LBL) identified 7 kernels of which most 
simulation and data-analysis programs are composed: 

Motifs: 3 

1. Dense Linear Algebra 
• Ex: Solve Ax=b or Ax = λx where A is a dense matrix 

2. Sparse Linear Algebra 
• Ex: Solve Ax=b or Ax = λx where A is a sparse matrix (mostly zero) 

3. Operations on Structured Grids 
• Ex: Anew(i,j) = 4*A(i,j) – A(i-1,j) – A(i+1,j) – A(i,j-1) – A(i,j+1) 

4. Operations on Unstructured Grids 
• Ex: Similar, but list of neighbors varies from entry to entry 

5. Spectral Methods 
• Ex: Fast Fourier Transform (FFT) 

6. Particle Methods 
• Ex: Compute electrostatic forces on n particles 

7. Monte Carlo 
• Ex: Many independent simulations using different inputs 
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“7 Motifs”  of High Performance Computing 

• Phil Colella (LBL) identified 7 kernels of which most 
simulation and data-analysis programs are composed: 

Motifs: 4 

1. Dense Linear Algebra 
• Ex: Solve Ax=b or Ax = λx where A is a dense matrix 

2. Sparse Linear Algebra 
• Ex: Solve Ax=b or Ax = λx where A is a sparse matrix (mostly zero) 
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What you (might) want to know about a motif 

• How to use it 

– What problems does it solve? 

– How to choose solution approach, if more than one? 

• How to find the best software available now 

– Best: fastest? most accurate? fewest keystrokes? 

• How are the best implementations built? 

– What is the “design space” (wrt math and CS)? 

– How do we search for best (autotuning)?  

• Open problems, current work, thesis problems… 
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Organizing Linear Algebra Motifs -   
in books and on-line 

www.netlib.org/lapack www.netlib.org/scalapack 

www.cs.utk.edu/~dongarra/etemplates www.netlib.org/templates 

gams.nist.gov 
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Motivation for new 
 “Communication Avoiding” algorithms  

• Running time of an algorithm is sum of 3 terms: 
– # flops * time_per_flop 

– # words moved / bandwidth 

– # messages * latency 
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communication 
 

• Exponentially growing gaps between 
• Time_per_flop << 1/Network BW << Network Latency 

• Improving   59%/year  vs   26%/year  vs  15%/year 

• Time_per_flop << 1/Memory BW << Memory Latency 

• Improving   59%/year  vs  23%/year  vs  5.5%/year  

• Goal : reorganize motifs to avoid communication 
• Between all memory hierarchy levels  

• L1         L2         DRAM          network,  etc  

• Not just overlapping communication and arithmetic (speedup  2x )  

• Very large speedups possible 

Summer School Lecture 3 

 



“New Algorithm Improves Performance and Accuracy on Extreme-

Scale Computing Systems. On modern computer architectures, 

communication between processors takes longer than the 

performance of a floating point arithmetic operation by a given 

processor. ASCR researchers have developed a new method, 

derived from commonly used linear algebra methods, to minimize 

communications between processors and the memory 

hierarchy, by reformulating the communication patterns 

specified within the algorithm. This method has been 

implemented in the TRILINOS framework, a highly-regarded suite of 

software, which provides functionality for researchers around the 

world to solve large scale, complex multi-physics problems.” 
 

FY 2010 Congressional Budget, Volume 4, FY2010 Accomplishments, Advanced Scientific 

Computing Research (ASCR), pages 65-67. 

President Obama cites Communication-Avoiding Algorithms in 
the FY 2012 Department of Energy Budget Request to Congress: 

CA-GMRES (Hoemmen, Mohiyuddin, Yelick, JD) 

“Tall-Skinny” QR (Grigori, Hoemmen, Langou,  JD) 



Obstacle to avoiding communication: 
Low “computational intensity” 

• Let f = #arithmetic operations in an algorithm 

• Let m = #words of data needed 

• Def: q = f/m = computational intensity 

• If q small, say q=1, so one op/word, then algorithm 
can’t run faster than memory speed 

• But if q large, so many ops/word, then algorithm can 
(potentially) fetch data, do many ops while in fast 
memory, only limited by (faster!) speed of arithmetic 

• We seek algorithms with high q 

– Still need to be clever to take advantage of high q 
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DENSE LINEAR ALGEBRA MOTIF 

8/21/2009 
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 Brief history of (Dense) Linear Algebra software (1/6) 

 
– Libraries like EISPACK (for eigenvalue problems) 

• Then the BLAS (1) were invented (1973-1977) 

– Standard library of 15 operations vectors 

• Ex:  y = α·x + y  (“AXPY”) ,  dot product, etc 

– Goals 
• Common pattern to ease programming, efficiency, robustness 

– Used in libraries like LINPACK (for linear systems) 

• Source of the name “LINPACK Benchmark” (not the code!) 

– Why BLAS 1 ?  1 loop, do O(n1) ops on O(n1) data 

– Computational intensity  = q = 2n/3n = 2/3 for AXPY  
•  Very low! 

– BLAS1, and so LINPACK, limited by memory speed 

– Need something faster … 

• In the beginning was the do-loop… 
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Brief history of (Dense) Linear Algebra software (2/6) 

• So the BLAS-2 were invented (1984-1986) 

– Standard library of 25 operations (mostly) on matrix/vector pairs 

• Ex:  y = α·A·x + β·y (“GEMV”),   A = A + α·x·yT  (“GER”),  y = T-1·x (“TRSV”) 

– Why BLAS 2 ?  2 nested loops, do O(n2) ops on O(n2) data 

– But  q = computational intensity still just ~ (2n2)/(n2) =  2 
• Was OK for vector machines, but not for machine with caches,                     

since q still just a small constant 

8/21/2009 James Demmel  Motifs: 12 



Brief history of (Dense) Linear Algebra software (3/6) 

• The next step: BLAS-3 (1987-1988) 

– Standard library of 9 operations (mostly) on matrix/matrix pairs 

• Ex: C = α·A·B + β·C (“GEMM”),  C = α·A·AT + β·C (“SYRK”) ,  C = T-1·B (“TRSM”) 

– Why BLAS 3 ?  3 nested loops, do O(n3) ops on O(n2) data 

– So computational intensity q=(2n3)/(4n2) = n/2 – big at last! 
• Tuning opportunities machines with caches, other mem. hierarchy levels 

• How much faster can BLAS 3 go? 

8/21/2009 James Demmel  
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Matrix-multiply, optimized several ways 

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops 

Reference 

Implementation; 

Full compiler opt. 

Peak = 330 MFlops. 

Optimized 

Implementations: 

Vendor (Sun) and 

Autotuned (PHiPAC) 

300 

200 

100 

0 
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Faster Matmul C=A*B by “Blocking” 

• Replace usual 3 nested loops …  

 

 

 

• … by “blocked” version 
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for I=1 to n/b 

   for J=1 to n/b 

      for K=1 to n/b 

        C[I,J] =  C[I,J] + A[I,K]*B[K,J] 

 

Each C[I,J], A[I,K], B[K,J] is b x b 

and all 3 blocks fit in fast memory 

for i=1 to n 

   for j=1 to n 

      for k=1 to n 

        C(i,j) =  C(i,j) + A(i,k)*B(k,j) 
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How hard is hand-tuning, anyway? 

8/21/2009 James Demmel Motifs: 16 

• Results of 22 student teams trying to tune matrix-multiply, in CS267 Spr09 

• Students given “blocked” code to start with 

• Still hard to get close to vendor tuned performance (ACML) 

• For more discussion, see www.cs.berkeley.edu/~volkov/cs267.sp09/hw1/results/ 

• Naïve matmul: just 2% of peak 

http://www.cs.berkeley.edu/~volkov/cs267.sp09/hw1/results/


How hard is hand-tuning, anyway? 

8/21/2009 James Demmel Motifs: 17 
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What part of the Matmul Search Space Looks Like 

A 2-D slice of a 3-D register-tile search space. The dark blue region was pruned. 
(Platform: Sun Ultra-IIi, 333 MHz, 667 Mflop/s peak, Sun cc v5.0 compiler) 

Number of rows in register block 
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Autotuning DGEMM with ATLAS (n = 500) 

• ATLAS is faster than all other portable BLAS implementations and it is 
comparable with machine-specific libraries provided by the vendor. 

• ATLAS written by C. Whaley, inspired by PHiPAC, by Asanovic, Bilmes,Chin,D.  
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Lower bounds on Communication for Matmul 

• Assume  sequential n3 algorithm for C=A*B  

– i.e. not Strassen-like 

• Assume A, B and C fit in slow memory, but not in fast 
memory of size M 

• Thm: Lower bound on  #words_moved to/from slow 
memory, no matter the order n3 operations are done,               
=  (n3 / M1/2 )        [Hong & Kung (1981)]  

• Attained by “blocked” algorithm  

– Some other algorithms attain it too 

– Widely implemented in libraries (eg Intel MKL) 

20 

• Parallel case on P processors: 

• Let 3n3 be total memory needed; assume load balanced 

• Lower bound on #words_moved  between processors         
=  (n2 / P1/2 )         [Irony, Tiskin & Toledo (2004)] 

• Lower bound on #messages between processors = O(P1/2) 

• Attained by Cannon’s Algorithm 

Summer School Lecture 3 

 



Brief history of (Dense) Linear Algebra software (4/6) 

• LAPACK – “Linear Algebra PACKage” - uses BLAS-3 (1989 – now) 

– Ex: Obvious way to express Gaussian Elimination  (GE) is adding multiples 
of each row to other rows – BLAS-1 

• Need to reorganize GE (and everything else) to use BLAS-3 instead 

– Contents of current LAPACK (summary) 

• Algorithms we can turn into (nearly) 100% BLAS 3 for large n 

– Linear Systems: solve Ax=b for x 

– Least Squares: choose x to minimize Si ri
2 where r=Ax-b 

• Algorithms  that are only up to ~50% BLAS 3, rest BLAS 1 & 2 

– “Eigenproblems”: Find l and x where Ax = l x 

– Singular Value Decomposition (SVD): ATAx=2x  

• Error bounds for everything 

• Lots of variants depending on A’s structure  (banded, A=AT, etc) 

– Widely used (list later) 

– All at www.netlib.org/lapack 

 

8/21/2009 

James Demmel  
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http://www.netlib.org/lapack


Brief history of (Dense) Linear Algebra software (5/6) 

• Is LAPACK parallel? 

– Only if the BLAS are parallel (possible in shared 
memory) 

• ScaLAPACK – “Scalable LAPACK” (1995 – now) 

– For distributed memory – uses MPI 

– More complex data structures, algorithms than LAPACK 

• Only subset of LAPACK’s functionality available 

• Work in progress (contributions welcome!) 

– All at www.netlib.org/scalapack 

8/21/2009 James Demmel  Motifs: 22 
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Success Stories for Sca/LAPACK 

Cosmic Microwave Background 
Analysis, BOOMERanG collaboration, 

MADCAP code (Apr. 27, 2000). 

ScaLAPACK 

• Widely used 
– Adopted by Mathworks, Cray, Fujitsu, 

HP, IBM, IMSL, Intel, NAG, NEC, SGI, … 

– >100M web hits(in 2009, 56M in 
2006) @ Netlib (incl. CLAPACK, 
LAPACK95) 

• New science discovered through 
the solution of dense matrix 
systems 
– Nature article on the flat universe 

used ScaLAPACK 

– 1998 Gordon Bell Prize 

– www.nersc.gov/news/reports/newNE
RSCresults050703.pdf 

• Currently funded to improve, 
update, maintain Sca/LAPACK 

8/21/2009 James Demmel  Motifs: 23 
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Do Sca/LAPACK Minimize Communication? 
• Can extend lower bound for matmul to all              
“direct  methods” of linear algebra 

• Lower bounds on #words_moved (bandwidth_cost)  
and #messages (latency_cost) for 

– BLAS, LU, QR, Eig, SVD, compositions… 

– Dense and Sparse matrices 

– Parallel and sequential 

– 2 levels and hierarchies 

• Almost none of Sca/LAPACK attains these lower bounds 

• New (mostly dense) algorithms that do attain them 

– Large measured and modeled speedups 

• Time to reengineer all these algorithms! 

• (Partially extends to Strassen-like algorithms) 
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TSQR: QR of a Tall, Skinny matrix 
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TSQR: QR of a Tall, Skinny matrix 
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TSQR: An Architecture-Dependent Algorithm 

W =  

W0 

W1 

W2 

W3 
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R10 

R20 

R30 

R01 

R11 

R02 
Parallel: 

W =  
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W2 
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R03 

Sequential: 

W =  

W0 

W1 

W2 

W3 

R00 

R01 
R01 

R11 

R02 

R11 

R03 

Dual Core: 

Can choose reduction tree dynamically 

Multicore / Multisocket / Multirack / Multisite / Out-of-core:  ? 



TSQR Performance Results 

• Parallel 
– Intel Clovertown 

– Up to 8x speedup (8 core, dual socket, 10M x 10) 
– Pentium III cluster, Dolphin Interconnect, MPICH 

• Up to 6.7x speedup (16 procs, 100K x 200) 
– BlueGene/L 

• Up to 4x speedup (32 procs, 1M x 50) 
– Tesla C 2050 / Fermi 

• Up to 13x (110,592 x 100) 

– Grid – 4x on 4 cities vs 1 city (Dongarra et al) 

– Cloud – early result – up and running 

• Sequential   
– “Infinite speedup” for out-of-Core on PowerPC laptop 

• As little as 2x slowdown vs (predicted) infinite DRAM 

• LAPACK with virtual memory never finished 

28 

Data from Grey Ballard, Mark Hoemmen, Laura Grigori, Julien Langou, Jack 

Dongarra, Michael Anderson  



Brief history/future of (Dense) Linear Algebra software (6/6) 

• Communication-Avoiding for everything (open problems…) 

• Extensions for multicore 
– PLASMA – Parallel Linear Algebra for Scalable Multicore Architectures 

• Dynamically schedule tasks into which algorithm is decomposed, to 
minimize synchronization, keep all processors busy 

• Release 2.4 at icl.cs.utk.edu/plasma/ 

• Extensions for heterogeneous architectures, eg CPU + GPU 

– “Benchmarking GPUs to tune Dense Linear Algebra” 

• Best Student Paper Prize at SC08 (Vasily Volkov) 

• Paper, slides and code at www.cs.berkeley.edu/~volkov 

– Lower, matching upper bounds (SPAA’11 paper, at bebop.cs.berkeley.edu) 

– MAGMA – Matrix Algebra on GPU and Multicore Architectures 

• Release 1.0 at icl.cs.utk.edu/magma/ 

• How much code generation can we automate? 
– MAGMA , and FLAME (www.cs.utexas.edu/users/flame/) 

8/21/2009 James Demmel  Motifs: 29 
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SPARSE LINEAR ALGEBRA MOTIF 

8/21/2009 James Demmel Motifs: 30 



Sparse Matrix Computations 
• Similar problems to dense matrices 

– Ax=b, Least squares, Ax = λx, SVD, … 

• But different algorithms! 

– Exploit  structure: only store, work on nonzeros 

– Direct methods  

• LU, Cholesky for Ax=b, QR for Least squares 

• See crd.lbl.gov/~xiaoye/SuperLU/SparseDirectSurvey.pdf         
for  a survey of available serial and parallel sparse solvers 

• See crd.lbl.gov/~xiaoye/SuperLU/index.html  for  LU codes 

– Iterative methods – for Ax=b, least squares, eig, SVD 

• Use simplest operation: Sparse-Matrix-Vector-Multiply (SpMV) 

• Krylov Subspace Methods: find “best” solution in space 
spanned by vectors generated by SpMVs 

8/21/2009 
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Choosing a Krylov Subspace Method for Ax=b  

8/21/2009 
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A symmetric? 

AT available?  A definite? 

Storage  

Expensive?  

A well- 

conditioned?   

A well- 

conditioned?  

Largest/smallest  

eigenvalues 

known?  

Try  

GMRES  

Try CGS,  

BiCGStab, 

or  

GMRES(k)  

Try  

QMR  

Try  

CG on  

normal 

eqns.  

Try  

MINRES 

or 

Nonsymm.  

method 

Try  

CG  

Try CG with 

Chebyshev 

acceleration  

No 

No 

No No Yes 
No 

Yes 

No Yes 

Yes Yes No 
Yes 

Yes 

• All depend on SpMV 

• See www.netlib.org/templates for Ax=b 

• See www.cs.ucdavis.edu/~bai/ET/contents.html for Ax=λx and SVD 

http://www.netlib.org/templates
http://www.cs.ucdavis.edu/~bai/ET/contents.html


Sparse Outline 

• Approaches to Automatic Performance Tuning 

• Results for sparse matrix kernels 

– Sparse Matrix Vector Multiplication (SpMV) 

– Sequential and Multicore results 

• OSKI = Optimized Sparse Kernel Interface 

• Tuning Entire Sparse Solvers 

– Avoiding Communication 

• What is a sparse matrix? 



Approaches to Automatic Performance Tuning  

• Goal: Let machine do hard work of writing fast code 

• Why is tuning dense BLAS “easy”? 
– Can do the tuning off-line: once per architecture, algorithm 

– Can take as much time as necessary (hours, a week…) 

– At run-time, algorithm choice may depend only on few parameters 
(matrix dimensions) 

• Can’t always do tuning off-line 
– Algorithm and implementation may strongly depend on data only known 

at run-time 

– Ex: Sparse matrix nonzero pattern determines both best data structure 
and implementation of Sparse-matrix-vector-multiplication (SpMV)  

– Part of search for best algorithm must be done (very quickly!) at run-time 

• Tuning FFTs and signal processing 
– Seems off-line, but maybe not, because of code size 

– www.spiral.net,   www.fftw.org  

http://www.spiral.net/
http://www.fftw.org/


Source: Accelerator Cavity Design Problem (Ko via Husbands) 



Linear Programming Matrix 

… 



A Sparse Matrix You Use Every Day 



Matrix-vector multiply kernel: y(i)  y(i) + A(i,j)*x(j) 

 

for each row i 

 for k=ptr[i] to ptr[i+1] do 

  y[i] = y[i] + val[k]*x[ind[k]] 

SpMV with Compressed Sparse Row (CSR) Storage 

Matrix-vector multiply kernel: y(i)  y(i) + A(i,j)*x(j) 

 

for each row i 

 for k=ptr[i] to ptr[i+1] do 

  y[i] = y[i] + val[k]*x[ind[k]] 

Only 2 flops per  

2 mem_refs: 

Limited by getting  

data from memory 



Example: The Difficulty of Tuning 

• n = 21200 

• nnz = 1.5 M 

• kernel: SpMV 

 

• Source: NASA 
structural 
analysis problem 



Example: The Difficulty of Tuning 

• n = 21200 

• nnz = 1.5 M 

• kernel: SpMV 

 

• Source: NASA 
structural analysis 
problem 

• 8x8 dense substructure: 
exploit this to limit 
#mem_refs 



Speedups on Itanium 2:  
The Need for Search 

Reference 

Best: 4x2 

Mflop/s 

Mflop/s 



Register Profile: Itanium 2 

190 Mflop/s 

1190 Mflop/s 



Register Profiles: IBM and Intel IA-
64 

Power3 - 17% Power4 - 16% 

Itanium 2 - 33% Itanium 1 - 8% 

252 Mflop/s 

122 Mflop/s 

820 Mflop/s 

459 Mflop/s 

247 Mflop/s 

107 Mflop/s 

1.2 Gflop/s 

190 Mflop/s 



Register Profiles: Sun and Intel x86 

 

Ultra 2i - 11% Ultra 3 - 5% 

Pentium III-M - 15% Pentium III - 21% 

72 Mflop/s 

35 Mflop/s 

90 Mflop/s 

50 Mflop/s 

108 Mflop/s 

42 Mflop/s 

122 Mflop/s 

58 Mflop/s 



Another example of tuning challenges 

• More complicated 
non-zero structure in 
general 

 

• N = 16614 

• NNZ = 1.1M 



Zoom in to top corner 

 

• More complicated 
non-zero structure 
in general 

 

• N = 16614 

• NNZ = 1.1M 

 



3x3 blocks look natural, but… 

• More complicated non-zero 
structure in general 

• Example: 3x3 blocking 

– Logical grid of 3x3 cells 

• But would lead to lots of 
“fill-in” 



Extra Work Can Improve Efficiency! 

• More complicated non-zero 
structure in general 

• Example: 3x3 blocking 

– Logical grid of 3x3 cells 

– Fill-in explicit zeros 

– Unroll 3x3 block multiplies 

– “Fill ratio” = 1.5 

• On Pentium III: 1.5x speedup! 

– Actual mflop rate               
1.52 = 2.25x higher 



Selecting Register Block Size r x c 
• Off-line benchmark 

– Precompute Mflops(r,c) using dense A for each r x c 

– Once per machine/architecture 

• Run-time “search” 
–  Sample A to estimate Fill(r,c) for each r x c 

– Control cost = O(s·nnz) by controlling fraction s  [0,1] sampled 

– Control s automatically by computing statistical confidence intervals, by 
monitoring variance 

• Run-time heuristic model 
– Choose r, c to minimize time ~  Fill(r,c) / Mflops(r,c) 

• Cost of tuning 
– Lower bound: convert matrix in 5 to 40 unblocked SpMVs 

– Heuristic: 1 to 11 SpMVs 

• Tuning only useful when we do many SpMVs 
– Common case, eg in sparse solvers 



Accuracy of the Tuning Heuristics 
(1/4) 

NOTE: “Fair” flops used (ops on explicit zeros not counted as “work”) 

See p. 375 of Vuduc’s thesis for matrices 



Accuracy of the Tuning Heuristics 
(2/4) 

DGEMV 



Example: Bounds on Itanium 2 
Upper bound counts only 

compulsory memory traffic 

PAPI upper bound 

counts true traffic 



Summary of Other Performance Optimizations 

• Optimizations for SpMV 
– Register blocking (RB): up to 4x over CSR 

– Variable block splitting: 2.1x over CSR, 1.8x over RB 

– Diagonals: 2x over CSR 

– Reordering to create dense structure + splitting: 2x over CSR 

– Symmetry: 2.8x over CSR, 2.6x over RB 

– Cache blocking: 2.8x over CSR 

– Multiple vectors (SpMM): 7x over CSR 

– And combinations… 

• Sparse triangular solve 
– Hybrid sparse/dense data structure: 1.8x over CSR 

• Higher-level kernels 
– A·AT·x, AT·A·x: 4x over CSR, 1.8x over RB 

– A2·x: 2x over CSR, 1.5x over RB 

– [A·x, A2·x, A3·x, .. , Ak·x+  ….   more to say later 



Source: Accelerator Cavity Design Problem (Ko via Husbands) 

Can we reorder the 

rows and columns 

to create dense blocks, 

to accelerate SpMV? 



Post-RCM  (Breadth-first-search) Reordering 

Moving nonzeros nearer 

the diagonal should  

create dense block, but 

let’s zoom in and see… 



100x100 Submatrix Along Diagonal 

Here is the top 100x100 

submatrix before RCM 



Before: Green + Red 
After: Green + Blue 

“Microscopic” Effect of RCM Reordering 

Here is the top 100x100 

submatrix after RCM:  

red entries move to the 

blue locations.                           

More dense blocks, but 

could be better, so let’s 

try reordering again, 

using TSP (Travelling  

Saleman Problem) 



“Microscopic” Effect of Combined RCM+TSP Reordering 

Before: Green + Red 
After: Green + Blue 

Here is the top 100x100 

submatrix after RCM and 

TSP:  red entries move 

to the blue locations.                           

Lots of dense blocks,   

as desired! 

 

Speedups (using 

symmetry too): 

 

Itanium 2:  1.7x 

Pentium 4: 2.1x 

Power 4:    2.1x 

Ultra 3:       3.3x 

 

 



Optimized Sparse Kernel Interface  -  OSKI 

• Provides sparse kernels automatically tuned for user’s matrix 
& machine 
– BLAS-style functionality: SpMV, Ax & ATy, TrSV 

– Hides complexity of run-time tuning 

– Includes new, faster locality-aware kernels: ATAx, Akx 

• Faster than standard implementations 

– Up to 4x faster matvec, 1.8x trisolve, 4x ATA*x 

• For “advanced” users & solver library writers 
– Available as stand-alone library (OSKI 1.0.1h, 6/07) 

– Available as PETSc extension (OSKI-PETSc .1d, 3/06) 

– Bebop.cs.berkeley.edu/oski 

• Current work: adding multicore, other optimizations - pOSKI 



How OSKI Tunes (Overview) 

Benchmark 

data 

1. Build for 

Target 

Arch. 

2. Benchmark 

Heuristic 

models 

1. Evaluate 

Models 

Generated 

code 

variants 

2. Select 

Data Struct. 

& Code 

Library Install-Time (offline) Application Run-Time 

To user: 
Matrix handle 

for kernel 

calls 

Workload 

from program 

monitoring 

Extensibility: Advanced users may write & dynamically add “Code variants” and “Heuristic models” to system. 

History 

Matrix 



How to Call OSKI: Basic Usage 

• May gradually migrate existing apps 
– Step 1: “Wrap” existing data structures 

– Step 2: Make BLAS-like kernel calls 

int* ptr = …, *ind = …;  double* val = …; /* Matrix, in CSR format */ 

double* x = …, *y = …; /* Let x and y be two dense vectors */ 

 

 

 

 

 

 

/* Compute y = ·y + ·A·x, 500 times */ 

for( i = 0; i < 500; i++ ) 

  my_matmult( ptr, ind, val, , x, , y ); 



How to Call OSKI: Basic Usage 

• May gradually migrate existing apps 
– Step 1: “Wrap” existing data structures 

– Step 2: Make BLAS-like kernel calls 

int* ptr = …, *ind = …;  double* val = …; /* Matrix, in CSR format */ 

double* x = …, *y = …; /* Let x and y be two dense vectors */ 

/* Step 1: Create OSKI wrappers around this data */ 

oski_matrix_t A_tunable = oski_CreateMatCSR(ptr, ind, val, num_rows, 

num_cols, SHARE_INPUTMAT, …); 

oski_vecview_t x_view = oski_CreateVecView(x, num_cols, UNIT_STRIDE); 

oski_vecview_t y_view = oski_CreateVecView(y, num_rows, UNIT_STRIDE); 

 

/* Compute y = ·y + ·A·x, 500 times */ 

for( i = 0; i < 500; i++ ) 

 my_matmult( ptr, ind, val, , x, , y ); 

 



How to Call OSKI: Basic Usage 

• May gradually migrate existing apps 
– Step 1: “Wrap” existing data structures 

– Step 2: Make BLAS-like kernel calls 

int* ptr = …, *ind = …;  double* val = …; /* Matrix, in CSR format */ 

double* x = …, *y = …; /* Let x and y be two dense vectors */ 

/* Step 1: Create OSKI wrappers around this data */ 

oski_matrix_t A_tunable = oski_CreateMatCSR(ptr, ind, val, num_rows, 

num_cols, SHARE_INPUTMAT, …); 

oski_vecview_t x_view = oski_CreateVecView(x, num_cols, UNIT_STRIDE); 

oski_vecview_t y_view = oski_CreateVecView(y, num_rows, UNIT_STRIDE); 

 

/* Compute y = ·y + ·A·x, 500 times */ 

for( i = 0; i < 500; i++ ) 

 oski_MatMult(A_tunable, OP_NORMAL, , x_view, , y_view);/* Step 2 */ 



How to Call OSKI: Tune with Explicit Hints 

• User calls “tune” routine 
– May provide explicit tuning hints (OPTIONAL) 

oski_matrix_t A_tunable = oski_CreateMatCSR( … ); 

 /* … */ 

/* Tell OSKI we will call SpMV 500 times (workload hint) */ 

oski_SetHintMatMult(A_tunable, OP_NORMAL, , x_view, , y_view, 500); 

/* Tell OSKI we think the matrix has 8x8 blocks (structural hint) */ 

oski_SetHint(A_tunable, HINT_SINGLE_BLOCKSIZE, 8, 8); 

 

oski_TuneMat(A_tunable); /* Ask OSKI to tune */ 

 

for( i = 0; i < 500; i++ ) 

 oski_MatMult(A_tunable, OP_NORMAL, , x_view, , y_view); 



How the User Calls OSKI: Implicit Tuning 

• Ask library to infer workload 
– Library profiles all kernel calls 

– May periodically re-tune 

oski_matrix_t A_tunable = oski_CreateMatCSR( … ); 

 /* … */ 

 

for( i = 0; i < 500; i++ ) { 

 oski_MatMult(A_tunable, OP_NORMAL, , x_view, , y_view); 

 oski_TuneMat(A_tunable); /* Ask OSKI to tune */ 

} 
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Multicore SMPs Used for Tuning SpMV 

AMD Opteron 2356 (Barcelona) Intel Xeon E5345 (Clovertown) 

IBM QS20 Cell Blade Sun T2+ T5140 (Victoria Falls) 
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Multicore SMPs Used for Tuning SpMV 

Intel Xeon E5345 (Clovertown) 

• Cache based 

• 8 Threads 

AMD Opteron 2356 (Barcelona) 

• Cache based 

• 8 Threads 

• NUMA 

IBM QS20 Cell Blade Sun T2+ T5140 (Victoria Falls) 

• Cache based • Local-Store based 

• 128 Threads (CMT) • 16 Threads 

• NUMA • NUMA 

• 75 GFlops • 74 GFlops 

• 19 GFlops • 29 Gflops (SPEs only) 

• 21/10 GB/s R/W BW • 21 GB/s R/W BW 

• 42/21 GB/s R/W BW • 51 GB/s R/W BW 
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Set of 14 test matrices 

• All bigger than the caches of our SMPs 

Dense 

Protein 
FEM / 

Spheres 

FEM / 

Cantilever 

Wind 

Tunnel 

FEM / 

Harbor 
QCD 

FEM / 

Ship 
Economics Epidemiology 

FEM / 

Accelerator 
Circuit webbase 

LP 

2K x 2K Dense matrix 

stored in sparse format 

Well Structured 

(sorted by nonzeros/row) 

Poorly Structured 

hodgepodge 

Extreme Aspect Ratio 

(linear programming) 
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SpMV Performance: Naive parallelization 

• Out-of-the box SpMV 
performance on a suite of 14 
matrices 

• Scalability isn’t great: 

      Compare to # threads 

          8      8 

      128    16 

Naïve Pthreads 

Naïve 



SpMV Performance: NUMA and Software Prefetching 

70 

 NUMA-aware allocation is 
essential on NUMA SMPs. 

 Explicit software prefetching 
can boost bandwidth and 
change cache replacement 
policies 

 

 used exhaustive search 



SpMV Performance: “Matrix Compression” 

71 

 Compression includes 

 register blocking 

 other formats 

 smaller indices 

 Use heuristic rather than 
search 



72 

SpMV Performance: cache and TLB blocking 

+Cache/LS/TLB Blocking 

+Matrix Compression 

+SW Prefetching 

+NUMA/Affinity 

Naïve Pthreads 

Naïve 
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SpMV Performance: Architecture specific optimizations 

 

+Cache/LS/TLB Blocking 

+Matrix Compression 

+SW Prefetching 

+NUMA/Affinity 

Naïve Pthreads 

Naïve 
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SpMV Performance: max speedup 

• Fully auto-tuned SpMV 
performance across the suite of 
matrices 

• Included SPE/local store 
optimized version 

• Why do some optimizations work 
better on some architectures? 

+Cache/LS/TLB Blocking 

+Matrix Compression 

+SW Prefetching 

+NUMA/Affinity 

Naïve Pthreads 

Naïve 

2.7x 4.0x 

2.9x 35x 



Avoiding Communication in Sparse Linear Algebra 

• k-steps of typical iterative solver for Ax=b or Ax=λx 
– Does  k  SpMVs with starting vector (eg  with b, if solving Ax=b) 
– Finds “best” solution among all linear combinations of these k+1 

vectors 
– Many such “Krylov Subspace Methods” 

• Conjugate Gradients, GMRES, Lanczos, Arnoldi, …  

• Goal: minimize communication in Krylov Subspace Methods 
– Assume matrix “well-partitioned,” with modest surface-to-volume ratio 
– Parallel implementation 

• Conventional: O(k log p) messages, because k calls to SpMV 
• New: O(log p) messages - optimal 

– Serial implementation 
• Conventional: O(k) moves of data from slow to fast memory 
• New: O(1) moves of data – optimal 

• Lots of speed up possible (modeled and measured) 
– Price: some redundant computation 



1   2   3   4  …  … 32 

x 

A·x 

A2·x 

A3·x 

Communication Avoiding Kernels: 
The Matrix Powers Kernel : [Ax, A2x, …, Akx]  

• Replace k iterations of y = Ax with [Ax, A2x, …, Akx]  

 

 

 

 

 

• Example: A tridiagonal, n=32, k=3 

• Works for any “well-partitioned” A 
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A2·x 

A3·x 

Communication Avoiding Kernels: 
The Matrix Powers Kernel : [Ax, A2x, …, Akx]  

• Replace k iterations of y = Ax with [Ax, A2x, …, Akx]  

 

 

 

 

 

• Example: A tridiagonal, n=32, k=3 
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A2·x 

A3·x 

Communication Avoiding Kernels: 
The Matrix Powers Kernel : [Ax, A2x, …, Akx]  

• Replace k iterations of y = Ax with [Ax, A2x, …, Akx]  

 

 

 

 

 

• Example: A tridiagonal, n=32, k=3 
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A2·x 

A3·x 

Communication Avoiding Kernels: 
The Matrix Powers Kernel : [Ax, A2x, …, Akx]  

• Replace k iterations of y = Ax with [Ax, A2x, …, Akx]  

 

 

 

 

 

• Example: A tridiagonal, n=32, k=3 
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Communication Avoiding Kernels: 
The Matrix Powers Kernel : [Ax, A2x, …, Akx]  

• Replace k iterations of y = Ax with [Ax, A2x, …, Akx]  

 

 

 

 

 

• Example: A tridiagonal, n=32, k=3 
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A·x 

A2·x 

A3·x 

Communication Avoiding Kernels: 
The Matrix Powers Kernel : [Ax, A2x, …, Akx]  

• Replace k iterations of y = Ax with [Ax, A2x, …, Akx]  

 

 

 

 

 

• Example: A tridiagonal, n=32, k=3 



1   2   3   4 …  … 32 

x 

A·x 

A2·x 

A3·x 

Communication Avoiding Kernels: 
The Matrix Powers Kernel : [Ax, A2x, …, Akx]  

• Replace k iterations of y = Ax with [Ax, A2x, …, Akx] 

• Sequential Algorithm  

 

 

 

 

• Example: A tridiagonal, n=32, k=3 

Step 1 



1   2   3   4 …  … 32 

x 

A·x 

A2·x 

A3·x 

Communication Avoiding Kernels: 
The Matrix Powers Kernel : [Ax, A2x, …, Akx]  

• Replace k iterations of y = Ax with [Ax, A2x, …, Akx] 

• Sequential Algorithm  

  

 

 

 

• Example: A tridiagonal, n=32, k=3 

 

Step 1 Step  2 



1   2   3   4 …  … 32 

x 

A·x 

A2·x 

A3·x 

Communication Avoiding Kernels: 
The Matrix Powers Kernel : [Ax, A2x, …, Akx]  

• Replace k iterations of y = Ax with [Ax, A2x, …, Akx] 

• Sequential Algorithm  

 

 

 

 

• Example: A tridiagonal, n=32, k=3 

Step 1 Step  2 Step  3 



1   2   3   4 …  … 32 

x 

A·x 

A2·x 

A3·x 

Communication Avoiding Kernels: 
The Matrix Powers Kernel : [Ax, A2x, …, Akx]  

• Replace k iterations of y = Ax with [Ax, A2x, …, Akx]  

• Sequential Algorithm 

 

 

 

 

• Example: A tridiagonal, n=32, k=3 

Step 1 Step  2 Step  3 Step  4 



1   2   3   4 …  … 32 

x 

A·x 

A2·x 

A3·x 

Communication Avoiding Kernels: 
The Matrix Powers Kernel : [Ax, A2x, …, Akx]  

• Replace k iterations of y = Ax with [Ax, A2x, …, Akx] 

• Parallel Algorithm  

 

 

 

 

• Example: A tridiagonal, n=32, k=3 

• Each processor communicates once with neighbors  

Proc 1 Proc  2 Proc  3 Proc  4 



1   2   3   4 …  … 32 

x 

A·x 

A2·x 

A3·x 

Communication Avoiding Kernels: 
The Matrix Powers Kernel : [Ax, A2x, …, Akx]  

• Replace k iterations of y = Ax with [Ax, A2x, …, Akx] 

• Parallel Algorithm  

 

 

 

 

• Example: A tridiagonal, n=32, k=3 

• Each processor works on (overlapping) trapezoid 

Proc 1 Proc  2 Proc  3 Proc  4 



Same idea works for general sparse matrices 

Communication Avoiding Kernels: 
The Matrix Powers Kernel : [Ax, A2x, …, Akx]  

Partitioning by rows  

 Graph partitioning 

  

Processing left to right   

     Traveling Salesman Problem 



What about multicore? 
• Two kinds of communication to minimize 

– Between processors on the chip 

– Between on-chip cache and off-chip DRAM 

• Use hybrid of both techniques described so far 

– Use parallel optimization so each core can work 
independently 

– Use sequential optimization to minimize off-chip 
DRAM traffic of each core 
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Speedups on Intel Clovertown (8 core) 
Test matrices include stencils and practical matrices 

See  SC09 paper on bebop.cs.berkeley.edu for details 
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Minimizing Communication of GMRES 
Classical GMRES for Ax=b 
 
  for i=1 to k 
     w = A * v(i-1) 
     MGS(w, v(0),…,v(i-1)) 
         … Modified Gram-Schmidt 
         …  to make w orthogonal 
     update v(i), H 
         … H = matrix of coeffs  
         …    from MGS 
  endfor 
  solve LSQ problem with H for x 
 
Communication cost =  
    k copies of A, vectors from  
    slow to fast memory 

Communication-Avoiding GMRES, ver. 1 
 
   W = [ v, Av, A2v, … , Akv ] 
   [Q,R] = TSQR(W)   
        …  “Tall Skinny QR” 
        … new optimal QR discussed before 
   Build H from R  
   solve LSQ problem with H for x 
 
 
 
 
 
Communication cost =  
    O(1) copy of A, vectors from 
     slow to fast memory 

Let’s confirm that we still get the right answer … 
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Right answer (converges) 

Oops, doesn’t converge 



Minimizing Communication of GMRES 
(and getting the right answer) 

Communication-Avoiding GMRES, ver. 2 
 
   W = [ v, p1(A)v, p2(A)v, … , pk(A)v ] 
        … where pi(A)v is a degree-i polynomial in A multiplied by v 
        … polynomials chosen to keep vectors independent 
   [Q,R] = TSQR(W)   
        …  “Tall Skinny QR” 
        … new optimal QR discussed before 
   Build H from R 
        … slightly different R from before 
   solve LSQ problem with H for x 
 
 
Communication cost still optimal:  
    O(1) copy of A, vectors from 
     slow to fast memory 
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Right answer (converges) 

Oops, doesn’t converge 

Converges again! 



Speed ups on 8-core Clovertown 
CA-GMRES = Communication-Avoiding GMRES 

Paper by Mohiyuddin, Hoemmen, D. to appear in Supercomputing09 



Summary of what is known (1/2), open 

• GMRES 
– Can independently choose k to optimize speed, restart length r to 

optimize convergence 

– Need to “co-tune” Akx kernel and TSQR 

– Know how to use more stable polynomial bases 

– Proven speedups 

• Can similarly reorganize other Krylov methods 
– Arnoldi and Lanczos, for Ax = λx and for Ax = λMx  

– Conjugate Gradients (CG), for Ax = b 

– Biconjugate Gradients (BiCG), CG Squared (CGS), BiCGStab for Ax=b   

– Other Krylov methods? 
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Summary of what is known (2/2), open 

• Preconditioning: MAx = Mb 

– Need different communication-avoiding kernel: 
*x,Ax,MAx,AMAx,MAMAx,AMAMAx,…+ 

– For which preconditioners M can we minimize 
communication? 

• Easy: diagonal M 

• A little harder: more general sparse M 

• Works (in principle) for Hierarchically Semi-Separable M  

• How does it work in practice? 

• See Mark Hoemmen’s PhD thesis for details 

– bebop.cs.berkeley.edu 
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What is a sparse matrix? 

• How much infrastructure (for code creation, 
tuning or interfaces) can we reuse for all these 
cases? 
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Sparse Conclusions 

• Fast code must minimize communication 
– Especially for sparse matrix computations because communication 

dominates 

• Generating fast code for a single SpMV 
– Design space of possible algorithms must be searched at run-time, 

when sparse matrix available 

– Design space should be searched automatically 

• Biggest speedups from minimizing communication in an 
entire sparse solver 
– Many more opportunities to minimize communication in multiple 

SpMVs than in one 

– Requires transforming entire algorithm 

– Lots of open problems  

• For more information, see bebop.cs.berkeley.edu 



STRUCTURED GRID MOTIF 
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Source: Sam Williams 



Structured Grids  
Finite Difference Operators 

• Applying the finite difference method to PDEs on structured grids produces stencil operators 
that must be applied to all points in the discretized grid. 

• Consider the 7-point Laplacian Operator 

• Challenged by bandwidth, temporal reuse, efficient SIMD, etc…  

 but trivial to (correctly) parallelize 

• most optimizations can be independently implemented,  

 (but not performance independent) 

• core (cache) blocking and cache bypass were clearly integral to performance 
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+Thread 

Blocking 
+SW Prefetch 

+Register 

Blocking 

+Core 

Blocking 

+NUMA & 

Affinity 
Naïve 

+Cache 

Bypass 

+Array 

Padding 

+2nd Pass in 

Greedy 

Search 

y+1 

y-1 

x-1 

z-1 

z+1 

x+1 
x,y,z 



Structured Grids  
Lattice Boltzmann Methods 

• LBMHD simulates charged plasmas in a magnetic field (MHD) via Lattice Boltzmann Method 
(LBM) applied to CFD and Maxwell’s equations. 

• To monitor density, momentum, and magnetic field, it requires maintaining two “velocity” 
distributions 

– 27 (scalar) element velocity distribution for momentum 

– 15 (Cartesian) element velocity distribution for magnetic field 

– = 632 bytes / grid point / time step  

• Jacobi-like time evolution requires ~1300 flops and ~1200 bytes of memory traffic 
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momentum distribution 
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Structured Grids  
Lattice Boltzmann Methods 
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 Challenged by: 

 The higher flop:byte ratio of ~1.0 is still bandwidth-limiting 

 TLB locality (touch 150 pages per lattice update) 

 cache associativity (150 disjoint lines) 

 efficient SIMDization  

 easy to (correctly) parallelize 

 explicit SIMDization & SW prefetch are dependent on unrolling 

 Ultimately, 2 of 3 machines are bandwidth-limited 

*collision() only  

+Explicit 

SIMDization 
+SW Prefetch +Unrolling +Vectorization +Padding 

Reference 

+NUMA 

+small 

pages 



Structured Grids  
Lattice Boltzmann Methods 
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• Distributed Memory & Hybrid 

• MPI, MPI+pthreads, MPI+OpenMP 

 (SPMD, SPMD2, SPMD+Fork/Join) 

 

• Observe that for this large problem, 
auto-tuning flat MPI delivered 
significant boosts (2.5x) 

 

• Extending auto-tuning to include the 
domain decomposition and balance 
between threads and processes 
provided an extra 17% 

 

• 2 processes with 2 threads was best 

 (true for Pthreads and OpenMP) 



PARTICLE METHOD MOTIF 

8/21/2009 James Demmel Motifs: 105 
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Particle Methods 
Particle-In-Cell 
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• Rather than calculating O(N2) forces, calculate impact of particles on field and field 
on particles -> O(N) 

– particle-to-grid interpolation (scatter-add) <<< most challenging step 

– Poisson solve 

– grid-to-particle/push interpolation (gather) <<< EP 

• Used in a number of simulations including Heart and Fusion 

• Trivial simplification would be a 2D histogram  

• These codes can be challenging to parallelize in shared memory 

 



Particle Methods 
Particle-In-Cell 
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 PIC codes can be particularly challenging to parallelize 

 PIC codes can have different grid topologies, different particle 
characteristics, and different particle distributions 

 To mitigate these differences, we tune over 5 synchronization approaches 
(3 locking, FP atomics, none) and 5 partial grid replication strategies 
(none, partitioned, overlapping partitions, dynamic, full) 

 

 

 

one charge grid shared 

among all threads 

ions (rings) partitioned 

among threads 

heart fibers partitioned 

among threads 

one fluid grid shared 

among all threads 



Particle Methods 
Particle-In-Cell 
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 Results: vastly less memory than MPI on a node with some performance gains 

 Clearly, optimization is dependent on the distribution of particles, available memory, 
and architecture  



Particle Methods 
Particle-In-Cell 
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 Results: vastly less memory than MPI on a node with some performance gains 

 Clearly, optimization is dependent on the distribution of particles, available memory, 
and architecture  
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Particle Methods 
Particle-In-Cell 
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 Results: vastly less memory than MPI on a node with some performance gains 

 Clearly, optimization is dependent on the distribution of particles, available memory, 
and architecture  
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Particle Methods 
Fast Multipole Method 

• Alternate (tree-based) approach for calculating forces 

• Kernel Independent FMM (KIFMM) is challenged by 7 computational phases 
(kernels) including list computations and tree traversals. 

• List computations vary from those requiring direct particle-particle interactions, to 
those based on many small FFTs 

• Different architectures (CPUs, GPUs…) may require different codes for each phase. 

• Additionally, FMM is parameterized by the number of particles per box in the oct-
tree.   

– More particles/box => more flops (direct calculations) 

– Fewer particle/box => fewer flops (but more work in tree traversals)  

111 

Fewer total flops, 

more tree traversals 



Particle Methods 
Fast Multipole Method 
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• Different architectures showed speedups for different phases from conventional auto-tuning. 

• Additionally, tuning algorithmic parameters showed different architectures preferred different 
sweet spots… 

– Nehalem’s sweet spot was around 250 particles/box 

– GPUs required up to 4000 particles/box to attain similar performance.  That is, to cope with poor tree 
traversal performance GPU’s had to perform 16x as many flop’s 



Particle Methods 
Fast Multipole Method 
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• Different architectures showed speedups for different phases from conventional auto-tuning. 

• Additionally, tuning algorithmic parameters showed different architectures preferred different 
sweet spots… 

– Nehalem’s sweet spot was around 250 particles/box 

– GPUs required up to 4000 particles/box to attain similar performance.  That is, to cope with poor tree 
traversal performance GPU’s had to perform 16x as many flop’s 

Reference 

Sequential 
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OpenMP 

Amortized Tree 

Construction 

runtimes in seconds 
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Summary 

• “Design spaces” for algorithms and 
implementations are large and growing 

• Finding the best algorithm/implementation by 
hand is hard and getting harder 

• Ideally, we would have a database of 
“techniques” that would grow over time, and 
be searched automatically whenever a new 
input and/or machine comes along 

• Lots of work to do… 
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Extra slides 
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BLAS 1/2/3 speeds on IBM RS6000/590 

BLAS 3 

BLAS 2 

BLAS 1 

BLAS 3 (n-by-n matrix matrix multiply) vs 

BLAS 2 (n-by-n matrix vector multiply) vs 

BLAS 1 (saxpy of  n vectors) 

Peak = 266 MFlops 

0 

100 

200 

300 
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Different Parallel Data Layouts for Matrices 

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 

0 1 2 3 0 1 2 3 

1) 1D Column Blocked Layout 2) 1D Column Cyclic Layout 

3) 1D Column Block Cyclic Layout 

4) Row versions of the previous layouts 

Generalizes others 
Best load balance on submatrices 

0 1 0 1 0 1 0 1 

2 3 2 3 2 3 2 3 

0 1 0 1 0 1 0 1 

2 3 2 3 2 3 2 3 

0 1 0 1 0 1 0 1 

2 3 2 3 2 3 2 3 

0 1 0 1 0 1 0 1 

2 3 2 3 2 3 2 3 6) 2D Row and Column Block 
Cyclic Layout 

0 1 2 3 

0 1 

2 3 

5) 2D Row and Column Blocked Layout 

b 

Bad load balance on 

many submatrices 



• Can process DAG in any 
order respecting 
dependencies 

• What is the best schedule? 
– Static vs dynamic? 

– Programmer builds DAG vs 
compiler or run-time system? 

– Build and schedule whole 
DAG (size = O((n/b)3) or just 
“front” 

– Use locality hints? 

 

•  DAG = Directed Acyclic Graph, of tasks 
•  Tasks are multiplying  submatrices, etc. 
•  Sample DAG for Cholesky with  5  blocks per  row/column  

DAG courtesy of Jakub Kurzak, UTK 

PLASMA:  Expressing Parallelism with a DAG 
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Cilk (www.cilk.com): programmer defined spawn and sync  

SMPSs (www.bsc.es) : 

compiler-based with 

annotations of argument 

dependencies  

PLASMA: static schedule 

supplied by programmer 

Measured Results for Tiled Cholesky 

• Measured on Intel Tigerton 2.4 GHz  Slide courtesy of Jakub Kurzak, UTK 

Time 
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s
 (

1
-1

6
) 
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More Measured Results for Tiled Cholesky 

quad-socket, quad-core (16 cores total) Intel Tigerton 2.4 GHz 

• PLASMA (static pipeline) – 

best 

• SMPSs – somewhat worse 

• Cilk 2D – inferior 

• Cilk 1D – still worse 

Slide courtesy of Jakub Kurzak, UTK 
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Intel’s Clovertown Quad Core 
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1. LAPACK (BLAS Fork-Join Parallelism) 

2. ScaLAPACK (Mess Pass using mem copy) 

3. DAG Based (PLASMA) 

3 Implementations of LU factorization  
Quad core w/2 sockets per board, w/ 8 Threads 
 

8 Core Experiments 

Source: Jack Dongarra 

8/21/2009 

James Demmel  Motifs: 122 



Scheduling on Multicore – Next Steps 

• PLASMA 2.0.0 released 

– Just Cholesky, QR, LU, using static scheduling 

– LU does not do partial pivoting – Stability? 

– icl.cs.utk.edu/plasma/ 

• Future of PLASMA 

– Add dynamic scheduling, similar to SMPSs 

• DAGs for eigenproblems are too complicated to do by hand 

– Depend on user annotations and API, not compiler 

– Still assume homogeneity of available cores 

• Heterogeneous case: MAGMA 
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Dense Linear Algebra on GPUs 

• Source: Vasily Volkov’s SC08 paper  

• New challenges 

– More complicated memory hierarchy 

– Not like “L1 inside L2 inside …”,  

• Need to choose which memory to use carefully 

• Need to move data explicitly 

– GPU does some operations much faster than CPU, 
but not all 

– CPU and GPU like different data layouts 
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Motivation 

• Goal: understand bottlenecks in the dense linear algebra kernels 

• Requires detailed understanding of the GPU architecture 

• Result 1: New coding recommendations for high performance on GPUs 

• Result 2: New , fast variants of LU, QR, Cholesky, other  routines 

• NVIDIA released CUBLAS 1.0 in 2007: BLAS for GPUs 

• Allows easy port of LAPACK to GPU  (consider single precision only) 

0 50 100 150 200 250 300 350

LAPACK
SGETRF

BLAS
SGEMM

peak in
a*b+c

Gflop/s 

GeForce 8800 GTX

Core2 Quad 2.4GHz

CUBLAS 1.1  

naive 

MKL  10.0 

MKL  10.0 
2007 results 

not so great in matrix-
matrix multiply 

disappointing performance in 
(naive) LU factorization 

impressive sheer 
compute power 
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(Some new) NVIDIA coding recommendations 

• Minimize communication with CPU memory 
• Keep as much data in registers as possible 

– Largest, fastest on-GPU memory 
– Vector-only operations 

• Use as little shared memory as possible 
– Smaller, slower than registers; use for communication, sharing only 
– Speed limit: 66% of peak with one shared mem argument 

• Use vector length VL=64, not max VL = 512 
– Strip mine longer vectors into shorter ones 
– Avoids wasting memory to replicate scalars 

 

• Final matmul code similar to Cray X1 or IBM 3090 vector codes 
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Optimizing Matrix Factorizations on GPUs 
• Use GPU to compute matrix-matrix multiplies only 

– Do everything else, like factorizing panels, on the CPU 

• Use look-ahead to overlap computations on CPU and GPU 
• Batch Pivoting 
• Use row-major layout on GPU, column-major on CPU 

– Requires extra (but fast) matrix transpose for each CPU-GPU transfer 

• Substitute triangular solves of LX=B by TRSM with multiply by L–1 

– At worst squares pivot growth factor in error bound (assume small anyway) 
– Can check ||L–1||, use TRSM if too large 

• Use two-level and variable size blocking as finer tuning 
– Thicker blocks impose lower bandwidth requirements in SGEMM 
– Variable size blocking improves CPU/GPU load balance 
 

• Use column-cyclic layout when computing using two GPUs 
– Requires no data exchange between GPUs in pivoting 
– Cyclic layout is used on GPUs only so does not affect panel factorization 
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Performance Results 

0

50

100

150

200

250

300

350

64 128 256 512 1024 2048 4096 8192 16384

G
fl
o
p
/s

Order of Matrix

QR
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Our solution runs at 50% of the system’s peak (shown on the right) 
It is bound by SGEMM that runs at 60% of the GPU-only peak 
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Where does the time go? 

• Time breakdown for LU on 8800 GTX 
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Importance of various optimizations on GPU 

• Slowdown when omitting one of the optimizations on GTX 280 
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Results for matmul, LU on NVIDIA 

• What we’ve achieved: 

– Identified realistic peak speed of GPU architecture 

– Achieved a large fraction of this peak in matrix multiply 

– Achieved a large fraction of the matrix multiply rate in dense 
factorizations 

 

0 50 100 150 200 250 300 350

LAPACK
SGETRF

BLAS
SGEMM

peak in
a*b+c

Gflop/s 

Core2 Quad 

CUBLAS 1.1 

naive 

Core2 Quad 

Core2 Quad 

in registers 
if using shared memory 

our implementation (now in CUBLAS 2.0) 

our implementation GeForce 8800 GTX 

8/21/2009 

James Demmel  Motifs: 131 



Performance results on 8-Core Clovertown 



QR of a tall, skinny matrix is bottleneck; 
Use TSQR instead:   example using 4 procs 
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Minimizing Communication in TSQR 

W =  

W0 

W1 

W2 

W3 

R00 

R10 

R20 

R30 

R01 

R11 

R02 
Parallel: 

W =  

W0 

W1 

W2 

W3 

R01 
R02 

R00 

R03 

Sequential: 

W =  

W0 

W1 

W2 

W3 

R00 

R01 
R01 

R11 

R02 

R11 

R03 

Dual Core: 

Can choose reduction tree dynamically 

Multicore / Multisocket / Multirack / Multisite / Out-of-core:  ? 



Performance of TSQR vs Sca/LAPACK 

• Parallel 

– Intel Clovertown 

– Up to 8x speedup (8 core, dual socket, 10M x 10) 

– Pentium III cluster, Dolphin Interconnect, MPICH 

• Up to 6.7x speedup (16 procs, 100K x 200) 

– BlueGene/L 

• Up to 4x speedup (32 procs, 1M x 50) 

– Fermi  GPU– early results (work in progress) 

– 16x speedup (vs LAPACK on Nehalem) 

– 6x speedup versus conventional algorithm (tuned!) on Fermi  

• Sequential   

– Out-of-Core on PowerPC laptop 

•  x speedup vs LAPACK with virtual memory, which never finished 

• As little as 2x slowdown vs (predicted) infinite DRAM 

• Grid – 4x speedup on 4 cities (Dongarra et al)  

• Cloud – early result – up and running using Mesos 



Modeled Speedups of CAQR vs ScaLAPACK 
Up to 22.9x  speedup on modeled Petascale machine 
 

 Petascale machine with 8192 procs, each at 500 GFlops/s, a bandwidth of 4 GB/s. 

./102,10,102 9512 wordsss   



Additional OSKI Features 

• Embedded scripting language for selecting 
customized, complex transformations 

– Mechanism to save/restore transformations 
# In file, “my_xform.txt” 

# Compute Afast = P*A*PT using 

Pinar’s reordering algorithm 

A_fast, P = 

reorder_TSP(InputMat); 

# Split Afast = A1 + A2, where A1 in 2x2 

block format, A2 in CSR 

A1, A2 = 

A_fast.extract_blocks(2, 2); 

 

return transpose(P)*(A1+A2)*P; 

/* In “my_app.c” */ 

fp = fopen(“my_xform.txt”, “rt”); 

fgets(buffer, BUFSIZE, fp); 

 

oski_ApplyMatTransform(A_tunable, 

buffer); 

oski_MatMult(A_tunable, …); 



Requested new functionality for OSKI 

 Users want to be able to 

 

 Change non-zero pattern of the matrix 
•Matrix may change or be perturbed during computation 

•Currently not permitted in OSKI- would require retuning 

 

 Assemble a matrix from fragments 
•Common in finite element methods 

•Fragments may overlap 

 



Proposed OSKI Interface Changes 

New data structure: List of matrices 

 Allows a matrix to be expressed as a sum of 

matrices (A=A1+...+An ) 
•Easily allows for assembly from fragments and variable splitting 

•Pattern update: represent the changed entry as the addition of another 

matrix 

Merge method 

 Merges the list A1+...+An   into a single matrix 

 User can decide when to merge matrices, or… 

 In the future, merging may also be a tuning 

decision made by OSKI 
•Ex: combining matrices with only a few entries 
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Locally Dependent Entries for  
[x,Ax], A tridiagonal, 2 processors 

Can be computed without communication 

 Proc 1                                           Proc 2 
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Can be computed without communication 

Proc 1                                           Proc 2 

Locally Dependent Entries for  
[x,Ax,A2x], A tridiagonal, 2 processors 
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Can be computed without communication 

Proc 1                                           Proc 2 

Locally Dependent Entries for  
*x,Ax,…,A3x], A tridiagonal, 2 processors 
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Can be computed without communication 

Proc 1                                           Proc 2 

Locally Dependent Entries for  
*x,Ax,…,A4x], A tridiagonal, 2 processors 
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Ax 

A2x 

A3x 

A4x 

A5x 

A6x 

A7x 

A8x 

Locally Dependent Entries for  
*x,Ax,…,A8x], A tridiagonal, 2 processors 

Can be computed without communication 
k=8 fold reuse of A 

Proc 1                                           Proc 2 



Remotely Dependent Entries for  
*x,Ax,…,A8x], A tridiagonal, 2 processors 

x 

Ax 

A2x 

A3x 

A4x 

A5x 

A6x 

A7x 

A8x 

One message to get data needed to compute remotely dependent entries, not k=8 
Minimizes number of messages = latency cost 

Price: redundant work  “surface/volume ratio” 

Proc 1                                           Proc 2 



Remotely Dependent Entries for [x,Ax,A2x,A3x],  
A irregular, multiple processors 



Sequential *x,Ax,…,A4x], with memory hierarchy 

v 

One read of matrix from slow memory, not k=4 
Minimizes words moved = bandwidth cost 

No redundant work 



In what order should the sequential algorithm  
process a general sparse matrix? 

•  Process band matrix  from left to  

    right,  to reuse  data already in  

    fast memory 

•   Best order not obvious  for a general 

    matrix: can formulate as 

    Traveling Salesman Problem  (TSP) 

 

• One vertex per matrix partition 

• Weight of edge (j, k) is memory cost of  processing 

   partition k right after partition j 

•  TSP: find lowest cost “tour” visiting all vertices  



Nehalem Speedups 
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Graph Algorithms 

Dynamic Programming 

Dense Linear Algebra 

Sparse Linear Algebra 

Unstructured Grids 

Structured Grids 

Model-view controller  

Iteration 

Map reduce 

Layered systems 

Arbitrary Static Task Graph 

Pipe-and-filter 

Agent and Repository 

Process Control 

Event based, implicit 

invocation 

Graphical models 

Finite state machines 

Backtrack Branch and Bound 

N-Body methods 

Circuits 

Spectral Methods 

Task Decomposition ↔ Data Decomposition 

Group Tasks     Order groups     data sharing     data access 

Applications 

Pipeline 

Discrete Event 

Event Based 

Divide and Conquer 

Data Parallelism 

Geometric Decomposition 

Task Parallelism 

Graph algorithms 

Fork/Join 

CSP 

Master/worker 

Loop Parallelism 

BSP 

Distributed Array 

Shared Data 

Shared Queue 

Shared Hash Table 

SPMD 

Barriers 

Mutex 

Thread Creation/destruction 

Process Creation/destruction 

Message passing 

Collective communication 

Speculation 

Transactional memory 

Choose your high level 

structure – what is the 

structure of my 

application?  

 Guided expansion  

Identify the key 

computational patterns 

– what are my key 

computations? 

Guided instantiation 

Implementation methods – what are the building blocks of parallel programming? Guided implementation 

Choose you high level architecture?  Guided decomposition 

Refine the structure  - what concurrent approach do I use? Guided re-organization 

Utilize Supporting Structures – how do I implement my concurrency? Guided mapping 
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Digital Circuits 

Semaphores 

Our Pattern Language 2.0 



Algorithms for 2D (3D) Poisson Equation (N = n2 (n3) vars) 

Algorithm Serial  PRAM  Memory      #Procs 

• Dense LU   N3  N  N2  N2 

• Band LU   N2  (N7/3) N  N3/2  (N5/3) N (N4/3) 

• Jacobi   N2 (N5/3)  N (N2/3)   N  N 

• Explicit Inv.   N2   log N  N2  N2 

• Conj.Gradients N3/2 (N4/3)  N1/2 (1/3) *log N N  N 

• Red/Black SOR N3/2 (N4/3)  N1/2 (N1/3)  N  N 

• Sparse LU   N3/2 (N2)  N1/2   N*log N (N4/3)  N 

• FFT    N*log N log N  N  N 

• Multigrid   N  log2 N  N  N 

• Lower bound   N  log N  N 

 

For more details,  Ma221 offered this semester! 
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