Data-Parallel Programming on
Manycore Graphics Processors

Bryan Catanzaro

Universal Parallel Computing Research Center
University of California, Berkeley

" A
Overview

Terminology: Multicore, Manycore, SIMD

The CUDA Programming model

Mapping CUDA to Nvidia GPUs
Experiences with CUDA

" S
Multicore and Manycore

m Multicore: yoke of oxen

N\)
-)) A\ L o I A\
) ())) (Y
~ g\ﬁ7 ¥ = “Yﬁﬁ{ 8
a3 o
_ VAN Y,
4 o~ \“*\ 4 ’;,\\\)A\‘\
) <) | Ay RPN @Y 4
~'%%U Afw%u
£ oy
_ VAN Y,
Multicore

WA YEF A YEeYAYe YA
(& (&g (e (&g
iy A D A D) S
WA YEFPAYEeYAYEe YA
la e &g (&g
W A D A D) G
(2 = (=) (m) ((a =)
(la e &g (&g
A D A)

Each core optimized for executing a single thread

m Manycore: flock of chickens

Cores optimized for aggregate throughput, deemphasizing
individual performance

Multicore & Manycore, cont.

Specifications | Core i7 960

= I”‘?:T =
GTX285 E.
Processing Elements 4 cores, 4 way SIMD 30 cores, 8 way SIMD ‘ Z_ﬁ = ;;“_
; @3.2 GHz @1.5 GHz - TiEaEs SEEEELRRRS

4 cores, 2 threads, 4

30 cores, 32 SIMD
Resident Strands/

way SIMD: vectors, 32 way
Threads (max) SIMD:
32 strands 30720 threads
SP GFLOP/s 102 1080
Memory Bandwidth 25.6 GB/s 159 GB/s
Register File - 1.875 MB
Local Store

480 kB

" B JIN/
What is a core?

m Is a core an ALU?
ATI: We have 800 streaming processors!!
= Actually, we have 5 way VLIW * 16 way SIMD * 10 “SIMD
cores”
m [s a core a SIMD vector unit?
Nvidia: We have 240 streaming processors!!
= Actually, we have 8 way SIMD * 30 “multiprocessors”

To match ATI, they could count another factor of 2 for dual issue

m In this lecture, we're using core consistent with the CPU
world

Superscalar, VLIW, SIMD, SMT, etc. are part of a core’s
architecture, not the number of cores

SIMD T

d b a;[a,| [b;]b,
W W
>I5D width=2
C GG

m Single Instruction Multiple Data architectures make use
of data parallelism

m SIMD can be area and power efficient
Amortize control overhead over SIMD width

m Parallelism exposed to programmer & compiler

" S /IN/
SIMD: Neglected Parallelism

m [t is difficult for a compiler to exploit SIMD

m How do you deal with sparse data & branches?
Many languages (like C) are difficult to vectorize
Fortran is somewhat better

m Most common solution:
Either forget about SIMD
= Pray the autovectorizer likes you
Or instantiate intrinsics (assembly language)
Requires a new code version for every SIMD extension

" S
A Brief History of x86 SIMD

Future Subset

v

* SSE4.A

- v

Larrabee e ox aE A SSE5

AVX" SP Float
\ 4

AVX+FMA 3 operands

16 x 32 bit SP Float

" B yi \\
What to do with SIMD? | '

4 way SIMD (SSE) 16 way SIMD (LRB)
m Neglecting SIMD in the future will be more expensive

AVX: 8 way SIMD, Larrabee: 16 way SIMD, Nvidia: 32 way SIMD,
ATI: 64 way SIMD

m This problem composes with thread level parallelism

m We need a programming model which addresses both
problems

" S A
The CUDA Programming Model

m CUDA is a recent programming model, designed for
Manycore architectures
Wide SIMD parallelism
Scalability
m CUDA provides:
A thread abstraction to deal with SIMD

Synchronization & data sharing between small groups of
threads

m CUDA programs are written in C + extensions

m OpenCL uses very similar programming model, but is HW &
SW vendor neutral

" S ZININ

Hierarchy of Concurrent Threads 7T T
m Parallel composed of many threads
all threads execute the same sequential program
Thread t

m Threads are grouped into

threads in the same block can cooperate Block b
to tl1 .. tN

b

m Threads/blocks have unique IDs

What is a CUDA Thread? T T

m Independent thread of execution
has its own PC, variables (registers), processor state, etc.
no implication about how threads are scheduled

m CUDA threads might be threads
as on NVIDIA GPUs

m CUDA threads might be threads
might pick 1 block = 1 physical thread on multicore CPU

I 1/
What is a CUDA Thread Block? <

m Thread block =

freely choose processors to fit data
freely customize for each kernel launch

m Thread block = a (data)

all blocks in kernel have the same entry point
but may execute any code they want

m Thread blocks of kernel must be tasks
program valid for any interleaving of block executions

" S
Synchronization

m Threads within a block may synchronize with
.. Step 1 ..

.. Step 2 ..

m Blocks via atomic memory operations
e.g., increment shared queue pointer with

m Implicit barrier between

vec_minus<<<nblocks, blksize>>>(a, b, c);

vec_dot<<<nblocks, blksize>>>(c, c);

" J /

Blocks must be independent

m Any possible interleaving of blocks should be valid
presumed to run to completion without pre-emption
can run in any order
can run concurrently OR sequentially

m Blocks may coordinate but not synchronize
shared queue pointer:
shared lock: BAD ... can easily deadlock

m Independence requirement gives

" / \\
Scalability

m Manycore chips exist in a diverse set of configurations

; Number of cores
5

30
25
20
15
10

0 -
8300GS 9400M 8800GTX GTX285

= CUDA allows one binary to target all these chips
= Thread blocks bring scalability!

" / N/

Hello World: Vector Addition T T

//Compute vector sum C=A+B
//Each thread performs one pairwise addition
~_global void vecAdd(float* a, float* b, float* c) {
int 1 = blockIdx.x * blockDim.x + threadIdx.x;
c[i] = a[i] + b[i];

int main() {
//Run N/256 blocks of 256 threads each
vecAdd<<<N/256, 256>>>(d_a, d_b, d _c);

"
Flavors of parallelism

m Thread parallelism
each thread is an independent thread of execution

m Data parallelism
across threads in a block
across blocks in a kernel

m Task parallelism
different blocks are independent
independent kernels

Memory model

s

b

"
Memory model

Kernel o

2000 23500 223250

4 (< (¢ (4 (L LLLLL %

222204 222270, P22
v 1444 v PIRiiey

Sequential

Kernels 2 >

< &
2000 DD >
< L Ll
P P P24
v 1444 Lol [t

" S
Memory model

/

cudaMemcpy ()

>
r d

>
rd

" N ZININ
Using per-block shared memory

m Variables shared across block
int *begin, *end; BlOCk

m Scratchpad memory .
int scratch[BLOCKSIZE]; %
scratch[] = begin[1 |

// .. compute on scratch values ..

begin|] = scratch| 1;

m Communicating values between threads
scratch]] = begin] 1;
int left = scra%ch[- 1];

m Per-block shared memory is very fast
Often just as fast as a register file access

m [t is relatively small: On GTX280, the register file is 4x
bigger

" JE /;\/ \
CUDA: Minimal extensions to C/C++ T

m Declaration specifiers to indicate where things live
void KernelFunc(...); // kernel callable from host
void DeviceFunc(...); // function callable on device
int GlobalVar; // variable in device memory
int SharedVar; // in per-block shared memory

m Extend function invocation syntax for parallel kernel launch
KernelFunc (...); // 500 blocks, 128 threads each

m Special variables for thread identification in kernels
dim3 ; dim3 ; dim3 ;

m Intrinsics that expose specific operations in kernel code
5 // barrier synchronization

" S ZININ
CUDA: Features available on GPU <

m Double and single precision

m Standard mathematical functions
/ / ’ ’ ’ , etc.

= Atomic memory operations
, , , , etc.

m These work on both global and shared memory

" S
CUDA: Runtime support

m Explicit memory allocation returns pointers to GPU memory

I/

m Explicit memory copy for host < device, device < device

I J "

m Texture management

I J """

m OpenGL & DirectX interoperability

4

" A
Mapping CUDA to Nvidia GPUs

m CUDA is designed to be functionally forgiving
First priority: make things work. Second: get performance.

m However, to get good performance, one must understand how
CUDA is mapped to Nvidia GPUs

m Threads:
each thread is a SIMD vector lane
m Warps:
A SIMD instruction acts on a “warp”
Warp width is 32 elements: LOGICAL SIMD width
m Thread blocks:
Each thread block is scheduled onto a processor
Peak efficiency requires multiple thread blocks per processor

" A
Mapping CUDA to a GPU, continued

m The GPU is very deeply pipelined
Throughput machine, trying to hide memory latency

m This means that performance depends on the number of
thread blocks which can be allocated on a processor

m Therefore, resource usage costs performance:
More registers => Fewer thread blocks
More shared memory usage => Fewer thread blocks
In general: More resources => less effective parallelism

m It is often worth trying to reduce register count in order to get
more thread blocks to fit on the chip

" ZININ
SIMD & Control Flow 7T T

m Nvidia GPU hardware handles control flow divergence
and reconvergence
Write scalar thread code, compiler & hardware autovectorize
One caveat: can‘t appear in a divergent path
= This will cause programs to hang

Good performing code will try to keep the execution convergent
within a warp

» Inter-warp divergence is free modulo instruction cache

"
Memory, Memory, Memory

m A many core processor = A device for turning a compute

bound problem into a memory bound problem

Control

ALU

ALU

ALU

ALU

CPU

GPU

= Lots of processors, only one socket
= Memory concerns dominate performance tuning

/)

N

" S JIN/
Memory is SIMD too

m Virtually all processors have SIMD memory subsystems

| J
I

cache line width

» This has two effects:
= Sparse access wastes bandwidth

__ 2 words used, 8 words loaded:

Vi effective bandwidth
» Unaligned access wastes bandwidth

1121314

4 words used, 8 words loaded:
1/ effective bandwidth

" ZININ
Coalescing 7T T

m Current GPUs don't have cache lines as such, but they do
have similar issues with alignment and sparsity

m Nvidia GPUs have a “coalescer”, which examines memory
requests dynamically and coalesces them into vectors

m To use bandwidth effectively, when threads load, they
should:
Present a set of unit strided loads (dense accesses)
Keep sets of loads aligned to vector boundaries

ZININ
Data Structure Padding 7T T

- l
ti = W [W [e
(row major) :
m Multidimensional arrays are usually stored as monolithic
vectors in memory
m Care should be taken to assure aligned memory accesses

for the necessary access pattern

“f-« dud

Sparse Matrix Vector Multiply

x M = Li

m Problem: Sparse Matrix Vector Multiplication

m How should we parallelize the computation?

m How should we represent the matrix?
Can we take advantage of any structure in this matrix?

/

N/l

AN

ZININ
Diagonal representation 7T T

m Since this matrix has nonzeros
only on diagonals, let’s project
the diagonals into vectors

m Sparse representation becomes
dense

m Launch a thread per row
- m Are we done?

= The straightforward diagonal
projection is not aligned

ZININ
Optimized Diagonal Representationm

padding

)

{A

©

m Skew the diagonals again
i ~m This ensures that all memory
®

loads from matrix are

coalesced

H. .!..“.' - = Don't forget padding!

SoA, AoS

m Different data access patterns may also require
transposing data structures

Array of Structs

T

—

Structure of Arrays

= The cost of a transpose on the data structure is often

much less than the cost of uncoalesced memory

dCCesses

" S
Experiences with CUDA

m Image Contour Detection
m Support Vector Machines

Image Contours

Contours are subjective — they depend on personal perspective
Surprise: Humans agree (more or less)
J. Malik’s group has developed a “ground truth” benchmark

Human Contours Machine Contours

38/54

gPb Algorithm: Current Leader

global Probability of boundary
Currently, the most accurate |
image contour detector

3.9 mins per small image

(0.15 MP) limits its applicability

~3 billion images on web

0.5

Precision

10000 computer cluster
would take 2 years to find s
their contours | I Ry

MCV[7] F=0.65

How many new images +§E]:[7212] E‘Eé‘z
would there be by then? % 025 03 075 j

Recall

Maire, Arbelaez, Fowlkes, Malik,

CVPR 2008
39/54

gPb Computation Outline

Lg

Image

P

Convert

™\

_ Colorspace /\

Ag

Bg

AN

-

%

{ Textons:
\ K-means
S
Texture
Gradient
Combine
)
N\
Non-max

suppression /\

AN

Intervening Contour

Generalized
Eigensolver

Oriented Energy
Combination

Combine, Normalize

Contours

) A

40/54

Time breakdown

Textons
Gradients
Intervening Contour

Eigensolver

Overall

gPb: CVPR 2008

8.6 1.35 0.152

53.8 12.92 0.84

6.3 1.21 0.03

151.0 14.29 0.81

222 seconds 29.79 seconds 1.8 seconds
Pthreads GTX280

W Textons
Gradients
Intervening

B Eigensolver

B Other

41/54

Scalability Results

Images per second

OO0 000
N W Wb

o ¥

Parallel Scalability

GTX280

Tesla C1060

MCP79 9800GTX

8600MGT

0 10 20 30

Number of cores

Scaling behavior with respect
to image size is good
Bimodal distribution due to
eigensolver runtime
Limited by memory size:
1.8 MP image: 4 GB of
memory required

40

Time (seconds)

Scalability examined on
Nvidia GPUs from 2 to 30
cores

Algorithm scales well

Is memory bandwidth &
architecture dependent

Image Size Scalability

.E+00 5.E+05 1.E+06 2.E+06
Pixels 42/54

Precision

Accuracy & Summary

0.8

0.6

0.4

0.2

0.2 0.4
CVPR 2008

Recall

0.6 0.8

Damascene

We achieve equivalent

accuracy on the BSDS contour

detection benchmark

C + Pthreads port done by Yunsup Lee
and Andrew Waterman

43/54

SVM Training: Quadratic

Programming
Quadratic Program
z
F(a) = maxz a; — %O&TQ&
1=1

st. 0<a; <C, Vielll]

yla=0

Qii = viy; ® (i, x;)

Example Kernel Functions:
(I)<ZCZ', CL’j) — X4 - Ty

®(x;,x;;a,r) = tanh(az; - x; + 7)

Variables:

a.. Weight for each training point
(determines classifier)

Data:
[: number of training points
Y. Label (+/- 1) for each training point

X: training points

O(z;,25;a,7,d) = (az; - z; +7)°
@(xi,xj;v) = exp{—vH:C?; - xjHQ}

44/26

SMO Algorithm

The Sequential Minimal Optimization algorithm (Platt, 1999) is an
iterative solution method for the SVM training problem

At each iteration, it adjusts only 2 of the variables (chosen by
heuristic)

The optimization step is then a trivial one dimensional problem:
C

- + k
X L Y101 + Yoo =
\\\\4/
0 \ C
a1
Computing full kernel matrix Q not required
Despite name, algorithm can be quite parallel

Computation is dominated by KKT optimality condition updates

45/26

Training Results

USPS
Face
Adult
Web
MNIST

Forest

Training Time (seconds)

5.09 27.6 550 2422 16966

7291 256

6977 381

32561 123

49749 300

60000 784 oo

' 26.9 164
561012 54 L 32 L 483
USPS Face Adult Web MNIST

LibSVM running on Intel Core 2 Duo 2.66 GHz
Our solver running on Nvidia GeForce 8800GTX
Gaussian kernel used for all experiments

9-35x speedup

66524

LIBSVM
GPU

-2023
Forest

46/26

SVM Classification

To classify a point z, evaluate :

z
z=<4b+ Z yio; ®(x, 2)

1=1

For standard kernels, SVM Classification involves comparing all
support vectors and all test vectors with a dot product

We take advantage of the common situation when one has
multiple data points to classify simultaneously

We cast the dot products as a Matrix-Matrix multiplication, and
then use Map Reduce to finish the classification

47126

Classification Results

Classification Time (seconds)

0.77 61 89 107 270

H LibSVM
CPU Optimized
GPU Optimized

0.23

15.7

7.5
B oooos Mo BB Mo s
0.0096 0.575 0.71 1.06 21,95

USPS Adult Faces Web MNIST

CPU optimized version achieves 3-30x speedup

GPU version achieves an additional 5-24x speedup, for a
total of 81-138x speedup

Results identical to serial version

4826

" ZININ
CUDA Summary T T

m CUDA is a programming model for manycore processors

m [t abstracts SIMD, making it easy to use wide SIMD
vectors

m It provides good performance on today’s GPUs

m In the near future, CUDA-like approaches will map well
to many processors & GPUs

m CUDA encourages SIMD friendly, highly scalable
algorithm design and implementation

