An Introduction to CUDA/OpenCL and Manycore Graphics Processors

Bryan Catanzaro, NVIDIA Research

Overview

- Terminology: Multicore, Manycore, SIMD
- The CUDA and OpenCL programming models
- Mapping CUDA to Nvidia GPUs
- OpenCL

Heterogeneous Parallel Computing

Multicore CPU

Fast Serial Processing

Manycore GPU

Scalable Parallel Processing

Multicore and Manycore

Manycore

- Multicore: yoke of oxen
 - Each core optimized for executing a single thread
- Manycore: flock of chickens
 - Cores optimized for aggregate throughput, deemphasizing individual performance

Multicore & Manycore, cont.

Specifications	Westmere-EP	Fermi (Tesla C2050)
Processing Elements	6 cores, 2 issue, 4 way SIMD @3.46 GHz	14 SMs, 2 issue, 16 way SIMD @1.15 GHz
Resident Strands/ Threads (max)	6 cores, 2 threads, 4 way SIMD: 48 strands	14 SMs, 48 SIMD vectors, 32 way SIMD: 21504 threads
SP GFLOP/s	166	1030
Memory Bandwidth	32 GB/s	144 GB/s
Register File	6 kB (?)	1.75 MB
Local Store/L1 Cache	192 kB	896 kB
L2 Cache	1536 kB	0.75 MB
L3 Cache	12 MB	-

Westmere-EP (32nm)

Fermi (40nm)

Why Heterogeneity?

- Different goals produce different designs
 - Manycore assumes work load is highly parallel
 - Multicore must be good at everything, parallel or not
- Multicore: minimize latency experienced by 1 thread
 - lots of big on-chip caches
 - extremely sophisticated control
- Manycore: maximize throughput of all threads
 - lots of big ALUs
 - multithreading can hide latency ... so skip the big caches
 - simpler control, cost amortized over ALUs via SIMD

SIMD

- Single Instruction Multiple Data architectures make use of data parallelism
- We care about SIMD because of area and power efficiency concerns
 - Amortize control overhead over SIMD width
- Parallelism exposed to programmer & compiler

SIMD: Neglected Parallelism

- It is difficult for a compiler to exploit SIMD
- How do you deal with sparse data & branches?
 - Many languages (like C) are difficult to vectorize
 - Fortran is somewhat better
- Most common solution:
 - Either forget about SIMD
 - Pray the autovectorizer likes you
 - Or instantiate intrinsics (assembly language)
 - Requires a new code version for every SIMD extension

A Brief History of x86 SIMD Extensions

9/48

What to do with SIMD?

4 way SIMD (SSE)

16 way SIMD (LRB)

- Neglecting SIMD is becoming more expensive
 - AVX: 8 way SIMD, Larrabee: 16 way SIMD,
 Nvidia: 32 way SIMD, ATI: 64 way SIMD
- This problem composes with thread level parallelism
- We need a programming model which addresses both problems

The CUDA Programming Model

- CUDA is a recent programming model, designed for
 - Manycore architectures
 - Wide SIMD parallelism
 - Scalability
- CUDA provides:
 - A thread abstraction to deal with SIMD
 - Synchronization & data sharing between small groups of threads
- CUDA programs are written in C++ with minimal extensions
- OpenCL is inspired by CUDA, but HW & SW vendor neutral
 - Similar programming model, C only for device code

Hierarchy of Concurrent Threads

- Parallel kernels composed of many threads
 - all threads execute the same sequential program

- Threads are grouped into thread blocks
 - threads in the same block can cooperate

Threads/blocks have unique IDs

What is a CUDA Thread?

- Independent thread of execution
 - has its own PC, variables (registers), processor state, etc.
 - no implication about how threads are scheduled

- CUDA threads might be physical threads
 - as mapped onto NVIDIA GPUs
- CUDA threads might be virtual threads
 - might pick 1 block = 1 physical thread on multicore CPU

What is a CUDA Thread Block?

- Thread block = a (data) parallel task
 - all blocks in kernel have the same entry point
 - but may execute any code they want

- Thread blocks of kernel must be independent tasks
 - program valid for any interleaving of block executions

CUDA Supports:

- Thread parallelism
 - each thread is an independent thread of execution
- Data parallelism
 - across threads in a block
 - across blocks in a kernel
- Task parallelism
 - different blocks are independent
 - independent kernels executing in separate streams

Synchronization

Threads within a block may synchronize with barriers

```
... Step 1 ...
__syncthreads();
... Step 2 ...
```

- Blocks coordinate via atomic memory operations
 - e.g., increment shared queue pointer with atomicInc()
- Implicit barrier between dependent kernels

```
vec_minus<<<nblocks, blksize>>>(a, b, c);

vec_dot<<<nblocks, blksize>>>(c, c);
```

Blocks must be independent

- Any possible interleaving of blocks should be valid
 - presumed to run to completion without pre-emption
 - can run in any order
 - can run concurrently OR sequentially
- Blocks may coordinate but not synchronize
 - shared queue pointer: OK
 - shared lock: BAD ... can easily deadlock
- Independence requirement gives scalability

Scalability

Manycore chips exist in a diverse set of configurations

- CUDA allows one binary to target all these chips
- Thread blocks bring scalability!

Hello World: Vector Addition

```
//Compute vector sum C=A+B
//Each thread performs one pairwise addition
_global__ void vecAdd(float* a, float* b, float* c) {
  int i = blockIdx.x * blockDim.x + threadIdx.x;
  c[i] = a[i] + b[i];
}

int main() {
  //Run N/256 blocks of 256 threads each
  vecAdd<<<<N/256, 256>>>(d_a, d_b, d_c);
}
```

Memory model

Memory model

Sequential Kernels

Kernel o

Per Device
Global
Memory

Memory model

Hello World: Managing Data

```
int main() {
  int N = 256 * 1024;
  float* h_a = malloc(sizeof(float) * N);
  //Similarly for h_b, h_c. Initialize h_a, h_b
  float *d_a, *d_b, *d_c;
  cudaMalloc(&d a, sizeof(float) * N);
  //Similarly for d b, d c
  cudaMemcpy(d_a, h_a, sizeof(float) * N, cudaMemcpyHostToDevice);
  //Similarly for d b
  //Run N/256 blocks of 256 threads each
  vecAdd<<<N/256, 256>>>(d_a, d_b, d_c);
  cudaMemcpy(h_c, d_c, sizeof(float) * N, cudaMemcpyDeviceToHost);
```

Using per-block shared memory

Variables shared across block

```
__shared__ int *begin, *end;
```

Scratchpad memory

```
__shared__ int scratch[BLOCKSIZE];
scratch[threadIdx.x] = begin[threadIdx.x];
// ... compute on scratch values ...
begin[threadIdx.x] = scratch[threadIdx.x];
```

Communicating values between threads

```
scratch[threadIdx.x] = begin[threadIdx.x];
__syncthreads();
int left = scratch[threadIdx.x - 1];
```

- Per-block shared memory is faster than L1 cache, slower than register file
- It is relatively small: register file is 2-4x larger

CUDA: Minimal extensions to C/C++

Declaration specifiers to indicate where things live

```
__global__ void KernelFunc(...); // kernel callable from host device__ void DeviceFunc(...); // function callable on device device__ int GlobalVar; // variable in device memory shared__ int SharedVar; // in per-block shared memory
```

- Extend function invocation syntax for parallel kernel launch KernelFunc<<<500, 128>>>(...); // 500 blocks, 128 threads each
- Special variables for thread identification in kernels dim3 threadIdx; dim3 blockIdx; dim3 blockDim;
- Intrinsics that expose specific operations in kernel code __syncthreads(); // barrier synchronization

CUDA: Features available on GPU

Double and single precision (IEEE compliant)

- Standard mathematical functions
 - sinf, powf, atanf, ceil, min, sqrtf, etc.
- Atomic memory operations
 - atomicAdd, atomicMin, atomicAnd, atomicCAS, etc.
- These work on both global and shared memory

CUDA: Runtime support

- Explicit memory allocation returns pointers to GPU memory
 - cudaMalloc(), cudaFree()
- Explicit memory copy for host ↔ device, device ↔ device
 - cudaMemcpy(), cudaMemcpy2D(),...
- Texture management
 - cudaBindTexture(), cudaBindTextureToArray(), ...
- OpenGL & DirectX interoperability
 - cudaGLMapBufferObject(), cudaD3D9MapVertexBuffer(), ...

OpenCL

- OpenCL is supported by AMD {CPUs, GPUs} and Nvidia
 - Intel, Imagination Technologies (purveyor of GPUs for iPhone/OMAP/etc.) are also on board
- OpenCL's data parallel execution model mirrors CUDA,
 but with different terminology
- OpenCL has rich task parallelism model
- Runtime walks a dataflow DAG of kernels/memory transfers

CUDA and OpenCL correspondence

Thread Work-item Work-group Thread-block Global memory Global memory Constant memoryConstant memory Shared memory Local memory Local memory Private memory kernel function global function device functionno qualification needed __constant__ variable__constant variable

OpenCL and SIMD

- SIMD issues are handled separately by each runtime
- AMD GPU
 - Vectorize over 64-way SIMD, but not over 4/5-way VLIW
 - Use float4 vectors in your code
- AMD CPU
 - No vectorization
 - Use float4 vectors in your code (float8 when AVX appears?)
- Nvidia GPU
 - Full vectorization, like CUDA
 - Prefers scalar code per work-item

Imperatives for Efficient CUDA Code

- Expose abundant fine-grained parallelism
 - need 1000's of threads for full utilization
- Maximize on-chip work
 - on-chip memory orders of magnitude faster
- Minimize execution divergence
 - SIMT execution of threads in 32-thread warps
- Minimize memory divergence
 - warp loads and consumes complete 128-byte cache line

Mapping CUDA to Nvidia GPUs

- CUDA is designed to be functionally forgiving
 - First priority: make things work. Second: get performance.
- However, to get good performance, one must understand how CUDA is mapped to Nvidia GPUs
- Threads: each thread is a SIMD vector lane
- Warps: A SIMD instruction acts on a "warp"
 - Warp width is 32 elements: LOGICAL SIMD width
- Thread blocks: Each thread block is scheduled onto an SM
 - Peak efficiency requires multiple thread blocks per SM

Mapping CUDA to a GPU, continued

- The GPU is very deeply pipelined to maximize throughput
- This means that performance depends on the number of thread blocks which can be allocated on a processor
- Therefore, resource usage costs performance:
 - More registers => Fewer thread blocks
 - More shared memory usage => Fewer thread blocks
- It is often worth trying to reduce register count in order to get more thread blocks to fit on the chip
 - For Fermi, target 20 registers or less per thread for full occupancy

Occupancy (Constants for Fermi)

- The Runtime tries to fit as many thread blocks simultaneously as possible on to an SM
 - The number of simultaneous thread blocks (B) is ≤ 8
- The number of warps per thread block (T) ≤ 32
- B * T ≤ 48 (Each SM has scheduler space for 48 warps)
- The number of threads per warp (V) is 32
- B * T * V * Registers per thread ≤ 32768
- B * Shared memory (bytes) per block ≤ 49152/16384
 - Depending on Shared memory/L1 cache configuration
- Occupancy is reported as B * T / 48

SIMD & Control Flow

- Nvidia GPU hardware handles control flow divergence and reconvergence
 - Write scalar SIMD code, the hardware schedules the SIMD execution
 - One caveat: __syncthreads() can't appear in a divergent path
 - This will cause programs to hang
 - Good performing code will try to keep the execution convergent within a warp
 - Warp divergence only costs because of a finite instruction cache

Memory, Memory, Memory

A many core processor
 = A device for turning a compute bound problem into a memory bound problem

- Lots of processors, only one socket
- Memory concerns dominate performance tuning

Memory is SIMD too

Virtually all processors have SIMD memory subsystems

- This has two effects:
 - Sparse access wastes bandwidth

2 words used, 8 words loaded: 1/4 effective bandwidth

Unaligned access wastes bandwidth

4 words used, 8 words loaded: 1/2 effective bandwidth

Coalescing

- GPUs and CPUs both perform memory transactions at a larger granularity than the program requests ("cache line")
- GPUs have a "coalescer", which examines memory requests dynamically and coalesces them
- To use bandwidth effectively, when threads load, they should:
 - Present a set of unit strided loads (dense accesses)
 - Keep sets of loads aligned to vector boundaries

Data Structure Padding

- Multidimensional arrays are usually stored as monolithic vectors in memory
- Care should be taken to assure aligned memory accesses for the necessary access pattern

Sparse Matrix Vector Multiply

- Problem: Sparse Matrix Vector Multiplication
- How should we represent the matrix?
 - Can we take advantage of any structure in this matrix?

Diagonal representation

- Since this matrix has nonzeros only on diagonals, let's project the diagonals into vectors
- Sparse representation becomes dense
- Launch a thread per row
- Are we done?

 The straightforward diagonal projection is not aligned

Optimized Diagonal Representation

SoA, AoS

 Different data access patterns may also require transposing data structures

Array of Structs

Structure of Arrays

- The cost of a transpose on the data structure is often much less than the cost of uncoalesced memory accesses
- Use shared memory to handle block transposes

- There exist many tools and libraries for GPU programming
- Thrust is now part of the CUDA SDK
- C++ libraries for CUDA programming, inspired by STL
- Many important algorithms:
 - reduce, sort, reduce_by_key, scan, ...
- Dramatically reduces overhead of managing heterogeneous memory spaces
- Includes OpenMP backend for multicore programming

Hello World of Thrust

```
#include <thrust/host vector.h>
#include <thrust/device_vector.h>
#include <thrust/sort.h>
#include <cstdlib>
int main(void)
{
    // generate 32M random numbers on the host
    thrust::host vector<int> h vec(32 << 20);
    thrust::generate(h_vec.begin(), h_vec.end(), rand);
   // transfer data to the device
    thrust::device_vector<int> d_vec = h_vec;
   // sort data on the device (846M keys per sec on GeForce GTX 480)
    thrust::sort(d_vec.begin(), d_vec.end());
    // transfer data back to host
    thrust::copy(d_vec.begin(), d_vec.end(), h_vec.begin());
    return 0;
```

saxpy in Thrust

```
// C++ functor replaces __global__ function
struct saxpy
   float a;
    saxpy(float _a) : a(_a) {}
    __host__ device__
    float operator()(float x, float y)
    {
       return a * x + y;
transform(x.begin(), x.end(), y.begin(), y.begin(), saxpy(a));
```

Summary

- Manycore processors provide useful parallelism
- Programming models like CUDA and OpenCL enable productive parallel programming
- They abstract SIMD, making it easy to use wide SIMD vectors
- CUDA and OpenCL encourages SIMD friendly, highly scalable algorithm design and implementation
- Thrust is a productive C++ library for CUDA development

Questions?

Bryan Catanzaro

bcatanzaro@nvidia.com

http://research.nvidia.com