An Introduction to CUDA/OpenCL
and Manycore Graphics Processors

Bryan Catanzaro, NVIDIA Research

Overview

‘erminology: Multicore, Manycore, SIMD
The CUDA and OpenCL programming models
Mapping CUDA to Nvidia GPUs

OpenCL

2/48

Heterogeneous Parallel Computing

EEENEEEN EEEEEEEN
EEEEEEEE EEEEEEEE

L o 4

0000000 OOOO0O0OoOoO
0O0000O00 O0000000
EEEEEEEE EEEEEEEE
ENEnEEEE EEEEEEEN
OO0O00O000 oooooood
DO0ODLOO0 OOooood

Multicore CPU

Fast Serial Scalable Parallel
Processing Processing

3/48

Multicore and Manycore

7S 7S s
- /0 - £ 0N e g (\;i_:@
7=)Ll) (L Sy S S
5 <) W g = W W 2 2
“TONAE “TNAE U
vy g

SN

SN
Y7
/«%
Y7
b
Y7
/«%

j - W \ 7\/ j - w \\‘ 7\/ [Tl (gii» [Tl
2R % 2R /% ‘ NN NS =
Na S Na S >N AN >N
24 & 4 s s i
Multicore Manycore

Multicore: yoke of oxen
Each core optimized for executing a single thread
Manycore: flock of chickens

Cores optimized for aggregate throughput,
deemphasizing individual performance

Y e ud
/«%

7% 7%
N N

Y e ud
/«%

7%
N

Y e ud
/«%

4148

Multicore & Manycore, cont.

Processing Elements

Resident Strands/
Threads (max)

SP GFLOP/s

Memory Bandwidth
Register File

Local Store/L1 Cache
L2 Cache

L3 Cache

6 cores, 2 issue,
4 way SIMD
@3.46 GHz

6 cores, 2 threads, 4
way SIMD:

48 strands
166
32 GB/s
6 kB (?)
192 kB
1536 kB

12 MB

14 SMs, 2 issue, 16
way SIMD
@1.15 GHz

14 SMs, 48 SIMD
vectors, 32 way
SIMD:
21504 threads

1030
144 GB/s
1.75 MB

896 kB
0.75 MB

Ferm| (4onm)

e b B ~.
dHE F-- :
Ll -A—-L... 2

-
-
-
3
-
-
g
r.A

5/48

Why Heterogeneity?

Different goals produce different designs

Manycore assumes work load is highly
Multicore must be good at everything,

Ddla

Ddld

or not

Multicore: minimize latency experienced by 1 thread

lots of big on-chip caches
extremely sophisticated control

Manycore: maximize throughput of all threads

lots of big ALUs

multithreading can hide latency ... so skip the big caches

simpler control, cost amortized over ALUs via SIMD

6/48

cI1SD SIMD
; é width=2
C GG

Single Instruction Multiple Data architectures make use
of data parallelism

We care about SIMD because of area and power
efficiency concerns

Amortize control overhead over SIMD width
Parallelism exposed to programmer & compiler

7/48

SIMD: Neglected Parallelism

It is difficult for a compiler to exploit SIMD
How do you deal with sparse data & branches?

Many languages (like C) are difficult to vectorize

Fortran is somewhat better
Most common solution:

Either forget about SIMD
= Pray the autovectorizer likes you

Or instantiate intrinsics (assembly language)
Requires a new code version for every SIMD extension

8/48

A Brief History of x86 SIMD Extensions

g*gbitint MVIV)Y SSEy.2
4*32 bit FP SSE N, @ 8*32 bit FP
2%64 bit FP JSie) =) AD &SV 3 operand
. 256 bit Int ops,
Horizontal ops SSE3 AVX2 Cather
SSSE3 3aNow!
c12 bit SSEL.A

SSE4.1

U

U

(Ll
Ul

9/48

What to do with SIMD?

4, way SIMD (SSE) 16 way SIMD (LRB)

Neglecting SIMD is becoming more expensive

AVX: 8 way SIMD, Larrabee: 16 way SIMD,
Nvidia: 32 way SIMD, ATI: 64 way SIMD

This problem composes with thread level parallelism
We need a programming model which addresses both
problems

10/48

The CUDA Programming Model

CUDA is a recent programming model, designed for

Manycore architectures
Wide SIMD parallelism

Scalability

CUDA provides:
A thread abstraction to deal with SIMD
Synchronization & data sharing between small groups of threads

CUDA programs are written in C++ with minimal extensions

OpenCL is inspired by CUDA, but HW & SW vendor neutral

Similar programming model, C only for device code
11/48

Hierarchy of Concurrent Threads

Parallel composed of many threads
all threads execute the same sequential program §
Threads are grouped into e
threads in the same block can cooperate §

Threads/blocks have unique IDs

12/48

What is a CUDA Thread?

Independent thread of execution
has its own PC, variables (registers), processor state, etc.
no implication about how threads are scheduled

CUDA threads might be threads
as mapped onto NVIDIA GPUs

CUDA threads might be threads
might pick 1 block = 1 physical thread on multicore CPU

13/48

What is a CUDA Thread Block?

Thread block = a (data)
all blocks in kernel have the same entry point

but may execute any code they want

Thread blocks of kernel must be tasks
program valid for any interleaving of block executions

14/48

CUDA Supports:

Thread parallelism

each thread is an independent thread of execution

Data parallelism
across threads in a block
across blocks in a kernel

Task parallelism

different blocks are independent

independent kernels executing in separate streams

15/48

Synchronization

Threads within a block may synchronize with

. Step 1 ..

.. Step 2 ..

Blocks via atomic memory operations
e.g., increment shared queue pointer with

Implicit barrier between

vec_minus<<<nblocks, blksize>»>>(a, b, c);

vec_dot<<<nblocks, blksize>>>(c, c);

16/48

Blocks must be iIndependent

Any possible interleaving of blocks should be valid

presumed to run to completion without pre-emption
canrunin any order
can run concurrently OR sequentially

Blocks may coordinate but not synchronize

shared queue pointer:

shared lock: BAD ... can easily deadlock

Independence requirement gives

17/48

Scalability

Manycore chips exist in a diverse set of configurations

Number of SMs

35
30
25
20
15
10

j m .

8300GS 9400M 8800GTX GTX28g

CUDA allows one binary to target all these chips
Thread blocks bring scalability!

18/48

Hello World: Vector Addition

//Compute vector sum C=A+B

//Each thread performs one pairwise addition

~ global void vecAdd(float* a, float* b, float* c) {
int 1 = blockIdx.x * blockDim.x + threadIdx.Xx;
c[i] al[i] + b[i];

}

int main() A
//Run N/256 blocks of 256 threads each
vecAdd<<<N/256, 256>>>(d a, d b, d c);

}

19/48

Memory model

Per-thread
Local Memory
—

=

Per-block

Shared Memory
S —

20/48

Memory model

Kernel o

Sequential
Kernels

-

-

Kernel 1

-

-

-
-

>

Per Device
Global
«—— Memory

22222

Memory model

Host
Memory

Device O
Memory

Device 1
Memory

22/48

Hello World: Managing Data

int main() {
int N = 256 * 1024;
float* h_a = malloc(sizeof(float) * N);
//Similarly for h_b, h _c. Initialize h_a, h_ b

float *d _a, *d b, *d c;
cudaMalloc(&d a, sizeof(float) * N);
//Similarly for d b, d c

cudaMemcpy(d_a, h_a, sizeof(float) * N, cudaMemcpyHostToDevice);
//Similarly for d b

//Run N/256 blocks of 256 threads each
vecAdd<<<N/256, 256>>>(d a, d b, d c);

cudaMemcpy(h_c, d_c, sizeof(float) * N, cudaMemcpyDeviceToHost);

23/48

Using per-block shared memory

Variables shared across block Block 7
int *begin, *end; Q:JT
Scratchpad memory | KKK ®
int scratch[BLOCKSIZE]; =
scratch]] = begin[;
begin]] = scratch] 15
Communicating values between threads
scratch]] = begin] I
int left = scra%ch[- 1];

Per-block shared memory is faster than L1 cache, slower
than register file

It is relatively small: register file is 2-4x larger

24/48

CUDA: Minimal extensions to C/C++

Declaration specifiers to indicate where things live
void KernelFunc(...); // kernelcallablefrom host
void DeviceFunc(...); // functioncallable ondevice
int GlobalVvar; // variable in device memory
int SharedVar; // in per-block shared memory

Extend function invocation syntax for parallel kernel launch
KernelFunc (...); // 500 blocks, 128 threads each

Special variables for thread identification in kernels
dim3 ; dim3 ; dim3 ;

Intrinsics that expose specific operations in kernel code
; // barrier synchronization

25/48

CUDA: Features available on GPU

Double and single precision (IEEE compliant)

Standard mathematical functions
, etc.

I/ I/ I/ / /

Atomic memory operations
/ I/ I/ I/ etC

These work on both global and shared memory

26/48

CUDA: Runtime support

Explicit memory allocation returns pointers to GPU memory

I

Explicit memory copy for host © device, device © device

I I [

Texture management

I I []

OpenGL & DirectX interoperability

/ J "o

27/48

OpenCL is supported by AMD {CPUs, GPUs} and Nvidia

Intel, Imagination Technologies (purveyor of GPUs for
iPhone/OMAP/etc.) are also on board

OpenCL's data parallel execution model mirrors CUDA,

but with different terminology Write A| [Write B

OpenCL has rich N N\

- Write C Kernel A| |Kernel C
task parallelism model ~L
Runtime walks a dataflow DAG of Kernel B /\ReadA
kernels/memory transfers N
Kernel D

Read B

28/48

CUDA and OpenCL correspondence

Thread Work-item
Thread-block Work-group

Global memory Global memory
Constant memory Constant memory
Shared memory Local memory

Local memory Private memory
__global__ function __kernel function
__device function no qualification needed
__constant__ variable __constant variable
__device_ variable __global variable

~_shared variable __local variable

29/48

OpenCL and SIMD

SIMD issues are handled separately by each runtime

AMD GPU

Vectorize over 64-way SIMD, but not over 4/5-way VLIW

= Use float4 vectors in your code

AMD CPU
No vectorization

= Use floaty vectors in your code (float8 when AVX appears?)

Nvidia GPU

Full vectorization, li
= Prefers scalar code

<e CUDA

her work-item

30/48

Imperatives for Efficient CUDA Code

Expose abundant fine-grained parallelism
need 1000’s of threads for full utilization

Maximize on-chip work
on-chip memory orders of magnitude faster

Minimize execution divergence
SIMT execution of threads in 32-thread warps

Minimize memory divergence
warp loads and consumes complete 128-byte cache line

31/48

Mapping CUDA to Nvidia GPUs

CUDA is designed to be functionally forgiving
First priority: make things work. Second: get performance.

However, to get good performance, one must understand how
CUDA is mapped to Nvidia GPUs

Threads: each threadis a SIMD vector lane

Warps: ASIMD instruction acts on a “warp”
Warp width is 32 elements: LOGICAL SIMD width

Thread blocks: Each thread block is scheduled onto an SM
Peak efficiency requires multiple thread blocks per SM

32/48

Mapping CUDA to a GPU, continued

The GPU is very deeply pipelined to maximize throughput

This means that performance depends on the number of
thread blocks which can be allocated on a processor

Therefore, resource usage costs performance:
More registers => Fewer thread blocks
More shared memory usage => Fewer thread blocks

It is often worth trying to reduce register count in order to
get more thread blocks to fit on the chip

For Fermi, target 20 registers or less per thread for full
occupancy 33/48

Occupancy (Constants for Fermi)

The Runtime tries to fit as many thread blocks
simultaneously as possible on to an SM

The number of simultaneous thread blocks (B) is < 8

B*T <48 (Each SM has schedu
The number of threads per war

B *T *V * Registers per thread

he number of warps per thread block (T) <32

er space for 48 warps)

0 (V) is 32
< 32768

B * Shared memory (bytes) per block < 49152/16384

Depending on Shared memory/L1 cache configuration

Occupancy is reportedas B * T [48

34/48

SIMD & Control Flow

Nvidia GPU hardware handles control flow divergence
and reconvergence

Write scalar SIMD code, the hardware schedules the SIMD
execution

One caveat: can't appearin a divergent
path

= This will cause programs to hang

Good performing code will try to keep the execution
convergent within a warp

= Warp divergence only costs because of a finite instruction
cache

35/48

Memory, Memory, Memory

A many core processor = A device for turning a
compute bound problem into a memory bound problem

Control ALU ALU
ALU ALU

Cache

DRAM DRAM
CPU GPU

Lots of processors, only one socket
Memory concerns dominate performance tuning

36/48

Memory is SIMD too

Virtually all processors have SIMD memory subsystems

0/l 23 45 6 7

—

cache line width

his has two effects:

Sparse access wastes bandwidth
01 2 3 456 7 2 words used, 8 words loaded:

——— Y effective bandwidth

Unaligned access wastes bandwidth

4, words used, 8 words loaded:

M 1/ effective bandwidth

37/48

Coalescing

GPUs and CPUs both perform memory transactions at a
larger granularity than the program requests (“cache
line”)

GPUs have a “coalescer”, which examines memory
requests dynamically and coalesces them

To use bandwidth effectively, when threads load, they
should:

Present a set of unit strided loads (dense accesses)
Keep sets of loads aligned to vector boundaries

38/48

Data Structure Padding

i 2 BN e

i (row major)

Multidimensional arrays are usually stored as monolithic

vectors in memory
Care should be taken to assure aligned memory

accesses for the necessary access pattern

i > B Bl '
- o

39/48

Sparse Matrix Vector Multiply

Problem: Sparse Matrix Vector Multiplication
How should we represent the matrix?

Can we take advantage of any structure in this matrix?

40/48

Diagonal representation

Since this matrix has nonzeros
only on diagonals, let’s project
the diagonals into vectors
Sparse representation
becomes dense

Launch a thread per row

Are we done?

The straightforward diagonal
projection is not aligned

41/48

Optimized Diagonal Representation

padding

I
I —
I —
I
i —

Skew the diagonals again
This ensures that all memory
loads from matrix are
coalesced

Don't forget padding!

42[48

SoA, AoS

Different data access patterns may also require
transposing data structures

, : NSRS
— e e
Array of Structs Structure of Arrays

The cost of a transpose on the data structure is often
much less than the cost of uncoalesced memory accesses
Use shared memory to handle block transposes

43/48

“Forrers

There exist many tools and libraries for GPU
programming

hrust is now part of the CUDA SDK

C++ libraries for CUDA programming, inspired by STL

Many important algorithms:

reduce, sort, reduce_by_key, scan, ...

Dramatically reduces overhead of managing
heterogeneous memory spaces

Includes OpenMP backend for multicore programming

4448

Hello World of Thrust

#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <thrust/sort.h>

#include <cstdlib>

main()
{
// generate 32M random numbers on the host
thrust:: <int> h_vec(32 << 20);
thrust:: (h_vec.begin(), h_vec.end(), rand);
// transfer data to the device
thrust:: < > d_vec = h_vec;
// sort data on the device (846M keys per sec on GeForce GTX 480)
thrust:: (d_vec.begin(), d_vec.end());
// transfer data back to host
thrust:: (d_vec.begin(), d_vec.end(), h_vec.begin());
return 0;
}

45/48

saxpy In Thrust

// C++ functor replaces _ _global function

saxpy
{
d;
saxpy (_a) : a(_a) {}
operator()(X, y)
{
a*Xx+y;
}
¥

(x.begin(), x.end(), y.begin(), y.begin(), saxpy(a));

46/48

Summary

Manycore processors provide useful parallelism
Programming models like CUDA and OpenCL enable
oroductive parallel programming

They abstract SIMD, making it easy to use wide SIMD
vectors

CUDA and OpenCL encourages SIMD friendly, highly
scalable algorithm design and implementation
Thrust is a productive C++ library for CUDA
development

47148

Questions?

Bryan Catanzaro

bcatanzaro@nvidia.com

http://research.nvidia.com

4848

