An Introduction to GPUs,
CUDA and OpenCL

Bryan Catanzaro, NVIDIA Research




Overview

Heterogeneous parallel computing

he CUDA and OpenCL programming models

Writing efficient CUDA code

Thrust: making CUDA C++ productive

2/54



Heterogeneous Parallel Computing

InEnEnEN SEEEEEEE
IEEEENEE EEEEEEEE
00000000 O00000O00
EEEEEEEE EEEEEEER
ENEnEEEE EEEEEEEN

L o 4

00000000 Oooooood
0O0000O00 O0000000
EEEEEEEE EEEEEEEE
ENEnEEEE EEEEEEEN
OO0O00O000 oooooood
DO0ODLOO0 OOooood

Latency-Optimized
CPU

Fast Serial Scalable Parallel
Processing Processing

3/54



Why do we need heterogeneity?

Why not just use latency optimized processors?

Once you decide to go parallel,
why not go all the way

And reap more benefits

For many applications,
throughput optimized processors
are more efficient: faster and use
less power

Advantages can be fairly significant

4154



Why Heterogeneity?

Different goals produce different designs

Throughput optimized: assume work load is highly parallel

Latency optimized: assume work loac

To minimize latency experienced by 1
lots of big on-chip caches
sophisticated control

is mostly sequential

thread:

To maximize throughput of all threads:

multithreading can hide latency ... so s
simpler control, cost amortized over A

<ip the big caches

_Us via SIMD

5/54



Latency vs. Throughput

6 cores, 2 issue,

Processing Elements 4 way SIMD
@3.46 GHz
6 cores, 2 threads, 4
Resident Strands/ way SIMD:
Threads (max)
48 strands
SP GFLOP/s 166
Memory Bandwidth 32 GB/s
Register File ~6 kB
Local Store/L1 Cache 192 kB
L2 Cache 1.5 MB
L3 Cache 12 MB

14 SMs, 2 issue, 16
way SIMD | i L
@1.15 GHz B S Er b bt Bat:jtjE E:

14 SMs, 48 SIMD
vectors, 32 way
SIMD:
21504 threads

1030
144 GB/s
1.75 MB

896 kB
0.75 MB

-
-

-
3
-
-
g
r.A

Ferm| (4onm)

6/54



cI1SD SIMD
; é width=2
C GG

Single Instruction Multiple Data architectures make use
of data parallelism

We care about SIMD because of area and power
efficiency concerns

Amortize control overhead over SIMD width
Parallelism exposed to programmer & compiler

7/54



SIMD: Neglected Parallelism

OpenMP [ Pthreads [ MPI all neglect SIMD parallelism
Because it is difficult for a compiler to exploit SIMD
How do you deal with sparse data & branches?

Many languages (like C) are difficult to vectorize

Most common solution:
Either forget about SIMD

* Pray the autovectorizer likes you
Or instantiate intrinsics (assembly language)
Requires a new code version for every SIMD extension

8/54



Can we just ignore SIMD?

o Used Wasted

4 way SIMD (SSE) 16 way SIMD (MIC)

Neglecting SIMD is becoming more expensive
AVX: 8 way, MIC: 16 way, Nvidia: 32 way, AMD GPU: 64 way

This problem composes with thread level parallelism
We need a programming model which addresses both
SIMD and threads o5t



The CUDA Programming Model

CUDA is a programming model designed for:
Throughput optimized architectures
Wide SIMD parallelism

Scalability

CUDA provides:
A thread abstraction to deal with SIMD
Synchronization & data sharing between small groups of threads

CUDA programs are written in C++ with minimal extensions

OpenCL is inspired by CUDA, but HW & SW vendor neutral

Similar programming model, C only for device code
10/54



Hierarchy of Concurrent Threads

Parallel composed of many threads
all threads execute the same sequential program §
Threads are grouped into e
threads in the same block can cooperate §

Threads/blocks have unique IDs

11/54



Hello World: Vector Addition

//Compute vector sum C=A+B

//Each thread performs one pairwise addition

~ global  void vecAdd(float* a, float* b, float* c) {
int 1 = blockIdx.x * blockDim.x + threadIdx.Xx;
c[i] al[i] + b[i];

}

int main() A
//Run N/256 blocks of 256 threads each
vecAdd<<<N/256, 256>>>(d a, d b, d c);

}

12/54



What is a CUDA Thread?

Independent thread of execution

nas its own program counter, variables (registers),
Drocessor state, etc.

no implication about how threads are scheduled

CUDA threads might be threads
as mapped onto NVIDIA GPUs

CUDA threads might be threads
might pick 1 block = 1 physical thread on multicore CPU

13/54



What is a CUDA Thread Block?

Thread block = a (data)
all blocks in kernel have the same entry point

but may execute any code they want

Thread blocks of kernel must be tasks
program valid for any interleaving of block executions

14/54



CUDA Supports:

Thread parallelism

each thread is an independent thread of execution

Data parallelism
across threads in a block
across blocks in a kernel

Task parallelism

different blocks are independent

independent kernels executing in separate streams

15/54



Synchronization

Threads within a block may synchronize with

. Step 1 ..

.. Step 2 ..

Blocks via atomic memory operations
e.g., increment shared queue pointer with

Implicit barrier between

vec_minus<<<nblocks, blksize>»>>(a, b, c);

vec_dot<<<nblocks, blksize>>>(c, c);

16/54



Blocks must be iIndependent

Any possible interleaving of blocks should be valid

presumed to run to completion without pre-emption
canrunin any order
can run concurrently OR sequentially

Blocks may coordinate but not synchronize

shared queue pointer:

shared lock: BAD ... can easily deadlock

Independence requirement gives

17/54



Scalability

How do we write code that scales for parallel processors
of different sizes?

Number of SMs

35
30
25
20
15
10

j m .

8300GS 9400M 8800GTX GTX28g

CUDA allows one binary to target all these chips
Thread blocks bring scalability!

18/54



Memory model

Per-thread
Local Memory
—

=

Per-block

Shared Memory
S —

19/54



Memory model

Kernel o

Sequential
Kernels

-

-

Kernel 1

-

-

-
-

>

Per Device
Global
«—— Memory

22222



Memory model

Host
Memory

Device O
Memory

Device 1
Memory

21/54



Hello World: Managing Data

int main() {
int N = 256 * 1024;
float* h_a = malloc(sizeof(float) * N);
//Similarly for h_b, h _c. Initialize h_a, h_ b

float *d _a, *d b, *d c;
cudaMalloc(&d a, sizeof(float) * N);
//Similarly for d b, d c

cudaMemcpy(d_a, h_a, sizeof(float) * N, cudaMemcpyHostToDevice);
//Similarly for d b

//Run N/256 blocks of 256 threads each
vecAdd<<<N/256, 256>>>(d a, d b, d c);

cudaMemcpy(h_c, d_c, sizeof(float) * N, cudaMemcpyDeviceToHost);

22/54



CUDA: Minimal extensions to C/C++

Declaration specifiers to indicate where things live
void KernelFunc(...); // kernelcallablefrom host
void DeviceFunc(...); // functioncallable ondevice
int GlobalVvar; // variable in device memory
int SharedVar; // in per-block shared memory

Extend function invocation syntax for parallel kernel launch
KernelFunc (...); // 500 blocks, 128 threads each

Special variables for thread identification in kernels
dim3 ; dim3 ;  dim3 ;

Intrinsics that expose specific operations in kernel code
; // barrier synchronization

23/54



Using per-block shared memory

Variables shared across block Block 7
int *begin, *end; Q:JT
Scratchpad memory | KKK ®
int scratch[BLOCKSIZE]; =
scratch] ] = begin[ ;
begin] ] = scratch] 15
Communicating values between threads
scratch] ] = begin] I
int left = scra%ch[ - 1];

Per-block shared memory is faster than L1 cache, slower
than register file

It is relatively small: register file is 2-4x larger

24/54



CUDA: Features available on GPU

Double and single precision (IEEE compliant)

Standard mathematical functions
, etc.

I/ I/ I/ / /

Atomic memory operations
/ I/ I/ I/ etC

These work on both global and shared memory

25/54



OpenCL has broad industry support

OpenCl’'s data parallel execution model mirrors CUDA,
but with different terminology wieal [WiteB

OpenCL hasrich NN\

. Write C
task parallelism model ”Qzem Kernel C
Runtime walks a dependence DAG of Kernel B Read A
kernels/memory transfers N
Kernel D

Read B

26/54



CUDA and OpenCL correspondence

Thread Work-item
hread-block Work-group
Global memory Global memory
Constant memory Constant memory
Shared memory Local memory
Local memory Private memory
__global__ function __kernel function
__device function no qualification needed
__constant__ variable ___constant variable
__device  variable __global variable
__shared__ variable __local variable

More information:

http://developer.amd.com/zones/openclzone/programming/pages/portingcudatoopencl.aspx
27/54




OpenCL and SIMD

SIMD issues are handled separately by each runtime
AMD CPU Runtime

No vectorization
= Use floaty vectors in your code (float8 when AVX appears?)

Intel CPU Runtime

Vectorization optional, using floats4/float8 vectors good idea
Nvidia GPU Runtime

Full vectorization, like CUDA
= Prefers scalar code per work-item

AMD GPU Runtime

Full vectorization

28/54



Imperatives for Efficient CUDA Code

Expose abundant fine-grained parallelism
need 1000’s of threads for full utilization on GPU

Maximize on-chip work
on-chip memory orders of magnitude faster

Minimize execution divergence
SIMT execution of threads in 32-thread warps

Minimize memory divergence
warp loads and consumes complete 128-byte cache line

29/54



Memory, Memory, Memory

A many core processor = A device for turning a
compute bound problem into a memory bound problem
Kathy Yelick, Berkeley

Control ALU ALU
ALU ALU

Cache

DRAM DRAM
CPU GPU

Lots of processors, only one socket
Memory concerns dominate performance tuning

30/54



Memory is SIMD too

Virtually all processors have SIMD memory subsystems

0/l 23 45 6 7

—

cache line width

his has two effects:

Sparse access wastes bandwidth
01 2 3 456 7 2 words used, 8 words loaded:

_——_— Y effective bandwidth

Unaligned access wastes bandwidth

4, words used, 8 words loaded:

M 1/ effective bandwidth

31/54



Coalescing

GPUs and CPUs both perform memory transactions at a
larger granularity than the program requests (eg, a
cache line)

GPUs have a “coalescer”, which examines memory
requests dynamically and coalesces them

To use bandwidth effectively, when threads load, they
should:

Present a set of unit strided loads (dense accesses)
Keep sets of loads aligned to vector boundaries

32/54



Data Structure Padding

i 2 BN e

i (row major)

Multidimensional arrays are usually stored as monolithic

vectors in memory
Care should be taken to assure aligned memory

accesses for the necessary access pattern

i > B Bl '
- o

33/54



SoA, AoS

Different data access patterns may also require
transposing data structures

, : NSRS
— e e
Array of Structs Structure of Arrays

The cost of a transpose on the data structure is often
much less than the cost of uncoalesced memory accesses

34/54



Making CUDA Programming ,f,A
Productive

* Libraries are critical to parallel computing

Sort
a BLAS © Scan

* Heterogeneity makes performance portability challenging

* Low-level programming models like CUDA and OpenCL
can result in overfitting to a particular piece of hardware

* And if you're like me, often make your code slow
* My SGEMM isn’t as good as NVIDIA’s

© 2012 NVIDIA Corporation 35/54



<3

NVIDIA

* A C++ template library for CUDA
® Mimics the C++ STL

® Containers
® On host and device

* Algorithms

# Sorting, reduction, scan, etc.

© 2012 NVIDIA Corporation 36/54



Diving In <3

NVIDIA.




Containers <3

NVIDIA

* Concise and readable code
* Avoids common memory management errors

© 2012 NVIDIA Corporation 38/54



lterators >

NVIDIA

* Pair of iterators defines a range

© 2012 NVIDIA Corporation 39/54



lterators >

NVIDIA

* lterators act like pointers

© 2012 NVIDIA Corporation 40/54



lterators >

NVIDIA

* Encode memory location
* Automatic algorithm selection

© 2012 NVIDIA Corporation 41/54



Algorithms >

NVIDIA

* Elementwise operations

. for each, transform, gather, scatter ...

* Reductions

® reduce, 1nner product, reduce by key ...

® Prefix-Sums

® inclusive scan, inclusive scan by key...

® Sorting

® sort, stable sort, sort by key...

© 2012 NVIDIA Corporation 42/54



Algorithms <3

NVIDIA.

* Standard operators

© 2012 NVIDIA Corporation 43/54



Algorithms <3

NVIDIA

* Standard data types

© 2012 NVIDIA Corporation 44/54



Interoperability >

NVIDIA

® Convert iterators to raw pointers & use with CUDA code

© 2012 NVIDIA Corporation 45/54



Productivity Implications >

NVIDIA

® Consider a serial reduction

© 2012 NVIDIA Corporation 46/54



Productivity Implications >

NVIDIA

® Consider a serial reduction

© 2012 NVIDIA Corporation 47/54



Productivity Implications >

NVIDIA

® Consider a serial reduction

© 2012 NVIDIA Corporation 48/54



Productivity Implications >

NVIDIA.

® Compare to low-level CUDA

© 2012 NVIDIA Corporation 49/54



Leveraging Parallel Primitives =

NVIDIA

* Use sort liberally

\ J

Y
Intel Core i7 950 NVIDIA GeForce 480

© 2012 NVIDIA Corporation 50/54



Input-Sensitive Optimizations rf,%A

2500

..

N
-
-
o

RN
&)
-
o

Sorting Rate (Mkey/s)
o
o
o

o)
-
o

O rF -+ r o+ %+~~~ o+~~~ ++—+r+rr+—& &t ° ° ° °T T 1T "
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Key Bits

© 2012 NVIDIA Corporation 51/54



Thrust on github

NVIDIA

Get Started Documentation Community Get Thrust

* Quick Start Guide

dard Teny

O
d O

high-performance ap y with Thrust!

* Examples

* Documentation

lude <t
lude <
lude
lude <
lude <t
lude
lude

* Mailing list (thrust-users)

data back to ki
|_vea.begin(), d_vec.end(), h_wvec.begin());

return 0;

© 2012 NVIDIA Corporation 52/54



Summary

Heterogeneous parallel computing is here

We need both latency and throughput optimized
processing

Programming models like CUDA and OpenCL enable us
to capitalize on heterogeneity

CUDA and OpenCL encourage SIMD friendly, highly
scalable algorithm design and implementation

Thrust is a productive, efficient C++ library for CUDA
development

53/54



Questions?

Bryan Catanzaro

bcatanzaro@nvidia.com

http://research.nvidia.com

54/54






SIMD & Control Flow

Nvidia GPU hardware handles control flow divergence
and reconvergence

Write scalar SIMD code, the hardware schedules the SIMD
execution

One caveat: can't appearin a divergent
path

= This will cause programs to hang

Good performing code will try to keep the execution
convergent within a warp

= Warp divergence only costs because of a finite instruction
cache

56/54



Mapping CUDA to Nvidia GPUs

CUDA is designed to be functionally forgiving
First priority: make things work. Second: get performance.

However, to get good performance, one must understand how
CUDA is mapped to Nvidia GPUs

Threads: each threadis a SIMD vector lane

Warps: ASIMD instruction acts on a “warp”
Warp width is 32 elements: LOGICAL SIMD width

Thread blocks: Each thread block is scheduled onto an SM
Peak efficiency requires multiple thread blocks per SM

57/54



Mapping CUDA to a GPU, continued

The GPU is very deeply pipelined to maximize throughput

This means that performance depends on the number of
thread blocks which can be allocated on a processor

Therefore, resource usage costs performance:
More registers => Fewer thread blocks
More shared memory usage => Fewer thread blocks

It is often worth trying to reduce register count in order to
get more thread blocks to fit on the chip

For Fermi, target 20 registers or less per thread for full
occupancy 58/54



Occupancy (Constants for Fermi)

The Runtime tries to fit as many thread blocks
simultaneously as possible on to an SM

The number of simultaneous thread blocks (B) is < 8
he number of warps per thread block (T) <32
Each SM has scheduler space for 48 warps (W)
B*T <W=48
The number of threads per warp (V) is 32
B *T *V * Registers per thread < 32768
B * Shared memory (bytes) per block < 49152/16384

Depending on Shared memory/L1 cache configuration
Occupancy isreportedasB*T /W

59/54



