PARLab Parallel Boot Camp
VAN

YA
-
B

Cloud Computing with MapReduce
and Hadoop

Matei Zaharia
Electrical Engineering and Computer Sciences
University of California, Berkeley

| III What is Cloud Computing? /A

» "Cloud” refers to large Internet services like Google,
Yahoo, etc that run on 10,000's of machines

* More recently, "cloud computing” refers to services
by these companies that let external customers rent
computing cycles on their clusters

- Amazon EC2: virtual machines at 10¢/hour, billed hourly
- Amazon S3: storage at 15¢/GB/month

+ Attractive features:
- Scale: up to 100's of nodes
- Fine-grained billing: pay only for what you use
- Ease of use: sign up with credit card, get root access

I |Il What is MapReduce? ///"*\A&

- Simple data-parallel programming model designed for
scalability and fault-tolerance

* Pioneered by Google
- Processes 20 petabytes of data per day

* Popularized by open-source Hadoop project
- Used at Yahoo!, Facebook, Amazon, ...

G TERbED

| lII What is MapReduce used for?

- At Google:
- Index construction for Google Search
- Article clustering for Google News
- Statistical machine translation

- At Yahoo!:

- "Web map" powering Yahoo! Search
- Spam detection for Yahoo! Mail

+ At Facebook:
- Data mining
- Ad optimization
- Spam detection

['# Example: Facebook Lexicon AN

i
I J{ Jﬁ@ J/J U\J M ’% {&/UU M JM Wﬂf WUUWUL

www.facebook.com/lexicon

|'# Example: Facebook Lexicon

Search: | hola, salut, ciao
Suggestions: vacation | xoxo, xoxoxo | midterm, final | party tonight, hangover

B hola [salut B ciao

WMW’“MW“(‘\{\W vl
A A A s N e M ’\/"\f‘\/\f’vw AL

[1an1 TFeb1

2008

[oct1 [Novi |[Dec1
2007

[Mar1 [apr1 [May1l ljun1 i1l [Augl [Sep1 [oOct1 [Novi |Dec1 [jan1 |

2009

[

)

]

www.facebook.com/lexicon

| lII What is MapReduce used for?

* In research:
- Astronomical image analysis (Washington)
- Bioinformatics (Maryland)
- Analyzing Wikipedia conflicts (PARC)
- Natural language processing (CMU)
- Particle physics (Nebraska)
- Ocean climate simulation (Washington)
- <Your application here>

I |II Outline M

* MapReduce architecture

» Example applications

+ Getting started with Hadoop

» Higher-level languages over Hadoop: Pig and Hive

+ Amazon Elastic MapReduce

| III MapReduce Design Goals

1. Scalability to large data volumes:
- 1000's of machines, 10,000's of disks

2. Cost-efficiency:
- Commodity machines (cheap, but unreliable)
- Commodity network
- Automatic fault-tolerance (fewer administrators)
- Easy to use (fewer programmers)

| lII Typical Hadoop Cluster

Aggregation switch

<+—» 8 gigabit
. <—>» 1 gigabit
Rack switch
Node
-.

» 40 nodes/rack, 1000-4000 nodes in cluster

* 1 Gbps bandwidth within rack, 8 Gbps out of rack

* Node specs (Yahoo terasort):
8 x 26Hz cores, 8 GB RAM, 4 disks (= 4 TB?)

| |II Challenges M

1. Cheap nodes fail, especially if you have many
- Mean time between failures for 1 node = 3 years
- Mean time between failures for 1000 nodes = 1 day
- Solution: Build fault-tolerance into system

2. Commodity network = low bandwidth
- Solution: Push computation to the data

3. Programming distributed systems is hard

- Solution: Data-parallel programming model: users write "map” &
“reduce” functions, system distributes work and handles faults

| lII Hadoop Components

+ Distributed file system (HDFS)

- Single namespace for entire cluster
- Replicates data 3x for fault-tolerance

* MapReduce framework

- Executes user jobs specified as "map" and "reduce”
functions

- Manages work distribution & fault-tolerance

| lII Hadoop Distributed File System

- Files split into 128MB blocks

- Blocks replicated across several
datanodes (usually 3)

- Single namenode stores
metadata (file names, block
locations, etc)

- Optimized for large files,
sequential reads

- Files are append-only

Namenode

Datanodes

| lII MapReduce Programming Model

- Data type: key-value records

* Map function:
(Kinf vin) > IiS.l-(Kin’rerw VinTer)

+ Reduce function:
(Kin‘rerf “ST(VinTer)) > “ST(KouT' vou‘r)

I lII Example: Word Count

def mapper(line):
foreach word in line.split():

output(word, 1)

def reducer(key, values):

output(key, sum(values))

I lII Word Count Execution

Input Map Shuffle & Sort Reduce Output
A the, 1 ﬂ
. brown, 1
the quick fox, 1 brown, 2
brown fox N fox 2
Reduce — ’
% how, 1
now, 1
the, 3
the fox ate a
the mouse
ate, 1 ate, 1
mouse, 1
Reduce]—> cow, 1
how now mouse, 1
brown cow quick, 1

| III MapReduce Execution Details

+ Single master controls job execution on multiple slaves

* Mappers preferentially placed on same node or same
rack as their input block

- Minimizes network usage

* Mappers save outputs to local disk before serving them
to reducers

- Allows recovery if a reducer crashes
- Allows having more reducers than nodes

I lII An Optimization: The Combiner

* A combiner is a local aggregation function for
repeated keys produced by same map

- Works for associative functions like sum, count, max
- Decreases size of intermediate data

+ Example: map-side aggregation for Word Count:

def combiner(key, values):

output(key, sum(values))

I lII Word Count with Combiner

Input Map & Combine Shuffle & Sort Reduce Output
A the, 1 ﬂ
. brown, 1
the quick fox, 1 brown, 2
brown fox N fox 2
Reduce — ’
J how, 1
now, 1
the, 3
the fox ate a
the mouse
how, 1 ate, 1 ate, 1
now, 1
mouse, 1
brown, 1 Reduce }—b cow, 1
how now mouse. 1
brown cow quick, 1

| III Fault Tolerance in MapReduce

1. If a task crashes:
- Retry on another node
» OK for a map because it has no dependencies
» OK for reduce because map outputs are on disk

- If the same task fails repeatedly, fail the job or ignore
that input block (user-controlled)

> Note: For these fault tolerance features to work,
your map and reduce tasks must be side-effect-free

| lII Fault Tolerance in MapReduce

2. If a node crashes:
- Re-launch its current tasks on other nodes
- Re-run any maps the node previously ran

» Necessary because their output files were lost along
with the crashed node

|'# Fault Tolerance in MapReduce ///"”\A&

3. If a task is going slowly (straggler):

- Launch second copy of task on another node
("speculative execution®)

- Take the output of whichever copy finishes first, and
kill the other

» Surprisingly important in large clusters

- Stragglers occur frequently due to failing hardware,
software bugs, misconfiguration, etc

- Single straggler may noticeably slow down a job

| III Takeaways /A

- By providing a data-parallel programming model,
MapReduce can control job execution in useful ways:

- Automatic division of job into tasks

- Automatic placement of computation near data
- Automatic load balancing

- Recovery from failures & stragglers

» User focuses on application, not on complexities of
distributed computing

I |II Outline M

* MapReduce architecture

» Example applications

+ Getting started with Hadoop

» Higher-level languages over Hadoop: Pig and Hive

+ Amazon Elastic MapReduce

I lII 1. Search

» Input: (lineNumber, line) records
- Output: lines matching a given pattern

* Map:

if(line matches pattern):

output(line)

+ Reduce: identify function
- Alternative: no reducer (map-only job)

' 2. sort NN

* Input: (key, value) records
» Output: same records, sorted by key

* Map: identity function
» Reduce: identify function

[A-M]

aardvark
ant
bee

» Trick: Pick partitioning - elephant

function h such that Reduce | [N-Z]

k1<k2 => h(k1)<h(k2) , sh;ep

|'# 3. Inverted Index ///,,,\A&

- Input: (filename, text) records
» Output: list of files containing each word

* Map:
foreach word in text.split():
output(word, filename)

+ Combine: uniquify filenames for each word

+ Reduce:
def reduce(word, filenames):
output(word, sort(filenames))

| lII Inverted Index Example

“hanlet. txt to, hamlet. txt
to be or be, hamlet.txt A
nottobe | or, hamlet.txt afraid, (12th.txt)
not, hamlet.txt be, (12th.txt, hamlet.txt)
greatness, (12th.txt)

not, (12th.txt, hamlet.txt)
of, (12th.txt)
A 12th 1t be, 12th.txt S or, (hamlet.txt)
not, 12th.txt to, (hamlet.txt)
be not — afraid, 12th.txt
afraid of of, 12th.txt
greafness greatness, 12th.txt

| ||I 4. Most Popular Words ///'A

* Input: (filename, text) records
» Output: top 100 words occurring in the most files

- Two-stage solution:
- Job 1:
» Create inverted index, giving (word, list(file)) records
- Job 2:
» Map each (word, list(file)) to (count, word)
» Sort these records by count as in sort job

- Optimizations:
- Map to (word, 1) instead of (word, file) in Job 1
- Count files in job 1's reducer rather than job 2's mapper
- Estimate count distribution in advance and drop rare words

I lII 5. Numerical Integration

» Input: (start, end) records for sub-ranges to integrate
- Easy using custom InputFormat

» Output: integral of f(x) dx over entire range

* Map:
def map(start, end):
sum = 0
for(x = start; x < end; x += step):
sum += f(x) * step
output(“”, sum)
+ Reduce:

def reduce(key, values):
output(key, sum(values))

I |II Outline M

* MapReduce architecture

» Example applications

+ Getting started with Hadoop

» Higher-level languages over Hadoop: Pig and Hive

+ Amazon Elastic MapReduce

| III Getting Started with Hadoop

* Download from hadoop.apache.org
- To install locally, unzip and set JAVA_HOME
- Details: hadoop.apache.org/core/docs/current/quickstart.html

* Three ways to write jobs:
- Java APTI
- Hadoop Streaming (for Python, Perl, etc)
- Pipes APT (C++)

I lII Word Count in Java

public class MapClass extends MapReduceBase
implements Mapper<LongWritable, Text, Text, IntWritable> {

private final static IntWritable ONE = new IntWritable(1);

public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> out,
Reporter reporter) throws IOException {
String line = value.toString();
StringTokenizer itr = new StringTokenizer(line);
while (itr.hasMoreTokens()) {
out.collect(new text(itr.nextToken()), ONE);
}
}
}

I lII Word Count in Java

public class ReduceClass extends MapReduceBase
implements Reducer<Text, IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> out,
Reporter reporter) throws IOException {
int sum = 0;
while (values.hasNext()) {
sum += values.next().get();

}
out.collect(key, new IntWritable(sum));

I lII Word Count in Java

public static void main(String[] args) throws Exception {
JobConf conf = new JobConf(WordCount.class);
conf.setJobName("wordcount");

conf.setMapperClass(MapClass.class);
conf.setCombinerClass(ReduceClass.class);

conf.setReducerClass(ReduceClass.class);

FileInputFormat.setInputPaths(conf, args[0]);
FileOutputFormat.setOutputPath(conf, new Path(args[1]));

conf.setOutputKeyClass(Text.class); // out keys are words (strings)
conf.setOutputValueClass(IntWritable.class); // values are counts

JobClient.runJob(conf);

I dNor'd Count in Python with Hadoop Streamin //\/\

Mapper.py: import sys
for line in sys.stdin:
for word in line.split():
print(word.lower() + "\t" + 1)

Reducer.py: import sys
counts = {}
for line in sys.stdin:
word, count = line.split("\t”)
dict[word] = dict.get(word, @) + int(count)
for word, count in counts:
print(word.lower() + "\t" + 1)

| |II Outline ///"’\A"¥

* MapReduce architecture

» Example applications

+ Getting started with Hadoop

» Higher-level languages over Hadoop: Pig and Hive

+ Amazon Elastic MapReduce

| # Motivation /NN

* Many parallel algorithms can be expressed by a series
of MapReduce jobs

» But MapReduce is fairly low-level: must think about
keys, values, partitioning, etc

» Can we capture common "job building blocks"?

II'IPig

- Started at Yahoo! Research
* Runs about 30% of Yahoo!'s jobs

* Features:
- Expresses sequences of MapReduce jobs
- Data model: nested "bags” of items
- Provides relational (SQL) operators (JOIN, GROUP BY, etc)
- Easy to plug in Java functions
- Pig Pen development environment for Eclipse

|'® An Example Problem

Suppose you have user
data in one file, page

 Load Users
view data in another, and h
you need to find the top

5 most visited pages by
users aged 18 - 25.

Joinonname
Growponurl
o clcks
Order by ks
ok top

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt

I lII In MapReduce

import java.io.IOException;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.io.Writable;

import org.apache.hadoop.io.WritableComparable;

import org.apache.hadoop.mapred.FileInputFormat;

import org.apache.hadoop.mapred.FileOutputFormat;

import org.apache.hadoop.mapred.JobConf;

import org.apache.hadoop.mapred.KeyValueTextInputFormat;
import org.apache.hadoop.mapred.Mapper;

import org.apache.hadoop.mapred.MapReduceBase;

import org.apache.hadoop.mapred.OutputCollector;

import org.apache.hadoop.mapred.RecordReader ;

import org.apache.hadoop.mapred.Reducer;

import org.apache.hadoop.mapred.Reporter;

import org.apache.hadoop.mapred.SequenceFileInputFormat;
import org.apache.hadoop.mapred.SequenceFileOutputFormat ;
import org.apache.hadoop.mapred.TextInputFormat;

import org.apache.hadoop.mapred.jobcontrol.Job;

import org.apache.hadoop.mapred.jobcontrol.JobC ontrol;
import org.apache.hadoop.mapred.lib.IdentityMapper;

public class MRExample {
public static class LoadPages extends MapReduceBase
implements Mapper<LongWritable, Text, Text, Text> {

public void map(LongWritable k, Text val,
outputCollector<Text, Text> oc,
Reporter reporter) throws IOException {
// Pull the key out
string line = val.tostring();
int firstComma = line.indexOf(',');
string key = line.substring(0, firstComma);
string value = line.substring(firstComma + 1);
Text outKey = new Text (key);

// Prepend an index to the value so we know which file

// it came from.
Text outVal = new Text("l" + value);
oc.collect (outKey, outval);
¥
}
public static class LoadAndFilterUsers extends MapReduceBase
implements Mapper<LongWritable, Text, Text, Text>

public void map(LongWritable k, Text val,
OutputCollector<Text, Text> oc,
Reporter reporter) throws IOException {
// Pull the key out
string line = val.tostring();
int firstComma = line.indexOf(;
string value = line.substring(firstComma + 1);
int age = Integer.parselInt(value);
if (age < 18 || age > 25) retur
string key = line.substring(0, firstComma);
Text outKey new Text (key);

// Prepend an index to the value so we know which file

// it came from.
Text outVal = new Text("2" + value);
oc.collect (outKey, outVal);

Y

public static class Join extends MapReduceBase
implements Reducer<Text, Text, Text, Text> {

public void reduce(Text key,
Iterator<Text> iter,
outputCollector<Text, Text> oc,
Reporter reporter) throws IOException {

// For each value, figure out which file it's from and

store it
// accordingly.
List<String> first = new ArrayList<string>();
List<String> second = new ArrayList<sString>();

while (iter.hasNext()) {
Text t = iter.next();
string value = t.toString();
if (value.charAt(0) EEDY
first.add(value.substring(1l));
else second.add(value.substring(1));

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt

reporter.setstatus("OK");
3

// Do the cross product and collect the values
for (string sl : first) {
for (String s2 : second) {
String outval = key + "," + sl + "," + s2;
oc.collect(null, new Text(outval));
reporter.setStatus("OK");

}
}
public static class LoadJoined extends MapReduceBase

implements Mapper<Text, Text, Text, LongWritable> {

public void map(

OutputCollector<Text, LongWritable> oc,
Reporter reporter) throws IOException {
// Find the url
string line = val.tostring();

int firstComma = line.indexOf(',');
int secondComma line.indexOf(',', first Comma);
String key = line.substring(firstComma, secondComma);

// drop the rest of the record, I don't need it anymore,

// just pass a 1 for the combiner/reducer to sum instead.

Text outKey = new Text(key);
oc.collect (outKey, new LongWritable(1L));
}
o .
public static class ReduceUrls extends MapReduceBase
implements Reducer<Text, LongWritable, WritableComparable,

Writable> {

public void reduce(
Text key,
Tterator<LongWritable> iter,
outputCollector<WritableComparable, Writable> oc,
Reporter reporter) throws IOException {
// Rdd up all the values we see

long sum = 0;
while (iter.hasNext()) {
sum += iter.next().get();

reporter.setStatus("OK");

}

oc.collect(key, new LongWritable(sum));

}

}
public static class LoadClicks extends MapReduceBase

implements Mapper<WritableComparable, Writable, LongWritable,
Text> {

public void map
WritableComparable key,
Writable val,
outputCollector<LongWritable, Text> oc,
Reporter reporter) throws IOException {

oc.collect((LongWritable)val, (Text)key);
}
}

public static class LimitClicks extends MapReduceBase
implements Reducer<LongWritable, Text, LongWritable, Text> {

int count = 0;

public void reduce(
LongWritable key,
Iterator<Text> iter,
OutputCollector<LongWritable, Text> oc,
Reporter reporter) throws IOException {

// only output the first 100 records

while (count < 100 && iter.hasNext()) {
oc.collect(key, iter.next());
count++;

}

}

public static void main(String[] args) throws IOException {
JobConf 1p = new JobConf (MRExample.class);
lp.setJobName("Load Pages");
1lp.setInputFormat (TextInputFormat.class);

1p.setOutputKeyClass (Text.class);

1p.setOutputvValueClass(Text.class);

1p.setMapperClass (LoadPages.class);

FileInputFormat.addInputPath(lp, new
Path("/user/gates/pages"));

FileOutputFormat.setOutputPath(lp,

new Path("/user/gates/tmp/indexed_pages"));
1p.setNumReduceTasks (0);
Job loadPages = new Job(lp);

JobConf 1fu = new JobConf (MRExample.class);
1fu.setJobName("Load and Filter Users");
1fu.setInputFormat (TextInputFormat.class);
1fu.setOutputKeyClass(Text.class);
1fu.setOutputValueClass (Text.class);
1fu.setMapperClass(LoadAndFilterUsers.class);
FileInputFormat.add InputPath(1lfu, new
Path("/user/gates/users"));
FileOutputFormat.setOutputPath(1lfu,
new Path("/user/gates/tmp/filtered users"));
1fu.setNumReduceTasks (0);
Job loadUsers = new Job(lfu);

JobConf join = new JobConf(MRExample.class);
join.setJobName("Join Users and Pages");
join.setInputFormat (KeyValueTextInputFormat.class);
join.setOutputKeyClass(Text.class);
join.setOutputvValueClass(Text.class)
join.setMapperClass (IdentityMap per.class);
join.setReducerClass(Join.class);
FileInputFormat.addInputPath(join, new
Path("/user/gates/tmp/indexed_pages"));
FileInputFormat.addInputPath(join, new
Path("/user/gates/tmp/filtered_users"));
FileOutputFormat.setoutputPath(join, new
Path("/user/gates/tmp/joined"));
join.setNumReduceTasks (50);
Job joinJob = new Job(join);
joinJob.addDependingJob(loadPages
joinJob.addDependingJob (loadUsers) ;

JobConf group = new JobConf (MRE xample.class);
group.setJobName ("Group URLs");
group.setInputFormat (KeyValueTextInputFormat.class);
group.setOutputKeyClass (Text.class);
group.setoutputvalueClass (LongWritable.class);
group.setOutputFormat (SequenceFi leOutputFormat.class);
group.setMapperClass(LoadJoined.class);
group.setCombinerClass (ReduceUrls.class);
group.setReducerClass (ReduceUrls.class);
FileInputFormat.addInputPath(group, new
Path("/user/gates/tmp/joined"));
FileOutputFormat.setOutputPath(group, new
Path("/user/gates/tmp/grouped"));
group.setNumReduceTasks (50);
Job groupJob = new Job(group);
groupJob.addDependingJob(joinJob);

JobConf topl00 = new JobConf (MRExample.class);
topl00.setJobName("Top 100 sites");
topl00.setInputFormat (SequenceFileInputFormat.class);
topl00.setOutputKeyClass (LongWritable.class);
topl00.setOutputValueClass (Text.class);
+topl00.setOutputFormat (SequenceFileOutputF ormat.class);
topl00.setMapperClass (LoadClicks.class);
+opl00.setCombinerClass(LimitClicks.class);
+opl00.setReducerClass (LimitClicks.class);
FileInputFormat.addInputPath(topl00, new
Path("/user/gates/tmp/grouped"));
FileOutputFormat.setOutputPath(topl00, new
Path("/user/gates/topl00sitesforusers18to25"));
topl00.setNumReduceTasks (1) ;
Job limit = new Job(topl00);
limit.addDependingJob(groupJob);

JobControl jec = new JobControl("Find top 100 sites for users

18 to 25");
jc.addJob(loadPages) ;
jc.addJob(loadUsers) ;
jc.addJob(joindob);
jc.addJob (groupJob) ;
jc.addJob(limit);
je.run();

I lIl In Pig Latin

Users
Filtered

Pages
Joined
Grouped =
Summed

Sorted =
Top5 =

store Top5

load ‘users’ as (name, age);
filter Users by
age >= 18 and age <= 25;
load ‘pages’ as (user, url);
join Filtered by name, Pages by user;
group Joined by url;
foreach Grouped generate group,
count(Joined) as clicks;
order Summed by clicks desc;
limit Sorted 5;

into ‘top5sites’;

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt

b IEdSe6f Translation

Notice how naturally the components of the job translate into Pig Latin.

‘LoadUsers - Load Pages
h Users = load ..
| —Filtered = filter ..
— Pages = load ..
*Joined = join ..
ﬁ/'Gr*ouped = group ..
////////»Summed = .. count()..
ﬁ Sorted = order ..

=//T0p5 = limit ..

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt

e

Notice how naturally the components of the job translate into Pig Latin.

—\1

— Users = load ..

—Filtered = filter ..

\\Pages = load ..

Job 3

Y4

HikE

*Joined = join ..

_—Grouped = group ..

Summed = .. count()..

/////)Sorted = order ..
7 Top5 = limit ..

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt

I III Hive

- Developed at Facebook
+ Used for majority of Facebook jobs

- "Relational database"” built on Hadoop
- Maintains list of table schemas
- SQL-like query language (HQL)
- Can call Hadoop Streaming scripts from HQL

- Supports table partitioning, clustering, complex
data types, some optimizations

| Sample Hive Queries

* Find top 5 pages visited by users aged 18-25:

SELECT p.url, COUNT(1) as clicks

FROM users u JOIN page views p ON (u.name = p.user)
WHERE u.age >= 18 AND u.age <= 25

GROUP BY p.url

ORDER BY clicks

LIMIT 5;

* Filter page views through Python script:

SELECT TRANSFORM(p.user, p.date)
USING 'map_script.py’

AS dt, uid CLUSTER BY dt

FROM page views p;

I |II Outline M

* MapReduce architecture

» Example applications

+ Getting started with Hadoop

» Higher-level languages over Hadoop: Pig and Hive

+ Amazon Elastic MapReduce

| ||I Amazon Elastic MapReduce ///'A

- Provides a web-based interface and command-line
tools for running Hadoop jobs on Amazon EC2

* Data stored in Amazon S3
* Monitors job and shuts down machines after use
+ Small extra charge on top of EC2 pricing

» If you want more control over how you Hadoop
runs, you can launch a Hadoop cluster on EC2
manually using the scripts in src/contrib/ec2

|'# Elastic MapReduce Workflow

Create a New Job Flow Cancel | X

— O

DEFINE JOB FLOW

Creating a job flow to process your data using Amazon Elastic MapReduce is simple and quick. Let's begin by giving your job flow a name

and selecting its type. If you don't already have an application you'd like to run on Amazon Elastic MapReduce, samples are available to
help you get started.

Job Flow Name*: My Job Flow

The name can be anything you like and doesn't need to be unique. It's a good idea to name the job flow something
descriptive.

Type*: (® Streaming
A Streaming job flow allows you to write single-step mapper and reducer functions in a language other than java.

(O Custom Jar (advanced)

A custom jar on the other hand gives you more complete control over the function of Hadoop but must be a
compiled java program. Amazon Elastic MapReduce supports custom jars developed for Hadoop 0.18.3.

() Pig Program

Pig is a SQL-like languange built on top of Hadoop. This option allows you to define a job flow that runs a Pig script,
or set up a job flow that can be used interactively via SSH to run Pig commands.

() Sample Applications

Select a sample application and click Continue. Subsequent forms will be filled with the necessary data to create a
sample Job Flow.

[Word Count (Streaming) g Word count is a Python application that counts occurrences of each word
in provided documents. Learn more and view license

Continue 4 * Required field

apReduce Workflow

Create a New Job Flow Cancel | X

O

SPECIFY PARAMETERS

Specify Mapper and Reducer functions to run within the Job Flow. The mapper and reducers may be either (i) class names referring to a
mapper or reducer class in Hadoop or (ii} locations in Amazon S3. (Click Here for a list of available tools to help you upload and download
files from Amazon S3.) The format for specifying a location in Amazon S3 is bucket_name/path_name. The location should point to an
executable program, for example a python program. Extra arguments are passed to the Hadoop streaming program and can specify things
such as additional files to be loaded into the distributed cache.

Input Location*: elasticmapreduce/samples/wordcount/input
The URL of the Amazon S3 Bucket that contains the input files.

Output Location*: <yourbucket>/wordcount/output/2009-08-19

The URL of the Amazon S3 Bucket to store output files. Should
be unique.

Mapper*: elasticmapreduce/samples/wordcount/wordSplitter.py

The mapper Amazon s3 location or streaming command to
execute.

Reducer*: aggregate

The reducer Amazon s3 location or streaming command to
execute.

Extra Args:

< Back EEES u’ * Required field

|'# Elastic MapReduce Workflow

Create a New Job Flow Cancel | x

O

CONFIGURE EC2 INSTANCES

Enter the number and type of EC2 instances you'd like to run your job flow on.

Number of Instances*: 4

The number of EC2 instances to run in your Hadoop cluster.
If you wish to run more than 20 instances, please complete the limit request form.

Type of Instance*: | small (m1.small) B

The type of EC2 instances to run in your Hadoop cluster (learn more about instance types).

¥ Show advanced options

< Back R 3 * Required field

educe Workflow

.".‘- Contact Us) Create an AWS Account
rramazon
%7 webservices” About AWS - Products - Solutions - Resources - Support - Your Account -
Home = Resources = AWS Management Console BETA = Amazon Elastic MapReduce Welcome, Rad Lab | Settings | Sign Out
Amazon Elastic Amazon
‘ AmszonEce ‘ MapReduce \ CloudFront ’

Your Elastic MapReduce Job Flows

| [ShowiHide | Refresh | @ Help |

Region: = ys.East v

4 Create New Job Flow || @ Terminate |

Viewing: | All h_&; J[€ « 1tolof1llobFlows » 3
Name State Creation Date Elapsed Time Normalized Instance Hours
. My Job Flow % STARTING 2009-08-19 14:50 PDT 0 hours O minutes 0
1 Job Flow selected .
&y Id: j-46JL0YQ7ZPH1 Creation Date: 2009-08-19 14:50 PDT m
Name: My Job Flow Start Date: -
State: STARTING End Date: -
Last State Change Reason: Starting instances L
Availability Zone: us-east-1b Instance Count: 4 3

© 2008 - 2009, Amazon Web Services LLC or its affiliates. All right reserved. Feedback Support Privacy Policy Terms of Use

| |II Conclusions M

* MapReduce programming model hides the complexity of
work distribution and fault tolerance

* Principal design philosophies:
- Make it scalable, so you can throw hardware at problems
- Make it cheap, lowering hardware, programming and admin costs

 MapReduce is not suitable for all problems, but when it
works, it may save you quite a bit of time

» Cloud computing makes it straightforward to start
using Hadoop (or other parallel software) at scale

|' Resources

* Hadoop: http://hadoop.apache.org/core/

» Pig: http://hadoop.apache.org/pig

» Hive: http://hadoop.apache.org/hive

» Video tutorials: http://www.cloudera.com/hadoop-training

+ Amazon Web Services: http://aws.amazon.com/

+ Amazon Elastic MapReduce guide:
http://docs.amazonwebservices.com/ElasticMapReduce/
latest/GettingStartedGuide/

* My email: matei@berkeley.edu

G hEEbDD

