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ABSTRACT
Parallel matrix multiplication is one of the most studied fun-
damental problems in distributed and high performance com-
puting. We obtain a new parallel algorithm that is based on
Strassen’s fast matrix multiplication and minimizes communi-
cation. The algorithm outperforms all known parallel matrix
multiplication algorithms, classical and Strassen-based, both
asymptotically and in practice.

A critical bottleneck in parallelizing Strassen’s algorithm
is the communication between the processors. Ballard, Dem-
mel, Holtz, and Schwartz (SPAA’11) prove lower bounds on
these communication costs, using expansion properties of the
underlying computation graph. Our algorithm matches these
lower bounds, and so is communication-optimal. It exhibits
perfect strong scaling within the maximum possible range.
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Benchmarking our implementation on a Cray XT4, we
obtain speedups over classical and Strassen-based algorithms
ranging from 24% to 184% for a fixed matrix dimension
n = 94080, where the number of nodes ranges from 49 to
7203.

Our parallelization approach generalizes to other fast ma-
trix multiplication algorithms.

Categories and Subject Descriptors: F.2.1 [Analysis of
Algorithms and Problem Complexity]: Numerical Algorithms
and Problems: Computations on matrices
ACM General Terms: algorithms
Keywords: parallel algorithms, communication-avoiding
algorithms, fast matrix multiplication



1. INTRODUCTION
Matrix multiplication is one of the most fundamental al-

gorithmic problems in numerical linear algebra, distributed
computing, scientific computing, and high-performance com-
puting. Parallelization of matrix multiplication has been
extensively studied (e.g., [9, 6, 11, 1, 25, 20, 34, 10, 23, 30, 4,
3]). It has been addressed using many theoretical approaches,
algorithmic tools, and software engineering methods in order
to optimize performance and obtain faster and more efficient
parallel algorithms and implementations.

We obtain a new parallel algorithm based on Strassen’s
fast matrix multiplication.1 It is more efficient than any
other parallel matrix multiplication algorithm of which we
are aware, including those that are based on classical (Θ(n3))
multiplication, and those that are based on Strassen’s and
other Strassen-like matrix multiplications. We compare the
efficiency of the new algorithm with previous algorithms,
and provide both asymptotic analysis (Sections 3 and 4) and
benchmarking data (Section 5).

1.1 The communication bottleneck
To design efficient parallel algorithms, it is necessary not

only to load balance the computation, but also to minimize
the time spent communicating between processors. The
inter-processor communication costs are in many cases sig-
nificantly higher than the computational costs. Moreover,
hardware trends predict that more problems will become
communication-bound in the future [19, 18]. Even matrix
multiplication becomes communication-bound when run on
sufficiently many processors. Given the importance of com-
munication costs, it is preferable to match the performance
of an algorithm to a communication lower bound, obtaining
a communication-optimal algorithm.

1.2 Communication costs of matrix multipli-
cation

We consider a distributed-memory parallel machine model
as described in Section 2.1. The communication costs are
measured as a function of the number of processors P , the
local memory size M in words, and the matrix dimension
n. Irony, Toledo, and Tiskin [23] proved that in the dis-
tributed memory parallel model, the bandwidth cost of clas-

sical n-by-n matrix multiplication is bounded by Ω
(

n3

PM1/2

)
words. Using their technique one can also deduce a memory-

independent bandwidth cost bound of Ω
(

n2

P2/3

)
[3] and gener-

alize it to other classes of algorithms [5]. For a shared-memory
model similar bounds were shown in [2]. Until recently, par-
allel classical matrix multiplication algorithms (e.g., “2D” [9,
34], and “3D” [6, 1]) have minimized communication only
for specific M values. The first algorithm that minimizes
the communication costs for the entire range of M has re-
cently been obtained by Solomonik and Demmel [30]. See
Section 4.1 for more details.

None of these lower bounding techniques and paralleliza-
tion approaches generalize to fast matrix multiplication, such
as [32, 26, 7, 29, 28, 13, 33, 14, 12, 35]. A communication
cost lower bound for fast matrix multiplication algorithms
has only recently been obtained [4]: Strassen’s algorithm run
on a distributed-memory parallel machine has bandwidth

1Our actual implementation uses the Winograd variant [36];
see Appendix A for details.

cost Ω
((

n

M1/2

)ω0

· M
P

)
and latency cost Ω

((
n

M1/2

)ω0

· 1
P

)
,

where ω0 = log2 7 (see Section 2.4). These bounds generalize
to other, but not all, fast matrix multiplication algorithms,
with ω0 being the exponent of the computational complexity.

In the sequential case,2 the lower bounds are attained by
the natural recursive implementation [32] which is thus opti-
mal. However, a parallel communication-optimal Strassen-
based algorithm was not previously known. Previous parallel
algorithms that use Strassen (e.g., [20, 25, 17]), decrease the
computation costs at the expense of higher communication
costs. The factors by which these algorithms exceed the
lower bounds are typically small powers of P and M , as
discussed in Section 4. However both P and M can be large
(e.g. on a modern supercomputer, one may have P ∼ 105

and M ∼ 109).

1.3 Parallelizing Strassen’s matrix multipli-
cation in a communication efficient way

The main impetus for this work was the observation of the
asymptotic gap between the communication costs of existing
parallel Strassen-based algorithms and the communication
lower bounds. Because of the attainability of the lower
bounds in the sequential case, we hypothesized that the gap
could be closed by finding a new algorithm rather than by
tightening the lower bounds.

We made three observations from the lower bound results
of [4] that lead to the new algorithm. First, the lower bounds
for Strassen are lower than those for classical matrix multi-
plication. This implies that in order to obtain an optimal
Strassen-based algorithm, the communication pattern for an
optimal algorithm cannot be that of a classical algorithm but
must reflect the properties of Strassen’s algorithm. Second,
the factor Mω0/2−1 that appears in the denominator of the
communication cost lower bound implies that an optimal al-
gorithm must use as much local memory as possible. That is,
there is a tradeoff between memory usage and communication
(the same is true in the classical case). Third, the proof of the
lower bounds shows that in order to minimize communication
costs relative to computation, it is necessary to perform each
sub-matrix multiplication of size Θ(

√
M) × Θ(

√
M) on a

single processor.
With these observations and assisted by techniques from

previous approaches to parallelizing Strassen, we developed
a new parallel algorithm which achieves perfect load balance,
minimizes communication costs, and in particular performs
asymptotically less computation and communication than is
possible using classical matrix multiplication.

1.4 Our contributions and paper organization
Our main contribution is a new algorithm we call

Communication-Avoiding Parallel Strassen, or CAPS.

Theorem 1.1. CAPS asymptotically minimizes computa-
tional and bandwidth costs over all parallel Strassen-based
algorithms. It also minimizes latency cost up to a logarithmic
factor in the number of processors.

CAPS performs asymptotically better than any previous
previous classical or Strassen-based parallel algorithm. It also
runs faster in practice. The algorithm and its computational
and communication cost analyses are presented in Section 3.

2See [4] for a discussion of the sequential memory model.



There we show that it matches the communication cost lower
bounds.

We provide a review and analysis of previous algorithms
in Section 4. We also consider two natural combinations of
previously known algorithms (Sections 4.4 and 4.5). One of
these new algorithms that we call “2.5D-Strassen” performs
better than all previous algorithms, but is still not optimal,
and performs worse than CAPS.

We discuss our implementations of the new algorithms and
compare their performance with previous ones in Section 5
to show that our new CAPS algorithm outperforms previ-
ous algorithms not just asymptotically, but also in practice.
Benchmarking our implementation on a Cray XT4, we ob-
tain speedups over classical and Strassen-based algorithms
ranging from 24% to 184% for a fixed matrix dimension
n = 94080, where the number of nodes ranges from 49 to
7203.

In Section 6 we show that our parallelization method
applies to other fast matrix multiplication algorithms. It
also applies to classical recursive matrix multiplication, thus
obtaining a new optimal classical algorithm that matches the
2.5D algorithm of Solomonik and Demmel [30]. In Section 6,
we also discuss numerical stability, hardware scaling, and
future work.

2. PRELIMINARIES

2.1 Communication model
We model communication of distributed-memory parallel

architectures as follows. We assume the machine has P
processors, each with local memory of size M words, which
are connected via a network. Processors communicate via
messages, and we assume that a message of w words can
be communicated in time α+ βw. The bandwidth cost of
the algorithm is given by the word count and denoted by
BW (·), and the latency cost is given by the message count
and denoted by L(·). Similarly the computational cost is
given by the number of floating point operations and denoted
by F (·). We call the time per floating point operation γ.

We count the number of words, messages and floating point
operations along the critical path as defined in [37]. That
is, two messages that are communicated between separate
pairs of processors simultaneously are counted only once, as
are two floating point operations performed in parallel on
different processors. This metric is closely related to the
total running time of the algorithm, which we model as

αL(·) + βBW (·) + γF (·).

We assume that (1) the architecture is homogeneous (that
is, γ is the same on all processors and α and β are the
same between each pair of processors), (2) processors can
send/receive only one message to/from one processor at a
time and they cannot overlap computation with communi-
cation (this latter assumption can be dropped, affecting the
running time by a factor of at most two), and (3) there is no
communication resource contention among processors. That
is, we assume that there is a link in the network between
each pair of processors. Thus lower bounds derived in this
model are valid for any network, but attainability of the
lower bounds depends on the details of the network.

2.2 Strassen’s algorithm

Strassen showed that 2× 2 matrix multiplication can be
performed using 7 multiplications and 18 additions, instead
of the classical algorithm that does 8 multiplications and
4 additions [32]. By recursive application this yields an
algorithm with multiplies two n× n matrices O(nω0) flops,
where ω0 = log2 7 ≈ 2.81. Winograd improved the algorithm
to use 7 multiplications and 15 additions in the base case,
thus decreasing the hidden constant in the O notation [36].
We review the Strassen-Winograd algorithm in Appendix A.

2.3 Previous work on parallel Strassen
In this section we breifly describe previous efforts to par-

allelize Strassen. More details, including communication
analyses, are in Section 4. A summary appears in Table 1.

Luo and Drake [25] explored Strassen-based parallel al-
gorithms that use the communication patterns known for
classical matrix multiplication. They considered using a clas-
sical 2D parallel algorithm and using Strassen locally, which
corresponds to what we call the “2D-Strassen” approach (see
Section 4.2). They also consider using Strassen at the highest
level and performing a classical parallel algorithm for each
subproblem generated, which corresponds to what we call the
“Strassen-2D”approach. The size of the subproblems depends
on the number of Strassen steps taken (see Section 4.3). Luo
and Drake also analyzed the communication costs for these
two approaches.

Soon after, Grayson, Shah, and van de Geijn [20] improved
on the Strassen-2D approach of [25] by using a better classical
parallel matrix multiplication algorithm and running on a
more communication-efficient machine. They obtained better
performance results compared to a purely classical algorithm
for up to three levels of Strassen’s recursion.

Kumar, Huang, Johnson, and Sadayappan [24] imple-
mented Strassen’s algorithm on a shared memory machine.
They identified the tradeoff between available parallelism and
total memory footprint by differentiating between “partial”
and “complete” evaluation of the algorithm, which corre-
sponds to what we call depth-first and breadth-first traversal
of the recursion tree (see Section 3.1). They show that by
using ` DFS steps before using BFS steps, the memory foot-
print is reduced by a factor of (7/4)` compared to using all
BFS steps. They did not consider communication costs in
their work.

Other parallel approaches [17, 22, 31] have used more com-
plex parallel schemes and communication patterns. However,
they restrict attention to only one or two steps of Strassen
and obtain modest performance improvements over classical
algorithms.

2.4 Strassen lower bounds
For Strassen-based algorithms, the bandwidth cost lower

bound has been proved using expansion arguments on the
computation graph, and the latency cost lower bound is an
immediate corollary.

Theorem 2.1. (Memory-dependent lower bound) [4] Con-
sider a Strassen-based algorithm running on P processors
each with local memory size M . Let BW (n, P,M) be the
bandwith cost and L(n, P,M) be the latency cost of the al-
gorithm. Assume that no intermediate values are computed
twice. Then

BW (n, P,M) = Ω

((
n√
M

)ω0

· M
P

)
,



L(n, P,M) = Ω

((
n√
M

)ω0

· 1

P

)
.

A memory-independent lower bound has recently been
proved using the same expansion approach:

Theorem 2.2. (Memory-independent lower bound) [3]
Consider a Strassen-based algorithm running on P processors.
Let BW (n, P ) be the bandwith cost and L(n, P ) be the latency
cost of the algorithm. Assume that no intermediate values
are computed twice. Assume only one copy of the input data
is stored at the start of the algorithm and the computation is
load-balanced in an asymptotic sense. Then

BW (n, P ) = Ω

(
n2

P 2/ω0

)
,

and the latency cost is L(n, P ) = Ω(1).

Note that when M = O(n2/P 2/ω0), the memory-
dependent lower bound is dominant, and when M =
Ω(n2/P 2/ω0), the memory-independent lower bound is domi-
nant.

3. COMMUNICATION-AVOIDING
PARALLEL STRASSEN

In this section we present the CAPS algorithm, and prove
it is communication-optimal. See Algorithm 1 for a concise
presentation and Algorithm 2 for a more detailed description.

Theorem 3.1. CAPS has computational cost Θ
(

nω0

P

)
,

bandwidth cost Θ
(

max
{

nω0

PMω0/2−1 ,
n2

P2/ω0

})
, and latency

cost Θ
(

max
{

nω0

PMω0/2 logP, logP
})

.

By Theorems 2.1 and 2.2, we see that CAPS has optimal
computational and bandwidth costs, and that its latency
cost is at most logP away from optimal. Thus Theorem 1.1
follows. We prove Theorem 3.1 in Section 3.5.

3.1 Overview of CAPS
Consider the recursion tree of Strassen’s sequential algo-

rithm. CAPS traverses it in parallel as follows. At each level
of the tree, the algorithm proceeds in one of two ways. A
“breadth-first-step” (BFS) divides the 7 subproblems among
the processors, so that 1

7
of the processors work on each sub-

problem independently and in parallel. A “depth-first-step”
(DFS) uses all the processors on each subproblem, solving
each one in sequence. See Figure 1.

In short, a BFS step requires more memory but reduces
communication costs while a DFS step requires little extra
memory but is less communication-efficient. In order to
minimize communication costs, the algorithm must choose
an ordering of BFS and DFS steps that uses as much memory
as possible.

Let k = log7 P and s ≥ k be the number of distributed
Strassen steps the algorithm will take. In this section, we
assume that n is a multiple of 2s7dk/2e. If k is even, the
restriction simplifies to n being a multiple of 2s

√
P . Since

P is a power of 7, it is sometimes convenient to think of
the processors as numbered in base 7. CAPS performs s
steps of Strassen’s algorithm and finishes the calculation
with local matrix multiplication. The algorithm can easily

Figure 1: Representation of BFS and DFS steps. In
a BFS step, all seven subproblems are computed at
once, each on 1/7 of the processors. In a DFS step,
the seven subproblems are computed in sequence,
each using all the processors. The notation follows
that of Appendix A.

be generalized to other values of n by padding or dynamic
peeling.

We consider two simple schemes of traversing the recursion
tree with BFS and DFS steps. The first scheme, which we
call the Unlimited Memory (UM) scheme, is to take k BFS
steps in a row. This approach is possible only if there is
sufficient available memory. The second scheme, which we
call the Limited Memory (LM) scheme is to take ` DFS
steps in a row followed by k BFS steps in a row, where ` is
minimized subject to the memory constraints.

It is possible to use a more complicated scheme that in-
terleave BFS and DFS steps to reduce communication. We
show that the LM scheme is optimal up to a constant factor,
and hence no more than a constant factor improvement can
be attained from interleaving.

Algorithm 1 CAPS, in brief. For more details, see Algo-
rithm 2.
Input: A, B, n, where A and B are n× n matrices

P = number of processors
Output: C = A ·B
1: procedure C = CAPS(A, B, n, P )
2: if enough memory then . Do a BFS step
3: locally compute the Si’s and T ′i s from A and B
4: parallel for i = 1 . . . 7 do
5: redistribute Si and Ti

6: Qi = CAPS(Si, Ti, n/2, P/7)
7: redistribute Qi

8: locally compute C from all the Qi’s
9: else . Do a DFS step

10: for i = 1 . . . 7 do
11: locally compute Si and Ti from A and B
12: Qi = CAPS(Si, Ti, n/2, P )
13: locally compute contribution of Qi to C

. The dependence of the Si’s on A, the Ti’s on B and C
on the Qi’s follows the Strassen or Strassen-Winograd
algorithm. See Appendix A.

3.2 Data layout
We require that the data layout of the matrices satisfies

the following two properties:

1. At each of the s Strassen recursion steps, the data
layouts of the four sub-matrices of each of A, B, and
C must match so that the weighted additions of these



sub-matrices can be performed locally. This technique
follows [25] and allows communication-free DFS steps.

2. Each of these submatrices must be equally distributed
among the P processors for load balancing.

There are many data layouts that satisfy these properties, per-
haps the simplest being block-cyclic layout with a processor
grid of size 7bk/2c × 7dk/2e and block size n

2s7bk/2c × n

2s7dk/2e .

(When k = log7 P is even these expressions simplify to a

processor grid of size
√
P ×

√
P and block size n

2s
√
P

.) See

Figure 2.
Any layout that we use is specified by three parameters,

(n, P, s), and intermediate stages of the computation use the
same layout with smaller values of the parameters. A BFS
step reduces a multiplication problem with layout parame-
ters (n, P, s) to seven subproblems with layout parameters
(n/2, P/7, s− 1). A DFS step reduces a multiplication prob-
lem with layout parameters (n, P, s) to seven subproblems
with layout parameters (n/2, P, s− 1).

Note that if the input data is initially load-balanced but
distributed using a different layout, we can rearrange it to

the above layout using a total of O
(

n2

P

)
words and O(n2)

messages. This has no asymptotic effect on the bandwidth
cost but significantly increases the latency cost in the worst
case.

Figure 2: An example matrix layout for CAPS. Each
of the 16 submatrices as shown on the left has ex-
actly the same layout. The colored blocks are the
ones owned by processor 00. On the right is a
zoomed-in view of one submatrix, showing which
processor, numbered base 7, owns each block. This
is block-cyclic layout with some blocksize b, and
matches our layout requirements with parameters
(n = 4 · 49 · b, P = 49, s = 2).

3.3 Unlimited Memory scheme
In the UM scheme, we take k = log7 P BFS steps in a

row. Since a BFS step reduces the number of processors
involved in each subproblem by a factor of 7, after k BFS
steps each subproblem is assigned to a single processor, and
so is computed locally with no further communication costs.
We first describe a BFS step in more detail.

The matrices A and B are initially distributed as described
in Section 3.2. In order to take a recursive step, the 14 matri-
ces S1, . . . S7, T1, . . . , T7 must be computed. Each processor
allocates space for all 14 matrices and performs local addi-
tions and subtractions to compute its portion of the matrices.
Recall that the submatrices are distributed identically, so
this step requires no communication. If the layouts of A

Algorithm 2 CAPS, in detail

Input: A, B, are n× n matrices
P = number of processors
rank = processor number base-7 as an array
M = local memory size

Output: C = A ·B
1: procedure C = CAPS(A, B, P , rank, M)

2: ` =
⌈
log2

4n

P1/ω0M1/2

⌉
. ` is number of DFS steps to fit in memory

3: k = log7 P
4: call DFS(A, B, C, k, `, rank)

1: procedure DFS(A, B, C, k, `, rank)
. Do C = A ·B by ` DFS, then k BFS steps

2: if ` ≤ 0 then call BFS( A, B, C, k, rank); return

3: for i = 1 . . . 7 do
4: locally compute Si and Ti from A and B

. following Strassen’s algorithm
5: call DFS( Si, Ti, Qi, k, `− 1, rank )
6: locally compute contribution of Qi to C

. following Strassen’s algorithm

1: procedure BFS(A, B, C, k, rank)
. Do C = A ·B by k BFS steps, then local Strassen

2: if k == 0 then call localStrassen(A, B, C); return

3: for i = 1 . . . 7 do
4: locally compute Si and Ti from A and B

. following Strassen’s algorithm

5: for i = 1 . . . 7 do
6: target = rank
7: target[k] = i
8: send Si to target
9: receive into L

. One part of L comes from each of 7 processors
10: send Ti to target
11: receive into R

. One part of R comes from each of 7 processors

12: call BFS(L, R, P , k − 1, rank )
13: for i = 1 . . . 7 do
14: target = rank
15: target[k] = i
16: send ith part of P to target
17: receive from target into Qi

18: locally compute C from Qi

. following Strassen’s algorithm

and B have parameters (n, P, s), the Si and the Ti now have
layout parameters (n/2, P, s− 1).

The next step is to redistribute these 14 matrices so that
the 7 pairs of matrices (Si, Ti) exist on disjoint sets of P/7
processors. This requires disjoint sets of 7 processors perform-
ing an all-to-all communication step (each processor must
send and receieve a message from each of the other 6). To
see this, consider the numbering of the processors base-7. On
the mth BFS step, the communication is between the seven
processors whose numbers agree on all digits except the mth

(counting from the right). After the mth BFS step, the set
of processors working on a given subproblem share the same
m-digit suffix. After the above communication is performed,



the layout of Si and Ti has parameters (n/2, P/7, s− 1), and
the sets of processors that own the Ti and Si are disjoint
for different values of i. Note that since each all-to-all only
involves seven processors no matter how large P is, this
algorithm does not have the scalability issues that typically
come from an all-to-all communication pattern.

3.3.1 Memory requirements
The extra memory required to take one BFS step is the

space to store all 7 triples Sj , Tj , Qj . Since each of those
matrices is 1

4
the size of A, B, and C, the extra space

required at a given step is 7/4 the extra space required for
the previous step. We assume that no extra memory is
required for the local multiplications.3 Thus, the total local
memory requirement for taking k BFS steps is given by

MemUM(n, P ) =
3n2

P

k∑
i=0

(
7

4

)i

=
7n2

P 2/ω0
− 4n2

P

= Θ

(
n2

P 2/ω0

)
.

3.3.2 Computation costs
The computation required at a given BFS step is that of the

local additions and subtractions associated with computing
the Si and Ti and updating the output matrix C with the
Qi. Since Strassen performs 18 additions and subtractions,
the computational cost recurrence is

FUM(n, P ) = 18

(
n2

4P

)
+ FUM

(
n

2
,
P

7

)
with base case FUM(n, 1) = csn

ω0 − 6n2, where cs is the
constant of Strassen’s algorithm. See Appendix A for more
details. The solution to this recurrence is

FUM(n, P ) =
csn

ω0 − 6n2

P
= Θ

(
nω0

P

)
.

3.3.3 Communication costs
Consider the communication costs associated with the

UM scheme. Given that the redistribution within a BFS
step is performed by an all-to-all communication step among
sets of 7 processors, each processor sends 6 messages and
receives 6 messages to redistribute S1, . . . , S7, and the same
for T1, . . . , T7. After the products Qi = SiTi are computed,
each processor sends 6 messages and receive 6 messages to
redistribute Q1, . . . , Q7. The size of each message varies
according to the recursion depth, and is the number of words

a processor owns of any Si, Ti, or Qi, namely n2

4P
words.

As each of the Qi is computed simultaneously on disjoint
sets of P/7 processors, we obtain a cost recurrence for the
entire UM scheme:

BWUM(n, P ) = 36
n2

4P
+BWUM

(
n

2
,
P

7

)
LUM(n, P ) = 36 + LUM

(
n

2
,
P

7

)
3If one does not overwrite the input, it is impossible to run
Strassen in place; however using a few temporary matrices
affects the analysis here by a constant factor only.

with base case LUM(n, 1) = BWUM(n, 1) = 0. Thus

BWUM(n, P ) =
12n2

P 2/ω0
− 12n2

P
= Θ

(
n2

P 2/ω0

)
LUM(n, P ) = 36 log7 P = Θ (logP ) . (1)

3.4 Limited Memory scheme
In this section we discuss a scheme for traversing Strassen’s

recursion tree in the context of limited memory. In the LM
scheme, we take ` DFS steps in a row followed by k BFS
steps in a row, where ` is minimized subject to the memory
constraints. That is, we use a sequence of DFS steps to
reduce the problem size so that we can use the UM scheme
on each subproblem without exceeding the available memory.

Consider taking a single DFS step. Rather than allocating
space for and computing all 14 matrices S1, T1, . . . , S7, T7 at
once, the DFS step requires allocation of only one subproblem,
and each of the Qi will be computed in sequence.

Consider the ith subproblem: as before, both Si and Ti

can be computed locally. After Qi is computed, it is used to
update the corresponding quadrants of C and then discarded
so that its space in memory (as well as the space for Si and
Ti) can be re-used for the next subproblem. In a DFS step,
no redistribution occurs. After Si and Ti are computed, all
processors participate in the computation of Qi.

We assume that some extra memory is available. To be
precise, assume the matrices A, B, and C require only 1

3
of

the available memory:

3n2

P
≤ 1

3
M. (2)

In the LM scheme, we set

` = max

{
0,

⌈
log2

4n

P 1/ω0M1/2

⌉}
. (3)

The following subsection shows that this choice of ` is
sufficient not to exceed the memory capacity.

3.4.1 Memory requirements
The extra memory requirement for a DFS step is the space

to store one subproblem. Thus, the extra space required at
this step is 1/4 the space required to store A, B, and C. The
local memory requirements for the LM scheme is given by

MemLM(n, P ) =
3n2

P

`−1∑
i=0

(
1

4

)i

+ MemUM

( n
2`
, P
)

≤ M

3

`−1∑
i=0

(
1

4

)i

+
7
(

n
2`

)2
P 2/ω0

≤ 127

144
M < M,

where the last line follows from (3) and (2). Thus, the limited
memory scheme does not exceed the available memory.

3.4.2 Computation costs
As in the UM case, the computation required at a given

DFS step is that of the local additions and subtractions
associated with computing the Si and Ti and updating the
output matrix C with the Qi. However, since all processors
participate in each subproblem and the subproblems are



computed in sequence, the recurrence is given by

FLM(n, P ) = 18

(
n2

4P

)
+ 7 · FLM

(n
2
, P
)
.

After ` steps of DFS, the size of a subproblems is n
2`
× n

2`
,

and there are P processors involved. We take k BFS steps
to compute each of these 7` subproblems. Thus

FLM

( n
2`
, P
)

= FUM

( n
2`
, P
)
,

and

FLM (n, P ) =
18n2

4P

`−1∑
i=0

(
7

4

)i

+ 7` · FUM

( n
2`
, P
)

=
csn

ω0 − 6n2

P
= Θ

(
nω
0

P

)
.

3.4.3 Communication costs
Since there are no communication costs associated with a

DFS step, the recurrence is simply

BWLM(n, P ) = 7 ·BWLM

(n
2
, P
)

LLM(n, P ) = 7 · LLM

(n
2
, P
)

with base cases

BWLM

( n
2`
, P
)

= BWUM

( n
2`
, P
)

LLM

( n
2`
, P
)

= LUM

( n
2`
, P
)
.

Thus the total communication costs are given by

BWLM (n, P ) = 7` ·BWUM

( n
2`
, P
)
≤ 12 · 4ω0−2nω0

PMω0/2−1

= Θ

(
nω0

PMω0/2−1

)
.

LLM (n, P ) = 7` · LUM

( n
2`
, P
)
≤ (4n)ω0

PMω0/2
36 log7 P

= Θ

(
nω0

PMω0/2
logP

)
. (4)

3.5 Communication optimality
Proof. (of Theorem 3.1). In the case that M ≥

MemUM(n, P ) = Ω
(

n2

P2/ω0

)
the UM scheme is possible.

Then the communication costs are given by (1) which matches
the lower bound of Theorem 2.2. Thus the UM scheme is
communication-optimal (up to a logarithmic factor in the la-
tency cost and assuming that the data is initially distributed
as described in Section 3.2). For smaller values of M , the
LM scheme must be used. Then the communication costs
are given by (4) and match the lower bound of Theorem 2.1,
so the LM scheme is also communication-optimal.

We note that for the LM scheme, since both the compu-
tational and communication costs are proportional to 1

P
,

we can expect perfect strong scaling: given a fixed problem
size, increasing the number of processors by some factor
will decrease each cost by the same factor. However, this
strong scaling property has a limited range. As P increases,
holding everything else constant, the global memory size
PM increases as well. The limit of perfect strong scaling is
exactly when there is enough memory for the UM scheme.
See [3] for details.

4. ANALYSIS OF OTHER ALGORITHMS
In the section we detail the asymptotic communication

costs of other matrix multiplication algorithms, both classical
and Strassen-based. These communication costs and the
corresponding lower bounds are summarized in Table 1.

Many of the algorithms described in this section are hybrids
of two different algorithms. We use the convention that the
names of the hybrid algorithms are composed of the names of
the two component algorithms, hyphenated. The first name
describes the algorithm used at the top level, on the largest
problems, and the second describes the algorithm used at
the base level on smaller problems.

4.1 Classical Algorithms
Classical algorithms must communicate asymptotically

more than an optimal Strassen-based algorithm. To compare
the lower bounds, it is necessary to consider three cases
for the memory size: when the memory-dependent bounds
dominate for both classical and Strassen, when the memory-
dependent bound dominates for classical, but the memory-
independent bound dominates for Strassen, and when the
memory-independent bounds dominate for both classical and
Strassen. This analysis is detailed in Appendix B. Briefly,
the factor by which the classical bandwidth cost exceeds
the Strassen bandwidth cost is P a where a ranges from
2
ω0
− 2

3
≈ 0.046 to 3−ω0

2
≈ 0.10 depending on the relative

problem size. The same sort of analysis is used throughout
Section 4 to compare each algorithm with the Strassen-based
lower bounds.

Various parallel classical matrix multiplication algorithms
minimize communication relative to the classical lower
bounds for certain amounts of local memory M . For ex-
ample, Cannon’s algorithm [9] minimizes communication for
M = O(n2/P ). Several more practical algorithms exist (such
as SUMMA [34]) which use the same amount of local memory
and have the same asymptotic communication costs. We
call this class of algorithms “2D” because the communication
patterns follow a two-dimensional processor grid.

Another class of algorithms, known as “3D” [6, 1] because
the communication pattern maps to a three-dimensional
processor grid, uses more local memory and reduces com-
munication relative to 2D algorithms. This class of algo-
rithms minimizes communication relative to the classical
lower bounds for M = Ω(n2/P 2/3). As shown in [3], it is

not possible to use more memory than M = Θ(n2/P 2/3) to
reduce communication.

Recently, a more general algorithm has been developed
which minimizes communication in all cases. Because it
reduces to a 2D and 3D for the extreme values of M but
interpolates for the values between, it is known as the “2.5D”
algorithm [30].

4.2 2D-Strassen
One idea to parallelize Strassen-based algorithms is to

use a 2D classical algorithm for the inter-processor commu-
nication, and use the fast matrix multiplication algorithm
locally [25]. We call such an algorithm “2D-Strassen”. 2D-
Strassen is straightforward to implement, but cannot attain
all the computational speedup from Strassen since it uses
a classical algorithm for part of the computation. In par-
ticular, it does not use Strassen for the largest matrices,
when Strassen provides the greatest reduction in computa-
tion. As a result, the computational cost exceeds Θ(nω0/P )
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Lower Bound [3, 4] nω0

P
max

{
nω0

PMω0/2−1 ,
n2

P2/ω0

}
max

{
nω0

PMω0/2 , 1
}

2D-Strassen [25] nω0

P (ω0−1)/2
n2

P1/2 P 1/2

Strassen-2D [20, 25]
(
7
8

)` n3

P

(
7
4

)` n2

P1/2 7`P 1/2

2.5D-Strassen max
{

n3

PM3/2−ω0/2 ,
nω0

Pω0/3

}
max

{
n3

PM1/2 ,
n2

P2/3

}
n3

PM3/2 + logP

Strassen-2.5D
(
7
8

)` n3

P
max

{(
7
8

)` n3

PM1/2 ,
(
7
4

)` n2

P2/3

} (
7
8

)` n3

PM3/2 + 7` logP

CAPS (optimal) nω0

P
max

{
nω0

PMω0/2−1 ,
n2

P2/ω0

}
max

{
nω0

PMω0/2 logP, logP
}

Table 1: Asymptotic matrix multiplication computation and communication lower bounds and algorithms.
ω0 = log2 7 ≈ 2.81 is the exponent of Strassen; ` is the number of Strassen steps taken. None of the Strassen-
based algorithms except for CAPS attain the lower bounds of Section 2.4; see Section 4 for a discussion of
each.

by a factor of P (3−ω0)/2 ≈ P 0.10. 2D-Strassen has the same
communication cost as 2D algorithms, and hence does not
achieve the Strassen-based lower-bounds on communication.
In comparing the bandwidth cost, Θ(n2/P 1/2), to the lower
bounds in Section 2.4, note that for the problem to fit in
memory we always have M = Ω(n2/P ). The bandwidth
cost exceeds the bound by a factor of P a, where a ranges
from (3−ω0)/2 ≈ .10 to 2/ω0 − 1/2 ≈ .21, depending on the

relative problem size. Similarly, the latency cost, Θ(P 1/2),
exceeds the bound by a factor of P a where a ranges from
(3− ω0)/2 ≈ .10 to 1/2 = .5.

4.3 Strassen-2D
The “Strassen-2D” algorithm applies ` steps of Strassen’s

algorithm at the top level, and performs the 7` smaller matrix
multiplications using a 2D algorithm. By choosing certain
data layouts as in Section 3.2, it is possible to do the addi-
tions and subtractions for Strassen’s algorithm without any
communication [25]. However, Strassen-2D is also unable to
attain the lower bounds for communication. Moreover, the
speedup of Strassen-2D in computation comes at the expense
of extra communication. For large numbers of Strassen steps
`, Strassen-2D can approach the computational lower bound
of Strassen, but each step increases the bandwidth cost by a
factor of 7

4
and the latency cost by a factor of 7. Thus the

bandwidth cost of Strassen-2D is a factor of
(
7
4

)`
higher than

2D-Strassen, which is already higher than the lower bound.
The latency cost is even worse: Strassen-2D is a factor of 7`

higher than 2D-Strassen.
One can reduce the latency cost of Strassen-2D at the

expense of a larger memory footprint. Since Strassen-2D
runs a 2D algorithm 7` times on the same set of processors,
it is possible to pack together messages from independent
matrix multiplications. In the best case, the latency cost is
reduced to the cost of 2D-Strassen, which is still above the

lower bound, at the expense of using a factor of
(
7
4

)`
more

memory.

4.4 2.5D-Strassen
A natural idea is to replace a 2D classical algorithm in 2D-

Strassen with the superior 2.5D classical algorithm to obtain
an algorithm we call 2.5D-Strassen. This algorithm uses
the 2.5D algorithm for the inter-processor communication,
and then uses Strassen for the local computation. When
M = Θ(n2/P ), 2.5D-Strassen is exactly the same as 2D-
Strassen, but when there is extra memory it both decreases
the communication cost and decreases the computation cost
since the local matrix multiplications are performed on larger
matrices. To be precise, the computation cost exceeds the
lower bound by a factor of P a where a ranges from 1− ω0

3
≈

0.064 to 3−ω0
2
≈ 0.10 depending on the relative problem

size. The bandwidth cost exceeds the bandwidth cost lower
bounds in Section 2.4 by a factor of P a where a ranges from
2
ω0
− 2

3
≈ 0.046 to 3−ω0

2
≈ 0.10. In terms of latency, the

cost of n3

PM3/2 + logP exceeds the lower bound by a factor

ranging from logP to P (3−ω0)/2 ≈ P 0.10, depending on the
relative problem size.

4.5 Strassen-2.5D
Similarly, by replacing a 2D algorithm with 2.5D in

Strassen-2D, one obtains the new algorithm we call Strassen-
2.5D. First one takes ` steps of Strassen, which can be done
without communication, and then one applies the 2.5D algo-
rithm to each of the 7` subproblems. The computational cost
is exactly the same as Strassen-2D, but the communication
cost will typically be lower. Each of the 7` subproblems is
multiplication of n/2` × n/2` matrices. Each subproblem
uses only 1/4` as much memory as the original problem.
Thus there may be a large amount of extra memory available
for each subproblem, and the lower communication costs of



the 2.5D algorithm help. The choice of ` that minimizes the
bandwidth cost is

`opt = max
{

0,
⌈
log2

n

M1/2P 1/3

⌉}
.

The same choice minimizes the latency cost. Note that

when M ≥ n2

P2/3 , taking zero Strassen steps is optimal with
respect to communication. With ` = `opt, the bandwidth
cost is a factor of P 1−ω0/3 ≈ P 0.064 above the lower bounds
of Section 2.4. Additionally, the computation cost is not
optimal, and using ` = `opt, the computation cost exceeds the
optimal by a factor of P 1−ω0/3M3/2−ω0/2 ≈ P 0.064M0.096.

It is also possible to take ` > `opt steps of Strassen to
decrease the comptutation cost further. However the de-
creased computation cost comes at the expense of higher
communication cost, as in the case of Strassen-2D. In partic-
ular, each extra step over `opt increases the bandwidth cost
by a factor of 7

4
and the latency cost by a factor of 7. As

with Strassen-2D, it is possible to use extra memory to pack
together messages from several subproblems and decrease
the latency cost, but not the bandwidth cost.

5. PERFORMANCE RESULTS
We have implemented CAPS using MPI on a Cray XT4,

and compared it to various previous classical and Strassen-
based algorithms. The benchmarking data is shown in Fig-
ure 3.

5.1 Experimental setup
The nodes of the Cray XT4 have 8GB of memory and a

quad-core AMD “Bupdapest” processor running at 2.3GHz.
We treat the entire node as a single processor, and use
the optimized threaded BLAS in Cray’s LibSci to provide
parallelism between the four cores in a node. The peak flop
rate is 9.2 GFLOPS per core, or 36.8 GFLOPS per node.
The machine consists of 9,572 nodes. All the data in Figure 3
is for multiplying two square matrices with n = 94080.

5.2 Performance
Note that the vertical scale of Figure 3 is “effective

GFLOPS”, which is a useful measure for comparing classical
and fast matrix multiplication algorithms. It is calculated as

Effective GFLOPS =
2n3

(Execution time in seconds)109
.

(5)
For classical algorithms, which perform 2n3 floating point
operations, this gives the actual GFLOPS. For fast matrix
multiplication algorithms it gives the performance relative
to classical algorithms, but does not accurately represent the
number of floating point operations performed.

Our algorithm outperforms all previous algorithms, and
attains performance as high as 49.1 effective GFLOPS/node,
which is 33% above the theoretical maximum for all classical
algorithms. Compared with the best classical implementa-
tion, our speedup ranges from 51% for small values of P up
to 94% when using most of the machine. Compared with
the best previous parallel Strassen algorithms, our speedup
ranges from 24% up to 184%. Unlike previous Strassen algo-
rithms, we are able to attain substantial speedups over the
entire range of processors.

5.3 Strong scaling

Figure 3 is a strong scaling plot: the problem size is fixed
and each algorithm is run with P ranging from the minimum
that provides enough memory up to the largest allowed value
of P smaller than the size of the computer. Perfect strong
scaling corresponds to a horizontal line in the plot. As
the communication analysis predicts, CAPS exhibits better
strong scaling than any of the other algorithms (with the
exception of ScaLAPACK, which obtains very good strong
scaling by having poor performance for small values of P ).

5.4 Details of the implementations

5.4.1 CAPS
This implementation is the CAPS algorithm, with a few

modifications from the presentation in Section 3. First, when
computing locally it switches to classical matrix multiplica-
tion below some size n0. Second, it is generalized to run
on P = c7k processors for c ∈ {1, 2, 3, 6} rather than just
7k processors. As a result, the base-case classical matrix
multiplication is done on c processors rather than 1. Finally,
implementation uses the Winograd variant of Strassen; see
Appendix A for more details. Every point in the plot is
tuned to use the best interleaving pattern of BFS and DFS
steps, and the best total number of Strassen steps. For points
in the figure, the optimal total number of Strassen steps is
always 5 or 6.

5.4.2 ScaLAPACK
We use ScaLAPACK [8] as optimized by Cray in LibSci.

This is an implementation of the SUMMA algorithm, and
can run on an arbitrary number of processors. It should
give the best performance if P is a perfect square so the
processors can be placed on a square 2D grid. All the runs
shown in Figure 3 are with P a perfect square.

5.4.3 2.5D classical
This is the code of [30]. It places the P processors in

a grid of size
√
P/c ×

√
P/c × c, and requires that

√
P/c

and c are integers with 1 ≤ c ≤ P 1/3, and c divides
√
P/c.

Additionally, it gets the best performance if c is as large as
possible, given the constraint that c copies of the input and
output matrices fit in memory. In the case that c = 1 this
code is an optimized implementation of SUMMA. The values
of P and c for the runs in Figure 3 are chosen to get the best
performance.

5.4.4 Strassen-2D
Following the algorithm of [20, 25], this implementation

uses the DFS code from the implementation of CAPS at the
top level, and then uses the optimized SUMMA code from
the 2.5D implementation with c = 1. Since the classical code
requires that P is a perfect square, this requirement applies
here as well. The number of Strassen steps taken is tuned to
give the best performance for each P value, and the optimal
number varies from 0 to 2.

5.4.5 2D-Strassen
Following the algorithm of [25], the 2D-Strassen implemen-

tation is analagous to the Strassen-2D implementation, but
with the classical algorithm run before taking local Strassen
steps. Similarly the same code is used for local Strassen steps
here and in our implementation of CAPS. This code also
requires that P is a perfect square. The number of Strassen
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steps is tuned for each P value, and the optimal number
varies from 0 to 3.

5.4.6 2.5D-Strassen
This implementation uses the 2.5D implementation to

reduce the problem to one processor, then takes several
Strassen steps. The processor requirements are the same
as for the 2.5D implementation. The number of Strassen
steps is tuned for each number of processors, and the optimal
number varies from 0 to 3. We also tested the Strassen-
2.5D algorithm, but its performance was always lower than
2.5D-Strassen in our experiments.

6. CONCLUSIONS/FUTURE WORK

6.1 Stability of fast matrix multiplication
CAPS has the same stability properties as sequential ver-

sions of Strassen. For a complete discussion of the stabil-
ity of fast matrix multiplication algorithms, see [21, 16].
We highlight a few main points here. The tightest error
bounds for classical matrix multiplication are component-
wise: |C−Ĉ| ≤ nε|A|·|B|, where Ĉ is the computed result and
ε is the machine precision. Strassen and other fast algorithms

do not satisfy component-wise bounds but do satisfy the
slightly weaker norm-wise bounds: ‖C− Ĉ‖ ≤ f(n)ε‖A‖‖B‖,
where ‖A‖ = maxi,j aij and f is polynomial in n [21]. Ac-
curacy can be improved with the use of diagonal scaling
matrices: D1CD3 = D1AD2 · D−1

2 BD3. It is possible to
choose D1,D2,D3 so that the error bounds satisfy either
|C−Ĉ| ≤ f(n)ε‖A(i, :)‖‖B(:, j)‖ or ‖C−Ĉ‖ ≤ f(n)ε‖|A|·|B|‖.
By scaling, the error bounds on Strassen become comparable
to those of many other dense linear algebra algorithms, such
as LU and QR decomposition [15]. Thus using Strassen for
the matrix multiplications in a larger computation will often
not harm the stability at all.

6.2 Hardware scaling
Although Strassen performs asymptotically less compu-

tation and communication than classical matrix multipli-
cation, it is more demanding on the hardware. That is, if
one wants to run matrix multiplication near the peak CPU
speed, Strassen is more demanding of the memory size and
communication bandwidth. This is because the ratio of
computational cost to bandwidth cost is lower for Strassen
than for classical. From the lower bounds in Section 2.4, the
asymptotic ratio of computational cost to bandwidth cost



is Mω0/2−1 for Strassen-based algorithms, versus M1/2 for
classical algorithms. This means that it is harder to run
Strassen near peak than it is to run classical matrix multipli-
cation near peak. In terms of the machine parameters β and
γ introduced in Section 2.1, the condition to be able to be
compute-bound is γM1/2 ≥ cβ for classical matrix multipli-
cation and γMω0/2−1 ≥ c′β for Strassen. Here c and c′ are
constants that depend on the constants in the communica-
tion and computational costs of classical and Strassen-based
matrix multiplication.

The above inequalities may guide hardware design as long
as classical and Strassen matrix multiplication are considered
important computations. They apply both to the distributed
case, where M is the local memory size and β is the inverse
network bandwidth, and to the sequential/shared-memory
case where M is the cache size and β is the inverse memory-
cache bandwidth.

6.3 Optimizing on-node performance
Note that although our implementation performs above

the classical peak performance, it performs well below the
corresponding Strassen-Winograd peak, defined by the time
it takes to perform csn

ω0/P flops at the peak speed of each
processor. To some extent, this is because Strassen is more
demanding on the hardware, as noted above. However we
have not yet analyzed whether the amount our performance
is below Strassen peak can be entirely accounted for based
on machine parameters. It is also possible that a high per-
formance shared memory Strassen implementation might
provide substantial speedups for our implementation.

6.4 Testing on various architectures
We have implemented and benchmarked CAPS on only

one architecture, a Cray XT4. It remains to check that
it outperforms other matrix multiplication algorithms on a
variety of architectures. On some architectures it may be
more important to consider the topology of the network and
redesign the algorithm to minimize contention, which we
have not done.

6.5 Improvements to the algorithm
To be practically useful, it is important to generalize the

number of processors on which CAPS can run. To attain
the communication lower bounds, CAPS as presented in
Section 3 must run on P a power of seven processors. Of
course, CAPS can then be run on any number of processors
by simply ignoring no more than 6

7
of them and incurring

a constant factor overhead. Thus we can run on arbitrary
P and attain the communication and computation lower
bounds up to a constant factor. However the computation
time is still dominant in most cases, and it is preferable
to attain the computation lower bound exactly. It is an
open question whether any algorithm can run on arbitrary
P , attain the computation lower bound exactly, and attain
the communication lower bound up to a constant factor.

Moreover, although the communication costs of this al-
gorithm match the lower bound up to a constant factor in
bandwidth, and up to a logP factor in latency, it is an
open question to determine the optimal constant in the lower
bound and perhaps provide a new algorithm that matches it
exactly. Note that in the analysis of CAPS in Section 3, the
constants could be slightly improved.

6.6 Parallelizing other recursive algorithms

6.6.1 Other fast matrix multiplication algorithms
Our approach of executing a recursive algorithm in parallel

by traversing the recursion tree in DFS (sequential) or BFS
(parallel) manners is not limited to Strassen’s algorithm. All
fast matrix multiplication algorithms are built out of ways
to multiply a m×n matrix by a n× k matrix using q < mnk
multiplications. Like with Strassen and Strassen-Winograd,
they compute q linear combinations of entries of each of A
and B, multiply these pairwise, then compute the entries
of C as linear combinations of these.4 CAPS can be easily
generalized to any such multiplication, with the following
modifications:

• The number of processors P is a power of q.

• The data layout must be such that all m× n blocks of
A, all n× k blocks of B, and all m× k blocks of C are
distributed equally among the P processors with the
same layout.

• The BFS and DFS determine whether the q multipli-
cations are performed in parallel or sequentially.

The communication costs are then exactly as above, but with
ω0 = 3 logmnk q.

It is unclear whether any of the faster matrix multiplica-
tion algorithms are useful in practice. One reason is that
the fastest algorithms are not explicit. Rather, there are
non-constructive proofs that the algorithms exist. To imple-
ment these algorithms, they would have to be found, which
appears to be a difficult problem. The generalization of
CAPS described in this section does apply to all of them, so
we have proved the existence of a communication-avoiding
non-explicit parallel algorithm corresponding to every fast
matrix multiplication algorithm. We conjecture that the al-
gorithms are all communication-optimal, but that is not yet
proved since the lower bound proofs in [4, 3] may not apply
to all fast matrix multiplication algorithms. In cases where
the lower bounds do apply, they match the performance of
the generalization of CAPS, and so they are communication-
optimal.

6.6.2 Another communication-optimal classical
algorithm

We can apply our parallelization approach to recursive
classical matrix multiplication to obtain a communication-
optimal algorithm. This algorithm has the same asymptotic
communication costs as the 2.5D algorithm [30], although
the constants in its communication costs are higher. We
observed comparable performance to the 2.5D algorithm on
our experimental platform. As with CAPS, this algorithm
has not been optimized for contention, whereas the 2.5D
algorithm is very well optimized for contention on torus
networks.
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APPENDIX
A. STRASSEN-WINOGRAD ALGORITHM

The Strassen-Winograd algorithm is usually preferred to
Strassen’s algorithm in practice since it requires fewer addi-
tions. We use it for our implementation of CAPS. Divide the
input matrices A,B and output matrix C into 4 submatrices:

A =

[
A11 A12

A21 A22

]
B =

[
B11 B12

B21 B22

]
C =

[
C11 C12

C21 C22

]

Then form 7 linear combinations of the submatrices of each
of A and B, call these Ti and Si, respectively; multiply
them pairwise; then form the submatrices of C as linear
combinations of these products:

T0 = A11 S0 = B11 Q0 = T0 · S0 U1 = Q0 + Q3

T1 = A12 S1 = B21 Q1 = T1 · S1 U2 = U1 + Q4

T2 = A21 + A22 S2 = B12 + B11 Q2 = T2 · S2 U3 = U1 + Q2

T3 = T2 − A12 S3 = B22 − S2 Q3 = T3 · S3 C11 = Q0 + Q1

T4 = A11 − A21 S4 = B22 − B12 Q4 = T4 · S4 C12 = U3 + Q5

T5 = A12 + T3 S5 = B22 Q5 = T5 · S5 C21 = U2 − Q6

T6 = A22 S6 = S3 − B21 Q6 = T6 · S6 C22 = U2 + Q2

This is one step of Strassen-Winograd. The algorithm
is recursive since it can be used for each of the 7 smaller
matrix multiplications. In practice, one often uses only a
few steps of Strassen-Winograd, although to attain O(nω0)
computational cost, it is necessary to recursively apply it all
the way down to matrices of size O(1)×O(1). The precise
computational cost of Strassen-Winograd is

F(n) = csn
ω0 − 5n2.

Here cs is a constant depending on the cutoff point at which
one switches to the classical algorithm. For a cutoff size of
n0, the constant is cs = (2n0 + 4)/nω0−2

0 which is minimized
at n0 = 8 yielding a computational cost of approximately
3.73nω0−5n2. If using Strassen-Winograd with cutoff n0 this
should be substituted into the computational cost expressions
of Section 3.

B. COMMUNICATION-COST RATIOS
In this section we derive the ratio R of classical to Strassen-

based bandwidth cost lower bounds that appear in the begin-
ning of Section 4. Note that both classical and Strassen-based
lower bounds are attained by optimal algorithms. Similar
derivations apply to the other ratios quoted in that section.
Because the bandwidth cost lower bounds are different in
the memory-dependent and the memory-independent cases,
and the threshold between these is different for the classical
and Strassen-based bounds, it is necessary to consider three
cases.

Case 1. M = Ω(n2/P ) and M = O(n2/P 2/ω0). The first
condition is necessary for there to be enough memory to
hold the input and output matrices; the second condition
puts both classical and Strassen-based algorithms in the
memory-dependent case. Then the ratio of the bandwidth
costs is:

R = Θ

(
n3

PM1/2

/
nω0

PMω0/2−1

)
= Θ

((
n2

M

)(3−ω0)/2
)
.

Using the two bounds that define this case, we obtain R =
O(P (3−ω0)/2) and R = Ω(P 3/ω0−1).

Case 2. M = Ω(n2/P 2/ω0) and M = O(n2/P 2/3). This
means that in the classical case the memory-dependent lower
bound dominates, but in the Strassen-based case the memory-
independent lower bound dominates. Then the ratio is:

R = Θ

(
n3

PM1/2

/
n2

P 2/ω0

)
= Θ

((
n2

M

)1/2

P 2/ω0−1

)
.

Using the two bounds that define this case, we obtain R =
O(P 3/ω0−1) and R = Ω(P 2/ω0−2/3).

Case 3. M = O(P 2/3). This means that both the classi-
cal and Strassen-based lower bounds are dominated by the
memory-independent cases. Then the ratio is:

R = Θ

(
n2

P 2/3

/
n2

P 2/ω0

)
= Θ

(
P 2/ω0−2/3

)
.

Overall, depending on the ratio of the problem size to the
available memory, the factor by which the classical bandwidth
costs exceed the Strassen-based bandwidth costs is between
Θ(P 2/ω0−2/3) and Θ(P (3−ω0)/2).


