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ABSTRACT

Local data structure invariants are asserted over a bounded frag-
ment of a data structure around a distinguished node M of the
data structure. An example of such an invariant for a sorted dou-
bly linked list is “for all nodes M of the list, if M # null
and M.next # null, then M.next.prev = M and M.value <
M .next.value.” It has been shown that such local invariants are both
natural and sufficient for describing a large class of data structures.
This paper explores a novel technique, called KRYSTAL, to infer
likely local data structure invariants using a variant of symbolic ex-
ecution, called universal symbolic execution. Universal symbolic
execution is like traditional symbolic execution except the fact that
we create a fresh symbolic variable for every read of a lvalue that
has no mapping in the symbolic state rather than creating a sym-
bolic variable only for inputs. This helps universal symbolic ex-
ecution to symbolically track data flow for all memory locations
along an execution even if input values do not flow directly into
those memory locations. We have implemented our algorithm and
applied it to several data structure implementations in Java. Our
experimental results show that we can infer many interesting local
invariants for these data structures.

Categories and Subject Descriptors: D.2.4 [Software Engi-
neering]: Software/Program Verification, D.2.5 [Software Engi-
neering]: Testing and Debugging

General Terms: Reliability, Design, Documentation

Keywords: Program invariants, symbolic execution, dynamic
analysis, execution traces, logical inference.

1. INTRODUCTION

Local data structure invariants are an important class of invari-
ants that can express interesting properties of data structures. An
example of such an invariant for a sorted doubly-linked list is “for
all nodes M of the list, if M # null and M.next # null, then
M .next.prev = M and M.value < M .next.value.” Such proper-
ties are asserted over a bounded fragment of a data structure around
adistinguished node M of the data structure. It has been shown that
such local invariants are both natural and sufficient for describing
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a large class of data structures [19]. This paper explores a novel
technique, called KRYSTAL, to infer likely local data structure in-
variants using a variant of symbolic execution [15, 3, 4, 27, 14, 26,
16, 29], called universal symbolic execution.

There are three important contributions of this work. First, we
propose universal symbolic execution, that helps us to symbolically
track data flow for all memory locations along an execution even if
input values do not flow directly into those memory locations. In
universal symbolic execution, we execute a program concretely on
test inputs, while simultaneously performing symbolic execution of
the program. However, unlike traditional symbolic execution, we
create a fresh symbolic variable for every read of a lvalue that has
no mapping in the symbolic state rather than creating a symbolic
variable only for inputs. For example, universal symbolic execu-
tion of the following code

r=1;
y=a+1
z=x—1;

creates a symbolic memory where = maps to a fresh symbolic vari-
able, say xo, ¥y maps to xo + 1, and 2z maps to o — 1. Note that
we have introduced a symbolic variable z despite the fact that the
code has no input. In contrast, traditional symbolic execution of
the code creates a memory map where x maps to 1, y maps to 2,
and z maps to 0. The advantage of universal symbolic execution is
that now we can relate y and z by simply looking at the symbolic
memory, i.e. we can infer y — 1 = z 4 1. This crucial observa-
tion is central to our invariant generation algorithm. Specifically,
we use symbolic memory maps and symbolic path conditions and
equate the symbolic variables present in them to generate symbolic
relations among various memory cells.

Second, we show how the results of universal symbolic execu-
tion can be refined and generalized to generate likely local data
structure invariants. Specifically, universal symbolic execution of a
program on a test input generates a symbolic memory and a set of
path conditions, where the symbolic memory is a map from pro-
gram addresses to symbolic expressions and each path condition is
a symbolic predicate generated by the execution of a conditional
statement. The symbolic memory and the path condition set are
then used to generate a set of symbolic predicates that hold along
the test execution. Subsequently, local predicates, i.e. predicates
involving a single symbolic variable, are derived from the set of
predicates through variable elimination. These local predicates are
then generalized and simplified across all test executions to infer
a set of likely local invariant templates. The templates that hold
on all nodes of the data structure along all test executions are then
output as likely local data structure invariants.

Third, we evaluate KRYSTAL on a number of data structure im-
plementations in Java. Our experimental results are encouraging.



class NoODE {
int key; // data field
int depth; // depth of the node from the root
Node left, right, parent;
}
class BINARYSEARCHTREE {
NoDE root;
void INSERT (int data) {

o NoDE node = new NODE () ;
1 node.key = data;
0o node.left = node.right = node.parent= null;
l3: if (root == null) {
Oy root = node; node.depth = 0; return;}
U5 NODE current = root;
g2 if (current.key < data)
O7: if (current.right == null) {
0 current.right = node; goto li5; }
else { // loop again
Ly : current = current.right; goto lg; }
l10: if (current.key > data)
l11: if (current.left == null) {
l1o: current.left = node; goto li5; }
else { // loop again
l13: current = current.left; goto lg;}
l1y4: return; //data already present in the tree
l15: node.parent = current;
li6: node.depth = current.depth + 1;

Figure 1: Binary search tree and insert
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class BSTHARNESS {
static BINARYSEARCHTREE bst
= new BINARYSEARCHTREE () ;
public static void TEsSTBST (int input) {
bst.INSERT (input) ;

}
Figure 2: Test harness for the binary search tree

We show that KRYSTAL can infer interesting local invariants for
these data structures in a few seconds. We also argue that many of
these invariants cannot be inferred by existing techniques.

2. OVERVIEW

We informally present KRYSTAL on a binary search tree example
shown in Figure 1. The example defines two classes NODE and
BINARYSEARCHTREE and the method INSERT. An instance of
the class BINARYSEARCHTREE holds a reference to the root of a
binary search tree. The nodes of the tree are instances of the class
NODE. The INSERT method takes as input an integer data, creates
a new node for data, and computes the correct position for node
in the tree. If data is absent from the tree, INSERT adds the node
into the tree by setting fields in appropriate nodes. The class NODE
defines a field depth that holds the current depth of the node from
the root node in the tree. We use gotos in the body of the method
INSERT to explicitly represent the control flow.

The interesting local invariants that hold for any node M in a
binary search tree are the following.

(M # null A M.left # null) = (M.left.parent = M)
(M # null A M.right # null) = (M.right.parent = M)

M # null A M.parent # null) = (M.depth = M parent.depth + 1)

(
(M # null A M.left # null) = (M.depth + 1 = M.left.depth)
(M # null A M.right # null) = (M.depth + 1 = M.right.depth)
(M # null A M.left # null) = (M.key > M.left.key)

(M # null A M.right # null) = (M.key < M.right.key)
(M # null A M.parent # null) = (M.key # M.parent.key)
(M # null A M.parent # null) = ((M.parent.left = M)V
(M .parent.right = M))
The goal of KRYSTAL is to infer these local invariants by running
the test harness in Figure 2 on a set of test inputs. KRYSTAL infers

likely local data structure invariants using the following steps.

Figure 3: Structure of the binary search tree at the beginning
and end of a test execution

1. KRYSTAL assumes that there is a test harness and a set of
test inputs for the given data structure. KRYSTAL performs a
variant of symbolic execution, called universal symbolic exe-
cution, along each test execution path to compute a symbolic
memory and a symbolic path condition set.

2. KRYSTAL uses the symbolic memory and the symbolic path
condition set to generate a set of local symbolic predicates,
i.e. a set of predicates each of which is an expression over a
single symbolic variable. A local symbolic predicate in the
set represents a local property that holds over a specific data
structure node along the test execution.

3. KRYSTAL simplifies “similar” (defined in Section 3.4) local
predicates in the set by taking conjunctions of similar local
predicates. The simplified local predicates are then used to
generate local invariant templates. A local invariant template
denotes a predicate that could potentially hold on any node
in the data structure.

4. KRYSTAL collects local invariant templates across test ex-
ecutions and further simplifies them by taking disjunctions
of “similar” (defined in Section 3.4) templates. The resul-
tant templates are then relaxed by incorporating implicit con-
straints (such as dereferencing a null object is illegal.) Col-
lecting templates across executions helps to ensure that the
set of templates contains all potential local data structure in-
variants.

5. KRYSTAL then validates each template, by checking if it
holds on every node of the data structure at the end of each
test execution. The templates that hold for all nodes along
all test executions are output as likely local data structure in-
variants.

Consider a test execution where we insert the integer 5 into a
binary search tree which has been pre-populated to contain a sin-
gle node with key 10. The statements that get executed are (o, {1,
ég,gs, ls, s, L0, 11, £12, 615,616. The structure of the binary
search tree before and after the execution of the method INSERT is
given in Figure 3. We next describe the various steps that KRYS-
TAL uses to generate local data structure invariants for the binary
search tree example.

2.1 Universal Symbolic Execution

Along a test execution path, KRYSTAL uses a variant of sym-
bolic execution, called universal symbolic execution, to compute a
symbolic memory and a set of symbolic path conditions. Universal



symbolic execution is similar to symbolic execution as done in con-
colic execution in several aspects—during universal symbolic exe-
cution, each expression in the execution trace is evaluated symbol-
ically in the context of the symbolic memory, the symbolic mem-
ory is updated on every assignment, and a symbolic constraint is
generated on the execution of every conditional expression. How-
ever, unlike concolic symbolic execution, universal symbolic exe-
cution creates a new symbolic variable whenever a lvalue is read
and the lvalue has no mapping in the symbolic memory. A new
symbolic variable is created and an entry mapping the Ivalue to the
newly created symbolic variable is added to the symbolic mem-
ory. Furthermore, in universal symbolic execution, an assighment
statement can update the symbolic memory in two distinct ways.
Universal symbolic execution evaluates the right hand expression
in the assignment in the context of the symbolic memory. If the
expression evaluates to a constant, universal symbolic execution
removes from the symbolic memory any previous mapping associ-
ated with the address computed for the Ivalue. Otherwise, universal
symbolic execution updates the symbolic memory to map the ap-
propriate address to the evaluated symbolic expression. This spe-
cial treatment of unmapped lvalues in the symbolic memory and
assignment statements is crucial in universal symbolic execution as
it helps to establish symbolic relations among various nodes and
fields of the nodes of a data structure.

We describe universal symbolic execution along the execution
path Lo, 01, Zz,(g, Us, lg, l10, L11, {12, 6157£16- At the beginning
of the execution the symbolic memory map, say S, is initialized to
an empty map and the set of symbolic path constraints, say @, is
initialized to an empty set. During universal symbolic execution,
the statements in the execution trace update the symbolic memory
and symbolic path constraints set. Figure 4 illustrates the universal
symbolic execution along this path.

Universal symbolic execution of statement ¢y leaves the sym-
bolic memory S and the path condition set & unmodified. The
universal symbolic execution of the statement labeled ¢; creates
two new symbolic variables xo and 1 as the Ivalues that are being
read—node and data, have no mapping in the symbolic memory
S. Consequently, the symbolic memory gets updated as shown in
Figure 4. Note that in the new symbolic memory, x¢.key denotes
the symbolic address of the lvalue node.key.

The following statement £ has no effect on S and ®. The execu-
tion of the conditional labeled /3 creates a new symbolic variable
x2 as the lvalue root has no mapping in S, updates the symbolic
memory to include the mapping (root — x2), and adds the sym-
bolic path constraint (x2 # null) to the set .

We continue universal symbolic execution along the rest of the
path in the same way. Figure 4 shows the updated symbolic mem-
ory and path condition set that are obtained after the execution of
the corresponding statement.

At the end of the execution, we have symbolic memory S =
[node — xo,data — x1,x0.key — x1,root — xa2,current —
T2, x2.key +— x3,x2.left — xo0,x0.parent — xa,x2.depth —
x5, To.depth +— x5 + 1] and path constraint set ® = {x2 #
null,zs > x1,T3 > T1,T4 = l’lull}.

2.2 Local predicate generation
The symbolic memory and the path condition set are then used

to generate the set of predicates ¢ = {node = xzo,data =
T1,To.key = T1,r00t = X2, current = xa, T2.key = 3, To2.left =
To, To.parent = To,To.depth = x5, xo.depth = x5 + 1,22 #
null,zs > z1,z3 > x1,24 = null}. This is obtained by
adding to the set ® a predicate t; = t2 for each mapping t1 — t2
in . The predicates in the set ¢ represent the symbolic constraints
over the symbolic variables that hold for the current execution.

D [Stmt Symbolic Memory S
y ry

[Path Cond. Set 9|

INODE node = i {1
0 Inew NODE();
| hode.key = data; [node — xo,data — x4, {}
o key — x1]
0 node.left = node.right |[node — xq,data — x1, {}
= node.parent =null;jrg.key — x1]
s [L £ (root == nu11) [node — zq, data — x1, {x2 7 null}
0.key — x1,root — x2]
[node — zq, data — x1, {z2 # null}
5 [NODE current = root; |rg.key — x1,root — x2,
current — x3]
[node — xo,data — x1, {z2 # null,
6 |1 f (current.key < data)xg.key — x1, root — x2, 3 > x1}
urrent — x2,x2.key — x3]
[node — x¢,data — x1, {z2 # null,
101 £ (current.key > data)xg.key — x1,root — xa, 3> x1,
lcurrent «— o, x2.key — 3] x3 > x1}
[node — xo,data — x1, {z2 # null,
1if (current.left lxo.key — x1, root — xg, lx3 > x1,
o == pul1) lcurrent — xo, x2.key — x3, 3> 1,
2 left — x4] 4 = null}
[node — zq, data — x1, {z2 # null,
12current.left = node; 0-Key = &1, 1001 = 2, 3 2 1,
lcurrent — xgo, x2.key — x3, 3 > x1,
@2 .left — xo] 4 = null}
[node — xo,data — x1, {z2 # null,
15jnode.parent = current; Lo.key = T1,root — T2, 3 = 1,
urrent — To, x2.key — x3, 3> T,
o left — 0,20 parent — xa)ry = null}
[node — xq, data — x1, {z2 # null,
0.key — x1,root — x2, 3> x1,
ode.depth = lcurrent — xgo, x2.key — x3, s > x1,
16currem.depth +1; o.left — x0,xo.parent — x3, jrg = null}
x2.depth — x5,
o .depth — x5 + 1]

Figure 4: Universal symbolic execution of INSERT(5) in a BI-
NARY SEARCH TREE containing 10. Updates made at each step
are underlined for emphasis.

For local invariant generation, we need predicates that are over
a single symbolic variable and do not contain variable names, also
called local predicates. In local predicates, we can then replace the
symbolic variable by a generic symbolic variable M to generate a
likely local template. However, the predicates in ¢, in general, are
not over a single symbolic variable or contain variable names (such
as node, data.) KRYSTAL tries to derive new predicates containing
a single symbolic variable from the set ¢ through variable substitu-
tion. Specifically, KRYSTAL uses predicates of the form z; = e (or
e = x;) in ¢ (where z; is a symbolic variable and e is a symbolic
expression) to derive more predicates. This is done by replacing
the variable x; with the expression e in each predicate in ¢ that
contains x;.

KRYSTAL performs variable substitution on the predicates in ¢
repeatedly to generate the complete set of local predicates that can
be derived from ¢. Note that due to possible circular dependency
among the predicates, we can perform an unbounded number of
substitutions. Therefore, we restrict the number of times KRYSTAL
applies the variable substitutions to two. Note that if we increase
this bound further, we will get more complex, but rich set of pred-
icates. However, our experiments showed that only two substitu-
tions are sufficient to infer the most interesting local invariants.

For example, using the predicate x2.left = xo, we derive the
local predicate x>.left.parent = x2 by replacing xo with xo.left
in the predicate zo.parent = x2. The complete set of local



predicates containing a single symbolic variable derived from ¢
is ¢ = {wo.parent.left = xo,x2.left.parent = x3,x0.depth
xo.parent.depth + 1, x2.left.depth = x2.depth + 1, xo.parent
null,ze # null,x2.key > x2.left.key, xo.parent.key
xzo.key, xo.key > xa.left.key, xo.parent.key > xo.key, x4
null}.

IVl

2.3 Local invariant template generation from
local predicates

In this step, we simplify sets of similar local predicates in
the set 1) by taking their conjunction. In informal terms, local
predicates that are expressions over the same set of lvalues are
similar (a formal definition is given in Section 3.4.) To under-
stand why we take a conjunction to simplify sets of local pred-
icates, recall that the local predicates in the set ¢ are gener-
ated from a single execution trace, and hence hold true over the
corresponding symbolic variables simultaneously. It follows that
a conjunction of local predicates also holds true along the ex-
ecution trace. For example, we simplify the predicates in the
set {xo.key > wo.left.key, xo.key > wma.leftkey} to xo.key >
x2.left.key}. After simplification, the set of local predicates be-
come {xo.parent.left = wxo,x2.left.parent = x2,x0.depth =
xo.parent.depth + 1,xs.left.depth = xa.depth + 1,22 #
null, xzg.parent # null,xze.key > x2.left.key, xo.parent.key >
xo.key, x4 = null}. The set represents local predicates that hold
along the test execution.

Subsequently, we replace any symbolic variable in any local
predicate by the generic symbolic variable M. The resultant set
is a local invariant template set { M.parent.left = M, M left.parent =
M, M.depth = M .parent.depth + 1, M left.depth = M.depth + 1, M #
null, M.parent # null,M.key > DM.left.key, M. parent.key >
M.key, M = null}. The templates in the set denote predicates
that could potentially hold on any node in the binary search tree.

2.4 Collecting local invariant templates across
executions

So far, we have generated a set of local invariant templates
from a single test execution. Since a single execution path in
a program cannot cover all possible behaviors of the program,
the set of templates may not be complete (i.e. some interesting
templates may be missing) or sound (i.e. some templates that may
not hold over all executions may be present.) For example, the
template M.key < M.right.key is missing from the set, while the
template M .parent.key > M key is not true for all nodes in the
binary search tree. In order to minimize the incompleteness, we
take the union of all sets of templates generated on all test inputs.
Note that the set of templates after taking union could still be
incomplete as our test suite might not be good enough. We can
overcome this shortcoming partly by ensuring that the test suite
has a high path coverage, by using a systematic automated test
generation tool such as CUTE [21]. In the above example, consider
inserting another datum, say 15, in the binary search tree. After
taking union, the set of templates becomes: {M.parent.left =
M, M .parent.right = M, M .left.parent = M, M.right.parent =
M, M.depth = M.parent.depth + 1, M.left.depth
M.depth + 1, M.right.depth =  M.depth + 1, M
null, M.parent # null,M.key > M.left.key, M.key
M .right.key, M .parent.key > M key, M .parent.key
M key, M = null}.

We again perform simplifications on sets of similar local in-
variant templates, where similarity is defined in the same man-
ner as similarity of local predicates. We simplify sets of sim-
ilar local invariant templates by taking disjunction. To under-
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stand the reasoning behind this, note that local invariant tem-
plates are generated from local predicates over different sym-
bolic variables or from different execution traces. By taking
disjunction, we are able to generate simplified invariant tem-
plates that potentially hold over all nodes in the data structure,
across all execution paths. For example, we replace the templates
M .parent.key > M.key and M.parent.key < M.key by their
disjunction M .parent.key # M .key. The resultant set becomes
{M parent.left = M, M.parent.right = M, M.left.parent =
M, M.right.parent = M, M.depth = M .parent.depth +
1, M.left.depth = M.depth + 1, M.right.depth = M .depth +
1, M.parent # null,M.key > M.leftkey, M.key <
M .right.key, M .parent.key # M .key}.

The templates that we have generated so far could potentially
hold over all nodes in the tree. However, these templates also as-
sume some implicit constraints, such as one cannot access the field
of a null object. Therefore, an invariant template M .parent.left =
M is true only if M # null and M.parent # null. We
incorporate these implicit constraints in each template. For ex-
ample, we modify the template M.parent.left = M to (M #
null A M.parent # null) = (M.parent.left = M). We per-
form the modification for each template in the set of templates.

In this phase, we have collected templates across multiple execu-
tions so that the set of templates is complete. We next try to remove
unsoundness by validating the templates on all nodes across all ex-
ecutions.

2.5 From local invariant templates to likely
local data structure invariants

In the final validation phase, we run our test harness on all test in-
puts and check at the end of each execution whether each template
obtained from the previous phase holds on each node of the binary
tree at the end of the execution. We output those templates that hold
on all nodes on all executions as local data structure invariants. In
our example, we get the following set of local invariants.

{(M # null A M.left # null) = (M.left.parent = M),
(M # null A M.right # null) = (M.right.parent = M),

(M # null A M.parent # null) = (M.depth = M.parent.depth + 1),

(M # null A M.left # null) = (M.depth + 1 = M left.depth),

(M # null A M.right # null) = (M.depth + 1 = M.right.depth),

(M # null A M.left # null) = (M.key > M.left.key),

(M # null A M.right # null) = (M.key < M.right.key),

(M # null A M.parent # null) = (M.key # M.parent.key)}

Note that in the validation phase we remove the spurious tem-

plates (M # null A M.parent # null) = (M.parent.left = M),
(M # null A M.parent # null) = (M.parent.right = M), and
(M # null) = (M.parent # null).

3. ALGORITHM

In this section, we formally describe the KRYSTAL algorithm.

3.1 Programs and concrete semantics

We describe the KRYSTAL algorithm on a simple imperative lan-
guage. The operations of the language consist of labeled statements
¢ : s. Labels denote statement addresses. A statement in the lan-
guage is either (1) the HALT statement denoting the normal ter-
mination of the program, (2) an assignment statement m := e,
where e is a side-effect free expression and m is an Ivalue of the
form v or v.f denoting a variable or a field f of the object refer-
enced by v, respectively, and (3) a conditional statement of the form
if (e) goto ¢, where e is a side-effect free expression and £ is
a statement label. The language allows a special kind of object cre-
ation expression of the form new 7', where 7' is an object type



(or class.) For simplicity of exposition, we do not include function
calls in the language; function calls can be handled in the standard
way as described in [22].

The set of data values consists of objects, integer values, and
boolean values. The concrete semantics of a program is given us-
ing a memory consisting of a mapping from program addresses to
values. Execution starts from the initial memory M which maps
addresses to some default value in their domain. Given a mem-
ory M, we write M[a — d] to denote the memory that maps the
address a to the value d and maps all other addresses a’ to M (a').

Statements update the memory. The concrete semantics of a pro-
gram is given in the usual way as a relation from program loca-
tion and memory to an updated program location (corresponding to
the next statement to be executed) and an updated memory [20].
For an assignment statement ¢ : m := e, this relation calcu-
lates, possibly involving address dereferencing, the address a of
the lvalue m. The expression e is evaluated to a concrete value d
in the context of the current memory M, the memory is updated
to MJa — d], and the new program location is £ + 1. For a con-
ditional £ : if (e) goto /', the expression e is evaluated in the
current memory M. If the evaluated value is true, the new program
location is ¢, and if the value is false, the new location is £ + 1. In
either case, the new memory is identical to the old one. Execution
terminates normally if the current statement is HALT. For an object
creation statement m := new 7, the address a of the lvalue m is
calculated, an object o is allocated in the heap, and the memory is
updated to M[a — o].

3.2 Universal Symbolic Execution

In order to infer likely local data structure invariants, we use a
variant of symbolic execution called universal symbolic execution.
Universal symbolic execution performs symbolic execution along
a concrete execution path as in concolic execution. However, uni-
versal symbolic execution differs from concolic execution in two
important ways. Universal symbolic execution introduces a fresh
symbolic variable during symbolic execution whenever the execu-
tion reads the value at an address, and the address has no mapping
in the symbolic memory (i.e. a map that represents the program
memory symbolically.) This is in contrast to concolic execution
where we only introduce a symbolic variable whenever the pro-
gram executes an input statement. Additionally, in universal sym-
bolic execution, an assignment statement m := e can update the
symbolic memory in one of two different ways. Universal sym-
bolic execution computes the symbolic address of m, and evalu-
ates the expression e in the context of the symbolic memory. If
the symbolic evaluation of e results in a constant, universal sym-
bolic execution removes from the symbolic memory any previous
mapping associated with the computed symbolic address for m.
Otherwise, the symbolic memory is updated to map the symbolic
address to the symbolic value of e. This is in contrast to concolic
execution (and classic symbolic execution) where assignment state-
ments update the symbolic memory uniformly to map the address
of m to the symbolic expression for e. This is described in more
detail in the rest of the section. The introduction of a symbolic vari-
able for any read to an unmapped address helps KRYSTAL to track
relations among various memory locations, rather than memory lo-
cations that are only data-dependent on inputs. This is important to
establish relations among various data structure nodes all of which
are not necessarily data-dependent on inputs. For example, in a
red-black tree we can infer the invariants that the color field of any
node is either red or black despite the fact the values red and black
are not provided in inputs. We provide the details in the rest of the
section.

execute_program(P, Testlnp)

pc = £o; i = 0;
M=8=][]
=1

while (true)
s = statement_at( P, pc);
match (S)
case (m := e):
M = M{eval_concrete(m, M) — eval_concrete(e, M)];
(8, 1) = exec_symbolic(m, e, S,1);
pe=pc+1;
case (if (e) goto ¢'):
b = eval_concrete(e, M);
(e, S, 1) = eval_symbolic(e, S, 1);
if b then
d=>dUc;pc=Vt;
else
P =P U-cpc=pc+1;
case HALT:
return ®;

Figure 5: Universal symbolic execution algorithm of KRYSTAL

The second difference between concolic execution and univer-
sal symbolic execution is that the symbolic memory in universal
symbolic execution maps symbolic addresses to symbolic expres-
sions, whereas in concolic execution it maps concrete addresses to
symbolic expressions. The fact that the domain of the symbolic
memory in universal symbolic execution is symbolic rather than
being concrete helps KRYSTAL to derive pointer predicates (such
asM.next.prev = M) as described in the rest of the section.

Universal symbolic execution maintains two data structures: (1)
A symbolic memory S that maintains mapping from symbolic ad-
dresses to symbolic expressions over symbolic variables, and (2)
a path condition set & which is a set of symbolic constraints over
symbolic variables that arise from execution of conditional state-
ments.

We now formally describe the universal symbolic execution al-
gorithm of KRYSTAL. Let X be the domain of symbolic variables.
Let EXP(X') and PRED(X) be the domain of symbolic expressions
and symbolic predicates over the symbolic variables in X, respec-
tively. Let A be the domain of symbolic addresses—any a € A
is always of the form v or z.f, where v and f are names and
x € X. The symbolic memory S is then the map A — EXP(X)
and @ C PRED(X)).

The pseudo-code of the symbolic execution of KRYSTAL is given
in Figure 5. The symbolic execution populates the symbolic mem-
ory S and the path condition set @, which are later used by KRYS-
TAL for local invariant generation. The function eval_concrete
evaluates an expression according to the standard semantics of the
language in the context of the concrete memory M. The function
eval_symbolic, which is described in Figure 7, evaluates an expres-
sion symbolically in the context of the symbolic memory S. At ev-
ery assignment statement m := e, KRYSTAL executes the assign-
ment statement both concretely and symbolically. In the concrete
execution, the address of the lvalue m is calculated and mapped
to the value obtained by concretely evaluating the expression e. In
the symbolic execution, the statement is executed symbolically (see
Figure 6) by invoking exec_symbolic(m, e, S, 1).

At every conditional statement if (e) goto ¢, KRYSTAL
evaluates e both concretely and symbolically to obtain the concrete
boolean value b and the symbolic predicate c, respectively. If b is
true, then c is added to the set ® ; otherwise, if b is false, then —c is
added to the set.

We next describe exec_symbolic and eval_symbolic functions
(see Figure 6 and Figure 7) which are different from standard sym-



exec_symbolic(m, e, S, 1)
(r,S,1) = eval_symbolic(e, S,1);
match m
case v: // the variable named v
if 7 is not a constant then

S=S8v—r
else // remove any mapping associated with v
S=8—v;

case v. f: // the field named f of the variable v

if v ¢ domain(S) then
/I introduce a new symbolic variable x;
S=S8Sv—z;i=1+41;

if 7 is not a constant then
8 = S[S(v).f > rl;

else / remove any mapping associated with S(v). f
S =8 - 8).f;return (S, 1);

Figure 6: Symbolic execution

eval_symbolic(e, S, 1)
match e
case c: // ¢ is a constant
return (c, S, 1);
case €1 op ea:
(r1,8,1) = eval_symbolic(e1,S,1);
(r2, S, 1) = eval_symbolic(e2, S, 1);
return (r1 op r2, S, 1); // symbolically apply op onrj and 72
case new 71"
return (0, S, 4); // return a dummy constant say 0
case v: // the variable named v
if v ¢ domain(S) then
// introduce a new symbolic variable x;
S=8Sv—uz);i=1+1;
return (S(v), S, );
case v. f: // the field named f of the variable v
if v ¢ domain(S) then
// introduce a new symbolic variable x;
S=S8Svr—z);i=1+1;
if S(v).f ¢ domain(S) then
/I introduce a new symbolic variable x;
S=8S[SW).frz];i=i+1;
return (S(S(v).f), S,4);

Figure 7: Symbolic evaluation

bolic evaluation of concolic execution in three ways: (1) If an
Ivalue is of the form v, then we take the name v as the symbolic
address of the lvalue v; if v. f is the form of an lvalue, then we take
S(v).f as the symbolic address of the lvalue, (2) if the right hand
side of an assignment evaluates to a constant, then we remove any
mapping associated with the symbolic address of the Ivalue, and (3)
if the symbolic address of a lvalue that is accessed has no mapping
in the symbolic memory, then we create an entry in S by mapping
the address to a fresh symbolic variable.

Rather than using the concrete address of v.f (i.e. &(v.f))in S,
we use S(v). f as the symbolic address of the lvalue v. f. By doing
so, the symbolic memory S maintains the logical structure of the
heap: if z. f maps to 2’ in S, where = and «’ are symbolic variables
and the field f is of reference type, then we know that in the current
state there is an edge via the field named f from the node denoted
by z to the node denoted by z’ in the heap.

The rationale behind creating a symbolic variable for every un-
mapped lvalue in S is that it helps us to maintain the relation among
the various nodes in a data structure. In order to illustrate this, con-
sider the following program, where the type or the class 7" has a
field next.

lo:a=new T
1 :b=new T,
l2 : a.next = b;
U3 : b.next = a;

Initially, S = [ ] (and ® remains the empty set throughout the
symbolic execution.) After the execution of the statement labeled
lo and /1, S and ® remain unchanged. The statement labeled {2
reads two lvalues a and b and writes to the lvalue a.next. How-
ever, both a and b have no mapping in §. Therefore, KRYS-
TAL creates two fresh symbolic variables zo and x1 and maps b
to o and a to z1 in S. The symbolic execution of the assign-
ment statement ¢y then maps xi.next to xo. S, therefore, be-
comes [a +— x1,b — zo,x1.next — o). Similarly, after the
execution of the statement labeled ¢35, S becomes [a — x1,b —
Zo, T1.next — xo,To.next — x1]. This final symbolic memory
completely characterizes the structure of the heap at the end of the
execution: each symbolic variable represents a node, and each en-
try in S represents a directed edge. A close examination of the map
also allows us to derive the local invariants xg.next.next = xo and
x1.next.next = x1. We formalize the technique of deriving these
local invariants in the next section.

exec_symbolic(m, e, S, 1) symbolically evaluates e in the con-
text of the symbolic memory S. If m is of the form v. f and if the
Ivalue v has no mapping in S, then a fresh symbolic variable z;
is created and a mapping from v to x; is added to S. (The index
i keeps track of the number of symbolic variables created so far.)
A map from the symbolic address of m to the symbolic value of e
is added to S if the symbolic evaluation of e is not a constant. If
the symbolic evaluation of e is constant, then we remove from S
any mapping associated with the symbolic address of m. This re-
flects the fact that we have written the symbolic address of m with
a constant and any subsequent dereference of the address should
not return a stale symbolic expression.

eval_symbolic recursively evaluates its first argument e. For ex-
ample, if e is of the form ey op ez, then eval_symbolic recursively
evaluates e; and e2 and then symbolically applies op to the results
with applicable simplifications. If e is a constant, then symbolic
evaluation of e trivially results in the constant. The above cases are
straightforward. However, if e is an Ivalue of the form v, then two
situations may arise: the name v may not or may have a mapping
in S. In the former case, a new symbolic variable x; is created and
an entry v — x; is added to S. The symbolic evaluation of v then
results in S(v). If e is an lvalue of the form v. f, then as before if
v has no mapping in S, then an entry v — x; is added to S. Sim-
ilarly, if S(v).f has no mapping in S, then an entry S(v).f — z;
is added to S. The above two cases for the symbolic evaluation of
an Ivalue ensures that every Ivalue that is read during the execution
has a mapping in S. If e is of the form new T, then a dummy
constant, say 0, is returned.

At the end of the symbolic execution, we get a path condition set
® and a symbolic memory S. We use these two data structures to
generate local axioms.

3.3 Local predicate generation

In this phase, KRYSTAL uses the path condition set ¢ and the
symbolic memory S to generate local predicates. We say that a
predicate over X is a local predicate if the set of symbolic variables
in the predicate is a singleton and the predicate contains no variable
names. The goal of this phase is to generate a set of local predicates
over X that are consistent with ® and S. Once we have such a set
of local predicates, we can generalize the predicates to generate
data structure invariants. We describe this generalization phase in
the next section.

The key insights behind the current phase are the following. (1)
If a — d is an entry in S, then the predicate a = d is true for the
symbolic execution. Let ¢ be the set {a = d | S(a) = d} U P,
i.e. the set of all predicates that are true for the symbolic execution.



(2) One can generate local invariants by treating the set ¢ as a set
of equations and by performing variable elimination on the set of
equations. We next describe the above step.

Let us call predicates of the form z = d or d = x, where x € X,
definition predicates. Given a definition predicate x = d or d = x,
let p[z\d] be the predicate obtained by replacing any occurrence
of the symbolic variable x in p by the symbolic expression d. We
use the set ¢ (i.e. the set of predicates that are true for the current
symbolic execution) to compute the set DERIVE(¢p) by replacing
x by d in each predicate p € ¢ where x = d or d = x is also a
predicate in ¢. Formally,

DERIVE(p) = o U{p'[z\d] | p € p and p’ € v and p is a definition
predicate and p is of the form z = dord = =}

Note that the predicates in DERIVE((p) are implied by the pred-
icates in ¢. Moreover, due to variable substitution, we get some
predicates in DERIVE((p) that are local predicates. Subsequent ap-
plications of DERIVE gives rise to more complex local predicates.
Let ¢ be the set of all local predicates in DERIVE(DERIVE(y)).
We restrict the number of applications of DERIVE to two in order
to get small, but rich enough, set of local predicates. Note that if
we apply DERIVE more times , we will get more complex, but rich
set of predicates. However, our experiments showed that only two
applications of DERIVE are sufficient to infer the most interesting
local invariants.

For example, if at the end of symbolic execution along a path we

generate a symbolic memory S = {zo.next — x1,x1.prev —
Zo,xo.val +— xg,x1.val — x3} and a path condition set
& = {xz2 < x3,m2 # 3}, then ¢ = {zo.next =

T1,X1.prev = {Eo,l‘o.val = 1132,.%'1.1)(11 = X3,T2 S 3,2 76 :83}
and the local predicates in DERIVE(DERIVE(y)) forms the set
¢ = {xi.prev.next = x1,xo.next.prev = xo,x1.prev.val <
x1.val,xo.val < xo.nextval,xi.prev.val # x1.val,xo.val #
xo.next.val}.

3.4 Generating local invariant templates from
local predicates along an execution

The local predicates generated in the previous phase are over
various symbolic variables. In this phase, we generalize them to
predicates over a single generic symbolic variable. We call such
predicates as templates. Templates are predicates that could poten-
tially hold on any node of a data structure. The template generation
takes place in two steps. First, we simplify sets of local predicates
by using simple theorem proving. For example, we simplify the
local predicates xo.val < xg.next.val and xg.val # xo.next.val
to the local predicate zg.val < z¢.next.val. Second, we replace
any symbolic variable in any local predicate by a generic sym-
bolic variable M to generate a set of templates for local invari-
ants. For example, the set {x1.prev.next = w1, xo.next.prev =
Zo, x1.prev.val < x1.val, xo.val < xo.next.val} obtained from the
set v = {x1.prev.next = x1,xo.next.prev = xo,x1.prev.val <
zi.val,xo.val < xo.next.val,xi.prev.val # xi.val,xo.val #
Zo.next.val} through simplification generates the set of tem-
plates {M.prev.next = M, M.next.prev = M, M.prev.val <
M .val, M.val < M.next.val}.

The templates generated using the above two steps represent po-
tential local invariants that are true for any node of the given data
structure along the execution path.

The templates that we generate are similar in functionality to
those that Daikon uses to generate its invariants. The crucial dif-
ference between Daikon and KRYSTAL is that we generate invari-
ant templates in KRYSTAL through universal symbolic execution
whereas in Daikon the templates are fixed and provided by the
user. Therefore, unlike Daikon, KRYSTAL can discover complex
templates involving field accesses.

We next formally describe the two steps of template generation.

Step 1: Simplification.

In the simplification step, we perform a very limited form of sim-
plification by replacing every set of similar local predicates in ¢ by
their conjunction. We say that two local predicates are similar if
both of them have the same symbolic variable and they can be writ-
ten in the normalized forms 3" cie; +d > 0and Y cje; +d' 1 0,
respectively where ¢;’s, ¢;’s, d and d’ are constant literals, e;’s are
the non-constant parts, and <€ {<, >, <, >, =, #}. For example,
zo.val > 1 and x¢.val < 8 are similar. Given two similar predi-
cates Y cie; +d 1 0and > cie; + d' 0 in 9, we replace them
in v by their conjunction Y cie; +d 1 0 A > cie; + d' > 0.
This simplification step helps KRYSTAL to generate more precise
and compact local data structure invariants.

The rationale behind taking a conjunction of the similar local
predicates is the following. Any symbolic variable in an execu-
tion has a corresponding concrete value in the concrete execution.
A local predicate over a symbolic variable constrains the possible
values that the symbolic variable (and its fields) can assume while
executing the same execution path. Therefore, a conjunction of all
the local predicates in ¢ over a given symbolic variable also con-
strains the possible values that the symbolic variable and related
fields can assume along the execution path.

Step 2: Template Generation.

Let ¢’ be the set of local predicates after simplification of the
set 1. In this step, we first remove any local predicate whose sym-
bolic variable does not correspond to type 7', where the class T
represents a node in the data structure. We then replace any sym-
bolic variable in any predicate in the modified set )’ by a generic
symbolic variable M.

3.5 Collecting local invariant templates across
executions

All the phases of the algorithm discussed so far are applied to a
single execution trace. After running these phases along a single
execution path, we get a set of local invariant templates. In the cur-
rent phase, we accumulate the templates generated from multiple
execution traces, simplify them, and relax them to infer the likely
local invariant templates for the data structure. We next describe
these three steps.

Step 1: Accumulating templates across executions.

KRYSTAL performs universal symbolic execution on the execu-
tion trace for each test input and computes the set of local invariant
templates for each execution path. KRYSTAL then takes the union
of these sets of local invariant templates. Let I" be the set obtained
after taking union. The templates in the set I' then represent local
data structure invariants that could potentially hold over any data
structure node.

Step 2: Simplification.

After constructing the set I', KRYSTAL performs further simpli-
fication by taking disjunction of similar templates, where similarity
is defined in the same way as similarity of local predicates (see Sec-
tion 3.4.) To understand the rationale behind taking disjunction,
recall that, in the previous phase, sets of similar local predicates
were simplified to a single local predicate by taking a conjunction.
It follows that distinct templates are generated from local predi-
cates over dissimilar symbolic variables or from different execution
traces. Therefore, a disjunction of all the local invariant templates
in I represents the constraint that can potentially hold for any node
in the data structure across execution traces.

The simplification step helps to reduce the number of tem-
plates and prevent eliminating some relevant invariants in the next



phase, which is the validation phase. For example, if the tem-
plates M.color = ’R’ and M.color = ’B’ are generated along
different execution paths, respectively, then we definitely know
that either of the templates do not hold for all execution paths.
Therefore, in the validation phase, which is described next, we
will eliminate both of them. However, if we take their disjunc-
tion M.color = R’V M.color = *B’, then the resultant invariant
holds over all execution paths and we keep it in the final set of local
invariants that we infer.

Step 3: Relaxation.

After simplification we get a set of local invariant templates,
say I, that contains likely local data structure invariants. We
relax each template in the set I by incorporating some implicit
constraints. For example, if M.next.prev = M, then we know
from the pointer dereference semantics that the template is true
if M # null and M.next # null. We, therefore, incorpo-
rate these implicit constraints in the template by changing it to
(M # null A M.next # null) = (M.next.prev = M). This is
similar to guarded implications added by Daikon [8].

After the relaxation step, let the modified set of local invariant
templates be A. In the final phase, we check all the templates in
the set A against all execution paths and only keep those invariants
that hold along all execution paths.

3.6 Using local invariant templates to gener-
ate likely local data structure invariants

In this final phase, we run our program on all test inputs and
check at the end of each test run that each template in A holds on
each node of the data structure. We retain only those templates
that hold on all data structure nodes on all test executions. These
templates represent the likely local data structure invariants inferred
by KRYSTAL.

4. IMPLEMENTATION AND EVALUA-
TION

We have implemented the KRYSTAL algorithm in programming
language Java. The tool takes as input the source code for a Java
program. The front-end uses the Soot compiler framework [25] to
perform instrumentation. Instrumentation inserts various method
calls into Java byte-code. The inserted method calls log the trace
of an execution at runtime. The backend parses a trace generated
from an execution and performs universal symbolic execution on
the trace. We also use the YICES theorem prover [6] to solve satis-
fiability and validity queries. Such queries are used in the simplifi-
cation of predicates during the conjunction and disjunction opera-
tions.

We evaluate KRYSTAL on a set of data structure implementa-
tions. We assume that each implementation provides a set of API
methods to manipulate the data structure.

4.1 Experimental Setup

To setup the evaluation process, we write a test harness for each
data structure. The test harness is a Java main method that cre-
ates an instance object of the data structure class and calls the ob-
ject’s API methods in a random sequence. The arguments to the
different API methods are also randomly generated from a finite
domain. The test harness is combined with the instrumented pro-
gram (data structure implementation) to form a self-executable pro-
gram, which can be compiled and executed to generate the execu-
tion traces. The backend of KRYSTAL performs universal symbolic
execution for each API method invocation along the execution to
generate the invariants for the data structure.

We ran KRYSTAL over ten data structures. We give a high-
level description of these data structures below. The data structures
SORTED SINGLY LINKED LIST, SORTED DOUBLY LINKED LIST,
and SORTED SKIP LIST implement list-based data structures and
they maintain their elements in an increasing order of the values in
their key fields. BINARY SEARCH TREE maintains its elements in
a binary tree, such that the value of key at a node is larger than any
of the key values in the left sub-tree and is at least as small as the
values of the key fields in the right sub-tree. AVL TREE and RED
BLACK TREE implement self-balancing binary search trees, per-
forming various tree restructuring operations to balance the height
property. Two implementations of the red-black tree are used,
one that uses the conventional sentinel node, and the other, imple-
mented without the sentinel node. SPLAY TREE also implements
a self-balancing binary search tree with an additional property that
recently accessed elements are quick to access again. Moreover,
unlike other types of self balancing trees, splay trees preserve the
order of the nodes with identical keys within the tree. MAX HEAP
is a priority queue implemented with a binary tree. It maintains the
property that the key at a node, is at least as large as the keys in its
left and right subtrees. N-ARY TREE implements a tree, where each
node can have an arbitrary number of children. Every node has a
pointer to its parent node and a pointer to its first child, while the
nodes in the same level are connected by sibling pointers.

4.2 Experimental Results

Figure 8 summarizes our experimental results. We list all the
invariants that KRYSTAL finally reports to the user for each data
structure. The second column in the table lists the time taken by
KRYSTAL to generate the final set of invariants. For each invari-
ant that KRYSTAL generates, for comparison, we also indicate if
it was inferred by a closely related work for dynamic invariant
inference—Daikon.

The Daikon invariant detector included in the Daikon distribu-
tion computes invariants over scalars and arrays. Therefore, for
Daikon, we rewrote the programs to linearize collections into ar-
rays at the relevant program points. This was done in accordance
with the description in [9]. For every data structure collection, ex-
plicit variables in the program are selected as roots. For each field
that leads from an object to another object of the same type, we
create an array and output the non-recursive type fields of the two
objects as successive elements in the same array.

We manually generated the set of invariants for each data struc-
ture and compared the hand-generated output with the set of in-
variants that is generated by KRYSTAL. Based on this, we classify
the invariants into three classes—(1) Interesting: relevant invariants
that are reported by KRYSTAL, (2) Irrelevant: invariants that are
reported by KRYSTAL, which hold true for the data structure, but
are not interesting from the programmer/user point of view, and (3)
Spurious: incorrect invariants that are reported by KRYSTAL. The
class of invariant in each case is also indicated in Figure 8.

We analyze the quality of the output generated by KRYSTAL us-
ing three metrics—soundness (i.e. we do not generate spurious
invariants), completeness (i.e. we generate all possible local data
structure invariants), and relevance (i.e. we generate only interest-
ing/useful invariants.)

Note that we are dependent on the quality of the test suite for
both the generation of invariants and for checking the validity of
the invariants. Therefore, our technique is neither sound (spurious
invariants may be reported) nor complete (we may miss invariants.)
However, for all the given data structures, we were able to get good
results.

We will now take a closer look at the invariants that KRYSTAL
generated. For each test program, the test harness instantiates the



Data Structure Time

Data Structure Invariants

Invariant Type T[Daikon ¥

SORTED SINGLY

LINKED LIST 1.31s|(M # null A M.next # null) = (M.key < M.next.key) Interesting Yes

M # null A M.prev # null) = (M.prev.next = M) Interesting No

SORTED DOUBLY || (M 7 null A M.next # null) = (M.next.prev = M) Interesting No

LINKED LIST ’ M # null A M.prev # null) = (M.key > M.prev.key) Interesting No

M # null A M.next # null) = (M.next.key > M.key) Interesting Yes

M # null A M.next3 # null) = (M.next3.key > M.key) Interesting Yes

SORTED SKIP LIST |3.14s|(M # null A M.next2 # null) = (M.next2.key > M.key) Interesting Yes

M # null A M.nextl # null) = (M.nextl.key > M.key) Interesting Yes

M # null A M.left # null) = (M.left.parent = M) Interesting No

BINARY SEARCH 1506/ # null A M.right # null) = (M.right.parent = M) Interesting No
525 .

TREE M # null A M.left # null) = (M.key > M.left.key) Interesting Yes

M # null A M.right # null) = (M.key < M.right.key) Interesting Yes

M # null A M.1left # null) = (M.left.parent = M) Interesting No

M # null A M.right # null) = (M.right.parent = M) Interesting No

MAX HEAP 2.28s|(M # null A M.left # null) = (M.key > M.left.key) Interesting Yes

M # null A M.parent # null) = (M.parent.key > M.key) Interesting No

M # null A M.right # null) = (M.key > M.right.key) Interesting Yes

N-ARY TREE 1.31s|(M # null A M.firstChild # null) = (M.firstChild.parent = M) Interesting No

M # null A M.left # null) = (M.left.parent = M) Interesting No

Interesting No

AVL TREE 19.47(M # null A M.left # null) = ((M.left.key < M.key) A (M.left.key # M.key)) Interesting Yes

M # null A M.right # null) = ((M.right.key > M.key) A (M.right.key # M.key))| Interesting Yes
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M # null A M.parent # null) = (M.parent.key # M.key) Interesting No

M # null) = (M # M.right) Irrelevant No

RED BLACK TREE M # null) = (M.key > M.left.key) Interesting Yes
(implemented using [4.32s|(M # null) = ((M.color = 1) V (M.color = 0)) Interesting Yes
sentinel node M # null) = (M # M.left) Irrelevant No

M # null) = (M # M.parent) Irrelevant No

M # null A M.right # null) = (M.right.key > M.key) Interesting Yes

RED BLACK TREE M # null A M.right # null) = (M.right.parent = M) Interesting No
(implemented without 3.42s|(M # null A M.1left # null) = (M.left.parent = M) Interesting No
sentinel node M # null A M.left # null) = (M.key > M.left.key) Interesting Yes

M # null) = ((M.color = 1) V (M.color = 0)) Interesting Yes

M # null A M.left # null) = (M.left.parent = M) Interesting No

M # null A M.right # null) = (M.right.parent = M) Interesting No

M # null) = (M.parent # M) Irrelevant No

SPLAY TREE 15.5s|(M # null) = (M # M.left) Irrelevant No

M # null) = (M # M.right) Irrelevant No

M # null A M.left # null) = (M.left.key < M.key) Interesting Yes

(M # null A M.right # null) = (M.right.key > M.key) Interesting Yes

Figure 8: Experimental Results ('Each invariant is marked as Interesting, Irrelevant or Spurious—see Section 4.2 for details.

*Indicates whether Daikon generates the specified invariant. )

data structure and then makes calls to the API methods in a random
sequence. It uses randomly generated input values for method ar-
guments. In each case, a total of 50 API method executions were
analyzed. Even with this limited test suite, all the invariants that we
finally report to the user are correct (i.e. sound.)

Moreover, most of the invariants that KRYSTAL generates are
invariants that are relevant to the programmer. On the contrary,
Daikon produces several irrelevant invariants that either reflect
properties of the test suite (for eg., M.key > 0) or are spurious
(for eg., size(left.key[]) > size(right.key[]).)

There are a few relevant data structure invariants that KRYSTAL
fails to generate. These are listed in Figure 9. Again, for compari-
son, we indicate whether these invariants were inferred by Daikon.
Note that none of the relevant invariants that KRYSTAL failed to
generate, was reported by Daikon. This reinforces our belief that a
vast majority of interesting invariants are encoded in the program.

One class of invariants that KRYSTAL fails to generate is condi-
tional invariants, that is, invariants that are true subject to a speci-
fied condition. For instance, in case of the implementation of red-
black tree using a sentinel node, the invariants are expected to hold
over all nodes in the data structure, excepting the sentinel node.
Since we do not make this distinction, choosing instead to repre-

sent all nodes in the data structure with the generic symbolic vari-
able M, we end up generating several invariants that are eliminated
in the validation phase, and hence are not reported to the user.

On closer inspection of the invariants that KRYSTAL failed to
generate, we discovered that, in most cases, the missing invari-
ants were present in incorrect forms among the invariants that
were eliminated in the final validation phase. For example, in
case of a binary search tree, we fail to generate the invariant
(M # null A M.parent # null) = ((M.parentleft =
M)V (M.parent.right = M)). However, we eliminate the invari-
ants (M # null A M.parent # null) = (M.parent.left = M)
and (M # nullAM.parent # null) = (M.parent.right = M)
in the final phase. This possibly indicates that our definition of simi-
lar invariants, used during simplification of invariants is not generic
enough.

S. RELATED WORK

There is a rich literature on invariant generation [8, 7, 11, 2, 28,
24, 30, 1, 18, 23, 5]. KRYSTAL has several advantages and disad-
vantages over existing techniques for invariant generation. We next
position our work by comparing KRYSTAL with several closely re-
lated work.



[ Data Structure |

Data Structure Invariants

BINARY SEARCH TREE | (M # null A M.parent # null) = (M.parent.left = M) V (M.parent.right = M) No

MAX HEAP (M # null A M.parent # null) = (M.parent.left = M) V (M.parent.right = M) No

N-ARY TREE (M # null A M.rightSibling # null) = (M.parent = M.rightSibling.parent) No

(M # null A M.parent # null) = (M.parent.left = M) V (M.parent.right = M) No

AVL TREE (M # null) = ( (M.left # null) = (Mheight = M.left.height + 1)V

(M.right # null) = (M.height = M.right.height + 1)) No

RED BLACK TREE (M # null A M.parent # null A M.parent # sentinel) = (M.parent.left = M) V (M.parent.right =M) | No

(impl. using sentinel node) | (M # null A M.right # null A M # sentinel A M.right # sentinel) = M.right.key > M.key No

. RED BLACK TREE (M # null A M.parent # null) = (M.parent.left = M) V (M.parent.right = M) No
(impl. without sentinel node

SPLAY TREE (M # null A M.parent # null) = (M.parent.left = M) V (M.parent.right = M) No

Figure 9: Relevant invariants that KRYSTAL failed to generate
Comparison with DySy. for all executions on the test suite. A big advantage of Daikon is

Csallner et al. [S] propose an approach, called DySy, that com-
bines symbolic execution with dynamic testing to infer precondi-
tions and postconditions for program methods. This work is closely
related to our approach—both approaches collect predicates from
the statements executed in the program and extract invariants by
performing variable substitutions.

We differ from DySy mainly in the way we perform our symbolic
execution and in the way we infer our invariants from symbolic ex-
ecution. We use universal symbolic execution, which we argue is
more powerful in deriving complex invariants over heaps. In uni-
versal symbolic execution we introduce a fresh symbolic variable
whenever the symbolic execution reads the value at an address that
has no mapping in the symbolic memory. Subsequently, in contrast
with DySy, which always expresses the predicates in terms of the
program (or method) inputs, we can generate symbolic predicates
over arbitrary heap memory which may not be data dependent on
program inputs. This helps us generate invariants that might be
missed by DySy. For example, in Section 2, we show that we can
generate the invariant (M # null A M.parent # null) =
(M.depth = M parent.depth + 1)) for a binary search tree. DySy
fails to infer this invariant since the values of neither M.depth nor
M .parent.depth are derived from program/method inputs.

DySy uses the symbolic path condition set and the symbolic
memory obtained from symbolic execution to generate pre and
post-conditions of methods, respectively. Since our goal is to gen-
erate invariants over heap memories, method pre and post condi-
tions are not useful for our purpose. We, therefore, use a richer
symbolic memory and symbolic path conditions obtained from
universal symbolic execution to derive likely invariant templates.
These templates are subsequently used to generate the likely local
invariants using Daikon [8] like dynamic program analysis.

DySy uses a combination of precondition and postcondition
that enables it to infer conditional invariants in post-conditions of
methods. For instance, in case of red-black implementation with
sentinel node, DySy infers post-condition invariants of the form:
(root = sentinel) = (return new NODE). On the contrary, KRYS-
TAL is currently not capable of inferring conditional invariants.

Comparison with Daikon and DIDUCE.

Other approaches based on dynamic analysis include Daikon and
DIDUCE. Hangal and Lam [13] propose DIDUCE, which uses on-
line analysis to discover simple invariants over the values of pro-
gram variables. Daikon [8, 9, 7] presents a more complex form
of dynamic invariant discovery technique. Daikon takes as input a
fixed set of templates that encode patterns for equalities, inequal-
ities, and affine relationships that can hold among program vari-
ables. At specific program points such as method entries, method
exits, and loop heads, Daikon instantiates the templates with the
values of variables in scope and checks for invariants that hold true

that it can discover complex and implicit program invariants. Such
invariants not only help to identify the programmer’s intentions,
but also to establish the quality of the test suite. One disadvantage
of these tools is that they cannot often generate complex invariants
related to data structure shapes. Moreover, the quality of the invari-
ants inferred by Daikon depends on the pre-set invariant patterns
and test-suite.

Like these tools, we are dependent on the quality of the test suite
for generating the invariants. However, since we do not use a fixed
set of templates, choosing instead to extract them from the pro-
gram text by performing symbolic analysis of the program along
test executions, it is less likely that we generate an invariant that is
a property of the test suite as opposed to the program. For exam-
ple, consider an example of a program that carries out insertion sort
using a linked list. For Daikon to generate the correct set of invari-
ants in this case, the test suite has to include test cases containing
duplicate elements. On the other hand, even with few test cases,
we identify the correct relation as M.element < M .next.element,
using the information from the program conditionals, as opposed to
M .element < M .next.element, that might be reported by Daikon
with limited test suite.

An advantage of Daikon over the symbolic technique DySy is
that Daikon can identify relationships that hold between program
variables that are not directly encoded in the program. For exam-
ple, affine relationships like those constraining the sum/difference
of variables, may be implicit in the program. Even though such
cases exist, we believe that very few interesting invariants are left
unspecified in some way in the program.

Comparison with Deryaft.

Deryaft [18] is a tool that specializes in generating constraints
of complex data structures. Deryaft takes as input a handful of
concrete data structures of small sizes and generates a predicate that
represents their structural integrity constraints. Deryaft has a preset
list of templates, which are written to encode common properties
that hold between objects in a data structure. In contrast, KRYSTAL
generates these templates through symbolic execution; therefore,
KRYSTAL can discover new templates.

Comparison with static tools.

Logozzo [17] proposed a static approach that derives invari-
ants for a class as a solution of a set of equations derived from
the program source. Houdini [11] is an annotation assistant for
ESC/Java [10]. It generates a large number of candidate invariants
and repeatedly invokes the ESC/Java checker to remove unprov-
able annotations, until no more annotations are refuted. The ini-
tial candidate annotation set is generated from the program text us-
ing a set of checker-specific heuristics. Houdini’s initial candidate
invariants are all possible arithmetic and (in)equality comparisons



among fields and “interesting constants” (such as null, true or
other constants extracted from program text.) The usefulness of
the inferred annotations in Houdini’s output is dependent on preset
heuristics or user intervention.

In contrast, KRYSTAL is a fully automated technique, that ex-
tracts templates from the execution of the program, thereby, mak-
ing it possible to infer complex relationships without any user help.

Comparison with concolic execution.

As in concolic execution [12, 22], KRYSTAL intertwines con-
crete execution with symbolic execution. However, KRYSTAL uses
universal symbolic execution, which differs from classic symbolic
execution and concolic execution in two key aspects.

In concolic execution, new symbolic variables are generated only
at input statements. In contrast, universal symbolic execution gen-
erates a fresh symbolic variable whenever the execution reads the
value at an address that has no mapping in the symbolic memory.

The second difference between concolic and universal symbolic
execution is in the format of the symbolic memory. In concolic
execution, the symbolic memory maps concrete memory addresses
to symbolic expressions; whereas, in universal symbolic execution,
it maps symbolic addresses (expressions over program variables,
symbolic variables, and field references) to symbolic expressions.

This is ideally suited for inference of data structure invariants,
since it helps us derive pointer predicates and infer complex rela-
tionships among field references.

6. CONCLUSION

We have introduced a novel variant of symbolic execution—
universal symbolic execution. We have demonstrated its utility by
using it to track complex relationships among nearby heap cells,
which are subsequently used in the generation of data structure in-
variants. Our experiments on common data structures suggest that
KRYSTAL is effective in inferring the relevant local invariants.

Despite the advantages, KRYSTAL is still dependent on the qual-
ity of the test suite (though to a lesser extent compared to previous
techniques like Daikon) for completeness and soundness. Another
limitation of KRYSTAL is that it cannot generate global data struc-
ture invariants such as the non-circularity of a linked list.
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