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Hard Object: Enforcing Object Interfaces
using Code-Range Data Protection

Daniel S. Wilkerson∗ David A. Molnar† Matthew T. Harren‡ John D. Kubiatowicz§

Abstract
We show how to utilize code-range data protection to en-
force the private access specifiers of Object Oriented classes
at runtime. We exploit the fact that code and data are
often organized organized into modules exporting specified
interfaces, even in non-Object-Oriented languages. We en-
force at runtime the integrity and simplistic privacy of the
module: its state cannot be written nor read other than
through its interface. We provide module integrity even to
non- memory-safe languages such as C and C++, without
requiring automatic memory management. This is not best-
effort protection: when used properly, we comprehensively
guarantee that one software module cannot violate the in-
tegrity of another. That is, we make software objects hard.

Our extensions are simple, modest, and provide the guar-
antee we claim. We give simulation measurements to show
the performance overhead is low. We show how most soft-
ware can be compiled to take advantage of these extensions
with modest and partially automatable modification.

1. INTRODUCTION
We face a crisis of correctness. Modern applications contain
millions of lines of code in non-type-safe languages such as C
and C++; they also reflect hundreds of man-years of effort
and therefore will not be soon discarded. The sheer scope
of these applications coupled with the constant presence of
poorly written libraries, malicious code, and badly main-
tained execution environments has led to chaos—computer
users expect their applications to crash, lose data, and be-
have unexpectedly. Further, now that they are networked
and their use pervasive in our national infrastructure, the
situation is critical. While techniques to verify program cor-
rectness have long been among the Holy Grails of Computer
Science, such techniques seem forever out of reach (and are
intractable in general).

Since general techniques are not available, programmers
and system designers have developed a set of best practices
to try to manage complexity in an effort to achieve cor-
rectness. Experienced programmers generally organize their
projects into modules which are local collections of code that
maintain invariants with respect to their data. By factoring
their code in this way, programmers can apply local intuition
to reason about the correctness of the system as a whole.

Unfortunately, one of the biggest obstacles toward cor-
rectness is the lack of protection between different elements
of the system, thereby allowing violation of one module’s
invariants by another. The danger faced when different pro-
cesses interfere with one another is well known. More subtle
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class A {

private: int vulnerable;

}

// ... meanwhile in another module

void evil(A *a) {

int *x = (int *)a; // violate the type system

*x = corrupt_value; // corrupt ’a->vulnerable’

}

Figure 1: A runtime violation of module integrity.

problems arise when wild pointer references overwrite ar-
bitrary data and violate invariants within a process. This
problem is illustrated by Figure 1: a C++ class A with no
inheritance and only private data. The language policy is
that only methods of A may access private data of an ob-
ject of class A. Although the compiler can enforce this policy
of modules that it compiles it cannot enforce them of other
modules, such as that containing function evil in Figure 1.
Along a similar vein, stack overflow and incorrect stack ma-
nipulation can lead to unexpected behavior, including well
documented buffer-overrun security exploits. These prob-
lems are pernicious because they couple disparate parts of
the system and defeat attempts to reliably apply local un-
derstanding to components.

Language designers, hardware architects, and writers of
operating systems have all chipped away at this problem
from different angles. Language designers have produced
type-safe, verifiable languages such as Java that place re-
strictions on the flow of information within a program; un-
fortunately, these languages all seem to face a variety of
performance issues and are not widely utilized. Further, the
volume of legacy code is quite high. At the hardware level,
computer architects have introduced the distinction between
kernel and user in combination with page-level protection.
With support from the operating system, such mechanisms
can enforce process-level protection: processes are protected
from one another at the page level [25, 5, 17, 29]. With the
exception of Mondriaan Memory Protection [35], the over-
head associated with changing address spaces or permissions
makes use of such protection feasible only at course granular-
ity. More importantly, existing page-level protection mecha-
nisms assign process-wide permissions to each page and thus
fail to defend threads from one another and further fail to
defend modules within a thread from other modules.

1.1 Code-Range Data Protection
In this paper, we show how to exploit a simple hardware
mechanism called code-range data protection to harden the
interfaces between modules. Code-range data protection as-
sociates (using the page table) each page of data with a
range of instructions (“code range”) that are said to “own”
the data. We say the “current stack frame” is data that lies
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within the range delimited by the value two special stack
pointer registers that point respectively to the top of the
current stack frame and the bottom of the current stack. A
data access by an instruction is allowed either

• when the program counter is in the owner range of the
data or

• when the data is in the current stack frame.

Returning to our example, the variable vulnerable would
be annotated with a range of addresses that represent the
methods of class A. When the function evil attempts to
change the variable vulnerable, the hardware will detect
that the program counter is not in the correct range and
disallow the access.

As we will show, when combined with support from the
compiler and loader, code-range data protection can provide
both module integrity (module state can be modified only
through its interface) and simplistic module privacy (mod-
ule state can not be read directly by other modules). Such
guarantees can be provided for languages such as C and
C++ without requiring automatic memory management. Of
course, programmers can still design incorrect programs; we
merely show how to harden object interfaces. Since this
combination of techniques hardens the interface of an ob-
ject oriented design methodology, we call this the “Hard
Object” system.

To emphasize the main point: we are not advocating some
hardware modifications that will make some bugs or attacks
merely less likely or more inconvenient, what some might
call a “best effort” improvement to computer reliability or
security. In a Hard Object system, a module engineer can
design the data, functions, and invariants for a module and
no other module can violate those invariants.

1.2 Hardening Object Interfaces
Hard Object factors the process of verifying software into
three parts as follows.

1. Local module correctness: The module author must
ensure local correctness, possibly with the help of the
compiler, unit testing, or a theorem prover. If the
module is small, this piece of the problem is tractable.

2. Module integrity and simplistic privacy: Given local
correctness, these properties allow us to then verify
only the interfaces between modules. Without integrity
and privacy guarantees, we would have to verify the
entire body of code as a whole.

3. Higher-level design patterns: Software architects can
build further correctness abstractions upon the foun-
dations of module integrity and simplistic privacy. We
show two examples, sandboxing and access control lists,
in Section 4.

We concentrate our effort on ensuring the second part of
these three: module integrity and simplistic privacy. Ensur-
ing module integrity has long been recognized as a method
for improving the security and reliability of computer soft-
ware [5, 31]. We further conjecture that partitioning into
small modules may be what makes proving programs cor-
rect finally possible.

Modularity goes far beyond programs written explicitly
in object-oriented style. Many pieces of software exhibit a
modular design, in which different pieces of code form mod-
ules separated by a well-defined interface; for example, the
apache web server defines a module interface between the
main program and code implementing additional features.
Each module may contain data which is hidden behind the
interface and should not be exposed to code outside the mod-
ule. Furthermore, Zhou et al. provide empirical evidence via
memory tracing that in many applications, even those not
explicitly written in an modular style, a given piece of data
is typically visited by only a small piece of the program’s
code during “normal” execution [36].

In all these cases, the unifying theme is that some pieces
of data are “private”: they should only be accessed by a spe-
cific, relatively small piece of the program’s code. Private
data should only be modified by code within the module that
“owns” the data. This is exactly the guarantee provided by
module integrity. Because the entire program’s code typ-
ically runs in the same address space, however, a bug in
any other piece of the program can potentially change the
value of a given module’s private data and so violate module
integrity. This is the key problem we address.

1.3 Our Contribution
In the following sections, we show how to harden the inter-
faces for objects utilizing code-range data protection. With
simple hardware extensions, a special compiler, and a load-
time verifier, we can ensure that a module will not have
its interfaces violated. This guarantee proceeds from three
simple ideas:

1. Heap-allocated objects are marked as owned by spe-
cific modules. As a result, only authorized methods
are allowed to modify them. The integrity bit is used
to track the reliability of data invariants during the
transfer of ownership.

2. Stack-allocated data is restricted to the currently ex-
ecuting frame via another type of code-range protec-
tion. In addition, a simple load-time verifier checks
that any loaded program follows a stack discipline which
ensures the safety of function calls.

3. Control transfer is carefully constrained so that func-
tions are only entered at appropriate entry points. A
simple load-time verifier ensures that all programs in-
stall checks to enforce this at runtime.

In later sections, we formalize these and other properties, ar-
gue why they harden the object interfaces, and show how to
achieve them in greater detail. Hard Object consists of the
complete system of these hardware, compiler, and verifier
techniques.

This technique can be compared in spirit to the Software
Fault Isolation (SFI) technique of Wahbe et al. [31]. SFI
uses binary rewriting to augment control flow and data flow
in a program with runtime checks that guarantee module
integrity. For example, SFI might insert a runtime check
ensuring that a load address is within a specific range. A
key drawback of SFI is the overhead incurred by software
runtime checks. Wahbe et al. report a 3× slowdown on a
range of applications. While more recent systems utilizing
dynamic binary translation reduce this overhead [19], some
programs still exhibit substantial overhead.
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User-Accessible fields of Page Table Entry
Bit text: Page is executable.
Bit pageIntegrity: Page integrity verified.
Range pageOwner: Code-range ownership.

User-Level instructions to manipulate PTEs
setPageOwner(Pointer page, Range newOwner)

getPageOwner(Pointer page)

setIntegrity(Pointer page, Range newIntegrity)

getIntegrity(Pointer page)

branchIntegrityS(Pointer page, Address target)

branchIntegrityC(Pointer page, Address target)

Stack Protection Mechanism
Register framePointer: Top of the frame.
Register bottomOfStack: Maximum extent of the stack.

New user-level instructions to load, store, and move
framePointer and bottomOfStack between memory and
normal registers.

Figure 2: Architectural elements consists of addi-
tions to page table entries (for code-range data pro-
tection), instructions to manipulate this state, and
new registers (to protect elements of the stack).
Note that setPageOwner and setPageIntegrity are only
available to the pageOwner.

Our insight is that by extending the hardware memory
protection mechanism slightly, we can push many of the
checks performed by SFI into hardware. Consequently, our
hardware extensions form a base on which we can build soft-
ware mechanisms that ensure module integrity. We expand
on this in Sections 2.3 and 3, in which we describe a trusted
load-time verifier for binary code as part of an assurance ar-
gument for Hard Object. The verifier checks certain safety
properties statically before allowing code to load. We ar-
gue that these properties, together with dynamic hardware
code-range data protection, provide module integrity. That
is, if the verifier passes a binary program, then the program
will enjoy the module integrity property at runtime. As-
suming the operating system and loader work correctly, the
result is guaranteed module integrity, or “Hard” Objects.

The remainder of this paper is as follows: Section 2 de-
scribes the hardware and software mechanisms required for
Hard Object. Then, Section 3 formalizes the six proper-
ties needed by the Hard Object System. Next, Section 4
describes how Hard Object can be utilized in a variety of
circumstances. Then, Section 5 evaluates the performance
impact of the compiler transformations required to achieve
the properties of Section 3. Section 6 discusses related work.

2. MECHANISM
Hard Object consists of a combination of mechanisms in the
hardware, operating system, and compiler. In this section,
we will merely introduce the mechanisms and give a general
idea of how they are utilized. Then, in Section 3, we will
formalize the set of properties needed to enforce object in-
terfaces and show how to achieve these properties with our
mechanisms.

H-access: On a user data access, these checks are made.
• If the instruction owns the target, ALLOW.
• If the target is in frame, ALLOW.
• Otherwise, FAULT.

H-owner:

• Only the page owner can set page’s integrity or owner.
• On an ownership change the integrity bit is cleared.

H-execute:

• Only text pages are executable.

Figure 3: Hardware rules. We say that a page’s data
is owned by the page’s pageOwner text and that data
between the framePointer and the bottomOfStack is
in frame.

2.1 Basic Code-Range Protection Mechanism
The basic architectural elements of Code-Range Data Pro-
tection are illustrated in Figure 2. Code-Range Data Pro-
tection involves annotating each page table entry (and thus
each page) with a pageOwner that designates the range of
instructions that “own” the page and can manipulate it. A
range of instructions can be thought of as a pair of point-
ers delimiting a contiguous region of memory. Note that an
actual implementation merely needs to designate valid sets
of instructions within the executing program and thus can
consume significantly less space than two complete pointers.

In addition to being checked against page table protec-
tions in the usual way, every load and store is checked against
the pageOwner field of the PTE. If the instruction address
of the load or store is within the pageOwner range, it is al-
lowed; otherwise it is FAULTED. Basic Access semantics are
detailed in Figure 3.

Two additional bits are associated with every page as
well. The text bit which distinguishes executable pages
from data pages and the pageIntegrity bit which desig-
nates pages whose data integrity have been checked by the
current owner.

As also shown in Figure 2, we have added new instructions
to manipulate the new PTE fields. Only the pageOwner

may set these fields. In addition, the pageIntegrity bit is
automatically cleared whenever the pageOwner is changed.
Since the Integrity bit will be checked often we also create
instructions to branch on the state of the this bit.

To provide stack protection, we introduce two user-level
registers with the following semantics:

1. a framePointer register that points to the top of the
current stack frame; it is saved on the stack during
a function call and saved in the thread control block
during a context switch.

2. a bottomOfStack register that points to the maximum
allowed extent of the stack; it does not change over the
lifetime of a thread (Note that this is not the “stack
pointer” which points to the bottom of the frame.)

We also require some instructions to load and store these
registers; at minimum we require instructions to move data
between the rest of the register file and the new registers.
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Figure 4: The object protection feature preventing
the function evil from violating the integrity of an
object of class A. On the left we see some heap pages
and on the right some text pages. The owner field
on each heap page points to the text range that
owns it; there can be more than one object per page
(owned by the same owner) but this is not shown.
The double-headed dashed line indicates a failed ac-
cess by a function to a heap page that it does not
own. The access fails because it comes from a text
address that is not in the owner range of the heap
page containing the data that the access targets.

2.2 Utilizing the Hardware Mechanism
At the heart of the Hard Object technique is the combined
protection of object data and methods. Section 3 and Ap-
pendix A carefully details the properties that the system
must possess in order to truly harden interfaces. To achieve
these properties, we utilize a verifier at load time to make
sure that the objects with which we are interacting adhere
to proper stack discipline and control-flow constraints. Any
compiler that produces code that adheres to these rules can
be utilized. Although we leave the details to Section 3, we
wish to illustrate how the basic hardware mechanisms de-
scribed are utilized.

Object Protection: To harden the interfaces of an object,
we wish to prevent the corruption of the heap state of an
object. When we allocate new objects, we do so by asso-
ciating blocks of memory with the code that is allowed to
operate on it. This association happens, for instance, when
malloc() returns data to use. Once the pageOwner field is
set, any accesses to this data by non-owning code is pre-
vented as shown in Figure 4. Note that we make use of the
fact that it is possible to locate contiguously all functions
(“methods”) of a class.

After initializing objects appropriately, we can set the
Integrity bit to indicate that invariants have been estab-
lished. The Integrity bit can help us to distinguish, among
other things, empty blocks of memory (returned from malloc)
from blocks of data that we have already initialized. Fur-
ther, as shown in Section 3, this bit helps us to track objects
that are potentially corrupted after they change ownership.

Function Protection: Any solution that hardens object
interfaces must be able to protect the methods of this object.
First and foremost, methods have well defined entry points
that must be respected (if functions call into the middle

Figure 5: The function protection feature prevent-
ing the function evil2 from violating the integrity
of the stack frame of function A::setVulnerable. On
the left we see some CPU registers and on the right
some stack data pages. The frame pointer and bot-

tom of stack registers delimit the currently accessi-
ble range of the stack. The double-headed dashed
line indicates a failed access by the function evil2 to
the stack frame of A::setVulnerable. The access fails
because it targets an address not in the currently
accessible range.

of methods, nothing can be guaranteed). As we discuss in
Section 3, we provide a calling convention that allows the
load-time verifier to guarantee that any methods are only
called via their intended entry points.

Once executing, the state of a method consists of data
within registers and on the stack. In order to protect meth-
ods from one another, we must protect this stack state from
being corrupted by other methods. We utilize a combination
of hardware and software to do this, as shown in Figure 5. At
any one time, the stack frame for the active method is avail-
able between the framePointer and the bottomOfStack.
All frames for calling methods are protected from modifi-
cation because they lie above the framePointer. Further,
the bottomOfStack register provides protection in a multi-
threaded environment.

Once again, we rely on the load-time verifier to guaran-
tee that the framePointer register is manipulated correctly
during the calling sequence to protect data from all but the
active frame.

2.3 The Compiler and Verifier
The system described above places certain constraints on
the compiler: The compiler must generate code that follows
the architectural and verifier rules. For instance, code must
be generated with the proper calling sequence to maintain
the rigid boundaries of the Hard Object. Further, stack al-
located objects are disallowed and must be placed on the
heap instead (though for C++ objects the destruction se-
mantics can of course remain the same). See Section 5 for
more detail of the program analysis done in our evaluation
implementation; space constraints prevent us from repeating
it in more generality here.

Our system requires that a load-time verifier check that
the compiler has obeyed certain conventions, most notably
those involving control-flow. We have not yet implemented
this verifier, but the analysis will be very similar to previous
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Function protection

• P-atomic: A function is called only at the top and
does not return until it chooses to.

• P-frame: The stack frame of a function cannot be
accessed by another function.

• P-kith: A callee knows who its caller is.

Object protection

• P-kin: An M -function can verify that a pointer refers
to a properly-constructed M -object.

• P-object: An M -object cannot be accessed by a
function not in M .

• P-free: Only M can destroy an M -object.

Figure 6: The computational properties provided by
Hard Object. An access means a user-mode read or
a write. An M-object is an object for which module
M provides a constructor function.

work on enforcing “control-flow integrity” in binary code [4].
However, enforcing control-flow integrity in Hard Object is
easier than in previous work because our hardware protects
the integrity of return pointers on the stack.

In addition to control flow, the verifier checks properties
such as the requirement that any setPageOwner instruc-
tion be given valid arguments (see V-partition and V-

partition-dynamic in Section 3). Because these properties
are “local” and do not require whole-program analysis, they
will be easy to verify.

3. ENFORCING MODULE BOUNDARIES
The goal of Hard Object is not some kind of “best effort”
protection but a comprehensive guarantee of module in-
tegrity and (simplistic) privacy throughout the lifetime of
its computation.

The proper form of such a guarantee is a proof that the
boundaries of a module cannot be violated at runtime. The
core of this proof is the set of six Hard Object properties
given in Figure 6. In Appendix A we consider in detail the
checks that must be done by the hardware, verifier, system
software, and the module’s own compiler (but not the com-
pilers of other modules) in order to ensure these six proper-
ties. In this section we given an argument that once these six
properties have been ensured that boundaries of a module
cannot be violated.

To approach this problem we again we consider modules
from an Object Oriented perspective. An object c0 of a
class C has four basic stages of its life cycle: Construction,
Duration, Operation, and Destruction.

In support of guaranteeing protection throughout the ob-
ject life-cycle, Hard Object ensures the specific properties of
runtime computation given in Figure 6; properties are dis-
tinguished by a P- prefix. We review in detail the object
life-cycle and discuss how these properties are sufficient to
protect it throughout.

• Construction: Only the code for class C can con-
struct an object c0 from raw memory; at construction time
the state of c0 can be set to respect whatever invariants C
wants to rely upon. When a module obtains a page from
malloc, the module should be assured that the page is its
own and no other module can modify that page. This is a
simpler version of a property we call P-kin, defined in Fig-
ure 6. The properties P-atomic and P-frame ensure that
the constructor completes as expected.

• Duration: Once c0 is created, no code outside of C
can directly read or write its internal state, the memory
allocated to it during construction. Property P-object en-
sures that while the functions of the class are not operating
on the object, no one else is either.

• Operation: Code outside of C may call functions in C;
however these calls are atomic: once a function is called its
stack frame cannot be interfered with and it cannot be ter-
minated abnormally. When c0 is passed to a method of class
C, there must be some way to distinguish unequivocally ob-
jects of class C from objects of other classes. Distinguishing
c0 from other objects of class C is also necessary. In Ob-
ject Oriented languages there is a feature that a function
that can only be called from code in the same class is called
private; that is, a function must be able to screen its calls.
Property P-kin ensures that when a function of class C gets
one of its own objects back as an argument, it recognizes it.
Again, P-atomic and P-frame ensure that the function
completes as expected. P-kith ensures that a function can
refuse to operate when called from disallowed callers.

• Destruction: Only the code for class C can destruct
an object c0, returning it to raw memory; when it does it
can finalize any invariants on the contents of c0. Property
P-free guarantees that until the class destructor destroys
an object, no one else can. The usual protections cited for
operations protect the process of destruction.

4. DESIGN PATTERNS
The software design patterns admitted by the system are
a good measure of its usability. We consider some existing
design patterns in order to demonstrate that they still work
in Hard Object. We then present some new design patterns
that show the power of Hard Object.

4.1 Existing patterns

Shared objects: Modules share objects by transferring
ownership of the object, then validating that the transferred
object satisfies module invariants. For example, module A
can call a read() method in a different module B as follows.
First, A allocates an array on the heap, then transfers own-
ership to read(), and finally calls read(). Then read() fills
the array and transfers ownership back to A. The integrity
bit of the array is cleared until A checks for itself that the
array satisfies the invariants A expects from read().

We note that A must mark the array with metadata in-
dicating that it is the result of a call to read(); otherwise,
read() can instead return a page of corrupted objects to A
and module B can mount an attack on module A as fol-
lows. Upon the return of the page to the ownership of A the
integrity bit will be cleared, but A must set it again as A
needs to use the data; later module B calls a method on A,
passing to A a pointer into the page of corrupted objects if
it where one of A’s objects. The lesson is that if a module is
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managing several kinds of shared objects, each kind must be
distinguished via metadata, either in the objects themselves
or on a separate page managed by A.

Inheritance: We say class A boxed-relates to class B if a
member of an instance a0 of A points to an instance b0 of
B. In contrast, A unboxed relates to B if the data of b0 is
embedded into a0. The unboxed idiom is the typical, but
not required, implementation of both C++ inheritance and
embedded member objects. When using Hard Object an
unboxed relationship requires that A and B reside in the
same module. Therefore, the simplest way to implement a
class hierarchy is encapsulated within a single module. If
we want to partition a hierarchy across modules, we switch
some relationships to to boxed-relations.

If a subclass boxed-relates to a superclass, however, the
client cannot call any public superclass methods directly.
Instead, the subclass must provide stub-methods which both
1) indirect through the pointer to the superclass data and
2) delegate to the corresponding superclass method.

A subclass that unboxed-relates (embeds into) to its su-
perclass complicates validation of ‘this’ pointers in the su-
perclass methods because the superclass objects may have
a different size than the subclass objects and yet the super-
class methods are expected to be able to operate on either;
see Section A.5 for techniques for handling this situation.

Stack-allocated objects form an unboxed relationship with
the stack frame “object.” We must always transform this to
a boxed relationship by moving the object to the heap. The
resulting objects can be destructed at block exit, just as in
the standard C++ semantics.

Virtual dispatch: In a Hard Object system, a client of
a polymorphic object A in another module C cannot ac-
cess A’s vtable directly to invoke an A::foo() method. In-
stead, A can manage its own vtable accesses. The call site
a 0->foo() in C is now compiled to call a new A:: dispatch()

function. The function name “foo” is compiled to an off-
set into the vtable, then passed as an argument. Then
A:: dispatch() can access the vtable of the class hierarchy
and jump to the appropriate method.

Inline functions: Functions may be inlined within a mod-
ule, but not otherwise.

4.2 New patterns

Nested Modules: Hard Object modules may nest hierar-
chically. For example, one may design a module M composed
of sub-modules M1 and M2. Each sub-module is constructed
in the standard way, where the data of module M1 is pro-
tected from the code of module M2 and vice versa. However,
module M may also have its own “M-global” data not part
of one of its sub-modules, as well as code to manipulate that
data, and wish to also allow access to that data from mod-
ules M1 and M2. This arrangement is easily accomplished
by laying out the code for modules M and sub-modules M1
and M2 contiguously in memory. The code-range for M1’s
data is set to the code of M1, and similarly for M2. However,
the code-range for M-global data is set to include the code
for M and its sub-modules M1 and M2. Using this hierarchi-
cal design pattern an engineer need not choose a particular
granularity at which to partition the program, but may use
Hard Object protections at multiple levels of granularity.

Lightweight Recovery-Oriented Computing: A com-
mon pattern for constructing complex Graphical User Inter-
faces (GUIs) is to separate them into a UI and a Model [26].
The UI is often complex and therefore prone to bugs, whereas
the Model is usually simpler yet holds the essential data.
This software separation is not enforced in hardware in most
programs: a bug in the UI can corrupt the Model and cause
the whole program to crash. Many web applications there-
fore separate these layers using different processes for, say,
the web server and the database; however this solution is
heavyweight.

Using Hard Object the UI and Model are easily separated
while residing in the same process, making this technique
much more widely applicable. Imagine the following sce-
nario in the spirit of Recovery-Oriented Computing[24]. The
UI erroneously attempts to write to a Model page. Under
Hard Object the process faults to a handler; the handler
knows the Model is not corrupted since hardware protects
it, so it just reboots the UI. What would have been a pro-
gram crash becomes simply a screen flash as the UI redraws.

Access Control: The integrity of module A may depend
on the state of other objects outside of its module. The
hard ownership property provided by Hard Object will not
protect those other objects, however we may build a soft-
ware notion of ownership on top of the Hard Object guar-
antees as follows. Suppose module A has members pointing
to objects of another module, L, a trusted library module
separate from A. A different, untrusted, module U cannot
corrupt the internal state of an L-object but could still op-
erate on the L-object by calling methods. We would like to
prevent such access; more generally, we would like to pro-
vide an access control list for L that specifies access policies
for interfaces of L.

Access control for module interfaces can be implemented
on top of Hard Object by storing metadata with objects,
then extending methods to check this metadata. We sketch
a simple example. Suppose L wishes to restrict access only
to a class A. Then, the L-constructor annotates each new
L-object li with a softOwner, the Range pageOwner of the
module A. Methods of L at runtime check the softOwner of
li. The methods then refuse to operate on li unless the call
comes from the softOwner, in this case A. By extending this
soft-ownership metadata, we can support arbitrary access
control policies.

Sandboxing: We can implement sandboxing by specifying
a reserved sandbox area of memory. Module A downloads
untrusted module U into the sandbox and allows itself to
be called from U . Other modules reject calls from the sand-
box. If module A loads untrusted module U , say from the
network, A may tell the system that any faults in U should
return to a U -designated handler in A. We augment the ver-
ifier to ensure that U contains no system calls. Therefore,
the module U must call through module A to perform any
system calls; A can enforce an arbitrary access policy for U .
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Project Heapify Other Auto Manual Total LOC
apache 270 279 166 83, 301
cron 23 84 179 2, 349

Figure 7: Code changes in apache and cron. The
first two columns measure automatic changes, while
the third reports the number of lines of code
changed by hand.

5. EVALUATION
We believe the main cost of Hard Object will be in the
changes software must make to take advantage of Hard Ob-
ject protections. To measure this cost we chose two real
programs written in C and compared their performance (1)
when using our emulation the Hard Object compilation and
execution process versus (2) when using the standard com-
pilation and execution process. For our benchmark pro-
grams we chose apache 1.3.34 and vixie-cron 3.0.1, both of
which have had security-critical bugs [30, 1]. For each case
study we partitioned the program program into Hard Object
modules, performed static-time dataflow analyses of the pro-
gram, applied a restricted version of the Hard Object com-
piler transformation to the program, and then benchmarked
the results on standard IA-32 hardware.

Choosing a Partition into Modules. We partitioned
each program into Hard Object modules at the file granular-
ity. Recall that Hard Object modules can include multiple
program classes or modules.

• For apache, we leveraged the fact that the code is
pre-partitioned into modules; we chose to separate the
source file mod cgi.c from the rest of the apache code.

• For cron, we observed that a single function, load entry,
performs parsing of crontab entries; because a crontab
file is under the control of a possibly malicious user, we
chose to separate this function and its helper functions
from the rest of the code.

Static Analysis. We performed two different static-time
dataflow analyses of the programs to be evaluated.

1. We verified that no data allocated by one module can
ever be accessed by another module. If these accesses
had been allowed, on a real Hard Object system a
hardware check would have failed.

2. We inferred which functions are public: they can be
called from another module. Such functions must have
runtime checks C-integrity and C-type checks de-
scribed in Section A.5 added at the top in order to
fully protect themselves from other modules.

To verify the property of (1) we augmented Cqual++, a
polymorphic dataflow analysis tool [3], to infer and check
module boundaries. Note that we say that code and data has
the “color” of the module of the file in which it was defined.
An access site is a point in the program where code accesses
data. An access site is valid at runtime only if the code
and data are the same module color. The dataflow analysis
then tells us whether an access site with two incompatible
colors could occur at runtime. If so, this indicates an illegal

module crossing, and we issue a warning. In the case of a
warning the code must then be changed by, say, adding an
accessor method for the data to its module and then having
the other module call that accessor at the call site rather
than accessing the data directly. If we got a warning and had
not modified the code to remove it then if the program had
been run on real Hard Object hardware a hardware access
check would have failed at runtime (if the code fragment at
that particular warning site had been executed).

To infer the locations of (2) where the C-integrity and
C-type runtime checks must be added, we first determine
whether a function could ever be called from across a mod-
ule boundary; if so, we call it public, otherwise we call it
private. We can infer module boundaries easily in the case
of direct function calls, and we conservatively assume that a
function which has its address taken could be called through
a function pointer from across a module boundary.

Note that as an optimization we can be sure that a func-
tion which has its address taken is never called from across a
module boundary if no code outside the module ever jumps
through a function pointer. Unfortunately at the time of
this writing we can no longer be sure if we uses this opti-
mization or not1. While this optimization could possibly be
used in small programs with only few modules, in large pro-
grams with many modules that optimization is not likely to
be applicable and so we should not have (possibly) used the
optimization as it could have made our numbers look better
than one would obtain in general.

Note that the correctness of our static analysis depends
on the assumptions that const is honored and that casts to
and from void* are not used to do a hidden cast. We did not
verify that these assumptions hold everywhere. Please note
that in our experimental system we trusted the compiler’s
analysis of the whole program; however in a real Hard Ob-
ject system a module author need not trust trust the com-
piler of other modules, only of their own module (as well as
other operating system components).

A Mini Hard-Object Compiler. As much as feasible we
made the code do operations and checks it would have to do
if it were part of a real Hard Object system.

We reduce the manual intervention needed for Hard Ob-
ject by using the CIL [22] tool to automatically perform cer-
tain source-to-source transformations, as follows. First, all
stack data that has its address taken is allocated on the heap
instead, to allow references to these objects to be passed to
other functions. Second, we replace calls to malloc and re-
lated functions with a malloc that performs dummy opera-
tions to simulate the cost of verification. Third, we insert
getters for cross-module data access. Finally, we insert calls
to a module-local verifier function at module boundaries to
enforce the P-kin property.

We faked the overhead of manipulating some of the non-
existent hardware elements, such as the integrity bit, by
instead reading or writing a volatile memory location.

1This article was originally written immediately after the
experiments were performed. The final editing pass before
publication was done a few years later and this ambiguity
was only noticed then. No one can now remember the an-
swer. We have no desire to attempt to get the old code
working again and re-run those experiments. Therefore we
are reporting what we have.
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Experiment Mean Std n Ratio
flat-1-normal 2.1 1 5000
flat-1-xform 2.1 0.8 5000 1.0
flat-2-normal 2.1 100.4 5000
flat-2-xform 2.1 115.7 5000 1.0
flat-8-normal 2.0 31.5 5000
flat-8-xform 2.1 90.8 5000 1.1
cgi-1-normal 42.3 2.6 5000
cgi-1-xform 42.4 2.1 5000 1.0
cgi-2-normal 42.2 179.9 5000
cgi-2-xform 42.3 173.0 5000 1.0
cgi-8-normal 42.4 820.0 5000
cgi-8-xform 42.4 1052.5 5000 1.0
cron-normal 0.23 0.001 13
cron-xform 0.32 0.002 13 1.4

Figure 8: Performance results. Here “-xform” indi-
cates a transformed program. Trailing numbers for
the flat and cgi experiments indicate concurrency
levels. Times are in seconds. The “ratio” column
reports the overhead observed in each pair of exper-
iments. All programs were compiled with “-O2.”

These transformations are a restricted version of those
that would be performed by a fully Hard-Object-aware com-
piler; we detail the gaps at the end of this section.

Hand Partitioning. If CIL skips a transformation that is
too complicated to do automatically (such as validating an
array of pointers), the Cqual analysis will detect the problem
and tell us where to intervene manually. For example, in
apache we added four new helper functions. A summary of
our changes appears in Figure 7.

Benchmarks. We then benchmarked each program against
its transformed version. For apache, we used the apache
benchmark tool ab to perform five thousand requests to both
a transformed and untransformed apache running on local-
host. We did two separate experiments; the first served the
apache default HTML page only, while the second invoked a
simple “Hello World!” CGI script written in Perl. For cron,
we repeatedly loaded a 232K crontab file and measured the
time to parse the file. We show performance results in Fig-
ure 8: “flat” refers to the default HTML page experiment,
while “cgi” refers to the CGI experiment. The “-xform” de-
notes a transformed program. We also experimented with
different levels of concurrency provided by ab, which are in-
dicated by numbers in the table. For example, the row “flat-
8-xform” refers to the flat file test on a transformed apache
with eight concurrent requests. All experiments were carried
out on a 1.6 GHz Pentium M system with 1 GB of RAM
under Fedora Core 3 2.6.11.7-lc1.

Results. Our results show negligible overhead from our
transformations in the flat file and the cgi apache bench-
mark. While we had to modify a small amount of code by
hand for correctness, we made no modifications specifically
to improve performance. We attribute these results to the
fact that apache is already separated into software modules;
our work simply checks this separation. In particular, mod-
ule crossings do not appear as part of any inner loop.

In contrast, we modified cron by hand for performance.
We discovered stack-allocated string buffers within the en-
try.c module passed to other functions but never escaped
outside the module. Our transform moved these to the
heap, incurring several malloc calls inside a loop. We ex-
pect a more sophisticated compiler could detect and fix such
buffers automatically.

Even so, cron exhibits a 40% overhead with our modifi-
cations. An examination of the code shows that the entry.c
module must make frequent updates in an inner loop to a
data structure outside the module. As a result, we incur
module crossing overhead inside the loop. It should be pos-
sible to reduce this overhead by changing the API; for ex-
ample, entry.c could store its data in a temporary structure
that is validated by the outside module all at once.

Un-Implemented Hard Object Support. Our transfor-
mations omitted the following features that would be present
on a real Hard Object system. First, a Hard Object malloc()
and brk() take a callerRange argument to use in ownership
transfer of the allocated page, must perform a verifiably-
correct ownership transfer of the allocated page, and allo-
cate pages on page boundaries. Second, every function re-
turn must move the frame pointer an extra time just to read
it before resetting it. While our allocator did perform work
to simulate the overhead of a verify, it did not maintain sep-
arate memory pools for each module and so did not incur
memory fragmentation overhead. Finally, we did not imple-
ment a new calling convention that would let us use the stack
access rule to protect the saved return address. We believe
these would add, in most cases, only a small performance
overhead above what we measured here.

6. RELATED WORK

Intel Segmented Addressing. The Intel IA-32 architec-
ture supports fine-grained permissions by use of segments.
Gorman describes how two different segments may refer to
the same data to provide protected sharing between pro-
cesses [15]. Unfortunately, most operating systems today
use page-based memory and run in only one or two seg-
ments. IA-32 also has call gates for function calls between
two segments with different privilege levels; these call gates
require copying, while our mechanism does not. As part
of a call gate transfer of execution, the processor copies a
specified number of bytes from the lower-privileged stack to
the higher-privileged stack. This is similar in spirit to our
mechanism for protected function calls, which exposes only
a portion of the stack to the callee, but our mechanism does
not require copying memory.

Okamoto / Nozue. Okamoto et al. [23] and Nozue, et
al. [13] propose a memory protection mechanism that, as we
do, uses the program counter value to make memory access
decisions. However Okamoto et al. make it rather plain that
their goal is to allow different threads to share the same
memory space while being protected from one another (while
also perhaps also allowing the sharing of heap memory in a
way similar to that allowed by mmap), whereas our goal is
to allow different modules to share the same memory space
while being protected from one another.

This difference in goals shows up in many ways in the two
designs. Their design does seem to contain hardware fea-
tures sufficient to provide at least the functionality provided
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by the Hard Object owner range protection, however they do
so through the use of more hardware complexity than we do.
Further they do not offer the Hard Object user-mode own-
ership transfer feature nor the user-mode integrity bit; nor
do they seem to (1) allow as efficient cross-module boundary
calls as we do, nor (2) offer to protect stack frames at the
module granularity as we do.

Their Access Control List (ACL) system annotates mem-
ory pages with hardware ranges of text that can read and
write them, just as Hard Object does; however the Nozue
design contains more hardware complexity than would be
needed by software designed for Hard Object hardware. Their
design [13] calls for a PTE to contain an ACL “the ACL hav-
ing a plurality (three in FIG. 27) of entries” and “a pointer...
to next ACL indicating the address of a next ACL for the
page represented by this address table entry”, which sug-
gests an unbounded linked list of Access Control Lists which
must be followed to determine if an access is allowed. In
contrast in the Hard Object design simply requires one in-
tegrity bit, and one owner range; any further access control
complexity is expected to be performed by the software of
the module through use of the P-kith property.

In their design it seems that setting the ACLs on a page
requires a call into the kernel, as no other mechanism seems
to be suggested; this seems to be in keeping with their goal
of thread-granularity protection. In current microprocessor
architectures and operating systems, kernel calls are expen-
sive (however they do further suggest a change to a Single
Address Space Operating System where kernel calls might
be cheaper) and would not be as suitable for finer-grained
module-granularity ownership transfer. In contrast the Hard
Object method of transferring memory ownership uses a sin-
gle user-mode hardware instruction. Further the Hard Ob-
ject design provides an integrity bit for protecting against
adversarial ownership transfers; their design does not.

Their design also do not seem to provide any method for
protecting the stack frame of a function in one module from
the code in another module, or at least not in a way that
would also allow for the traditional software stack organi-
zation where function arguments and return values can be
passed on the stack; they only seem to provide a way for pro-
tecting the entire stack of one thread from another thread.
Further, function calls across protection boundaries seem to
be required to go through a call gate mechanism, seemingly
requiring a double jump. In contrast Hard Object provides
a hardware mechanism for protecting the stack at the frame
granularity, protecting the frame of any suspended function
from attack by the current function. Further we do so while
requiring only very minor changes to (1) the current organi-
zation of stack frames and (2) to the way in which functions
are called, except in the case of dispatching virtual methods
across protection boundaries where a double jump seems to
be necessary (see section 4.1).

Mondriaan Memory Protection. Mondriaan Memory
Protection is a hardware system that focuses on providing
memory access protection at the machine word granular-
ity [35, 34, 33].

In the Mondriaan design a “protection domain” is a map
from addresses to access permissions for those addresses,
similar to the way access permissions are annotated on pages
by the Memory Management Unit in a conventional system,
but at a finer granularity. Each domain has its own “permis-

sions table” which attaches “permission value” meta-data to
memory addresses; the permission value of an address deter-
mines whether the current thread may read, write, and/or
execute the data at the address. For a particular thread one
protection domain is active at a time, as indicated by the
current value of the Protection Domain ID register.

Mondriaan uses a “permissions lookaside buffer” to reduce
the performance overhead of fine-grained protection; they
demonstrate that this technique is effective.

The cost of swapping permissions lookaside buffers on a
protection domain crossing function call is not measured; we
think this cost is likely to be significant. In contrast, since
in a Hard Object system permissions annotations on data
need not be changed on cross domain calls, the cost of such
calls is lightweight.

The Mondriaan design has a notion of the “owner” of data
which it seems can give permissions to other protection do-
mains, revoke permissions, and transfer ownership [33, sec-
tion 6.5]; in contrast Hard Object conflates the notion of
being an owner and having access rights. Mondriaan re-
quires these actions taken by an owner to be done using a
kernel crossing. In contrast Hard Object requires no ker-
nel crossing to change data ownership; instead a user-mode
hardware instruction is provided for this purpose.

Very similar to Hard Object, the Mondriaan design also
provides a method of stack data protection using two regis-
ters to delimit the active stack, one pointing to the base of
frame and the other to the stack limit.

Note that unlike the Mondriaan design, Hard Object does
require additional static analysis of software to make module
separation complete. We have not considered here how much
simpler and more efficient the Mondriaan system could be
(in particular the mechanism for performing a protection
domain crossing function call) if their system also used static
analysis.

Other Hardware Approaches. Several architectures, such
as PA-RISC, PowerPC, and IA-64, include support for page
groups, in which pages are associated with lists of protection
identifiers [20]. The processor has several protection ID reg-
isters; access is allowed only if a page ID matches an ID in
one of these registers. A key issue with these architectures is
maintenance of the protection ID registers. For example, ac-
cessing five different protection domains simultaneously on
PA-RISC incurs a performance penalty, as the architecture
has only four protection ID registers [16]. We address this
issue by using the program counter and code-range annota-
tions, thereby allowing automatic update of the “protection
ID.” As a result, our approach scales to a large number of
protection domains, and crossing a protection domain re-
quires little overhead.

The Minos system uses a hardware tag to mark data from
untrusted sources as “tainted.” Taint flow is tracked through
the system and control-flow checked to ensure that it does
not depend on tainted data. Minos has been shown to pre-
vent several control-flow attacks, but it does not address
non-control-flow attacks [10].

The Nooks project uses existing virtual memory protec-
tion mechanisms to isolate device drivers. Because these de-
vice drivers have privileges to undo such protections, their
work applies only to buggy, not malicious code [28]. In con-
trast, Hard Object protects module data even from mali-
cious code.
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Non-Control-Data Attacks. Classic attacks in computer
security, such as stack overflow attacks, focus on corrupting
control flow. Chen et al. [9] show non-control-data attacks
are also a serious problem, e.g. an adversary may overwrite
a configuration file for sshd to gain root privileges. The
module integrity property provided by Hard Object protects
non-control-data as well as control flow.

iWatcher and AccMon. iWatcher provides hardware sup-
port for registering a range of memory addresses for “watch-
ing,” together with the type of access to be watched (load or
store) and the address of a monitor function [37, 38]. When
a watched access occurs, the processor directly transfers ex-
ecution to the monitor function, which runs in the same ad-
dress space and with the same privileges as the monitored
program. Zhou et al. apply the iWatcher infrastructure to
build AccMon, a system for automatically discovering and
enforcing “PC-based invariants.” [36] A PC-based invariant
is a set of program counters associated with a memory; they
observe independently of our work that only a small set of
program counters ever visit a piece of data. AccMon dy-
namically derives invariants from program runs and checks
for violations of these invariants.

The major difference between AccMon and our work is
that we focus on providing a single property with high as-
surance, namely module integrity. We develop a trusted
verifier and a correctness argument that give us guarantees
about module integrity. In contrast, iWatcher checks a wide
range of properties in the presence of buggy or malicious
code. AccMon uses this infrastructure to provide “best ef-
fort” protection against memory errors, augmented with a
Bloom filter for caching recent protection decisions. Further-
more, we show how compiler support can derive permission
settings that are guaranteed to work for all program runs,
while AccMon uses a statistical learning theory approach
that may cause false positives (though these were rare in
the programs tested).

Microreboots. Candea et al. propose “microrebooting”:
partitioning software into independently restartable mod-
ules [7, 8]. Tests on a prototype J2EE environment show
that microrebooting can effectively mask failures in a web
service application [8]. Hard Object provides a lightweight
way to isolate modules without incurring the overhead of
Java or other type-safe languages.

Binary Rewriting. There are several techniques for pro-
tecting software by rewriting binary code. The seminal work
in this area is Software Fault Isolation [31] (SFI), in which
binaries are instrumented with dynamic checks at load time.
Abadi et al. formalize the “control-flow integrity” property
and use binary rewriting to ensure that legacy applications
have this property [4]. Kiriansky et al. use binary rewrit-
ing as part of “program shepherding,” in which fine-grained
policies regarding program control flow are embedded in a
program binary [19]. The VINO operating system isolates
untrusted kernel extensions [27]. These systems focus on
control-flow integrity, except for SFI. All these systems in-
cur a performance penalty for checks in software.

Source-Level Protection. StackGuard inserts runtime
checks for stack-smashing attacks, while PointerGuard im-
plements a fast pointer obfuscation method aimed at defeat-
ing control-flow attacks. While both work against a signifi-
cant class of malware and require minimal changes to source

code, they are only “best-effort” protections. The CCured
project aims at retrofitting legacy C code to be memory-safe,
thereby providing stronger guarantees [21]. Unfortunately,
CCured may require significant revisions of the source code,
and has a performance penalty of up to 87%.

Privilege Separation separates programs into different com-
municating processes; the technique can be partially auto-
mated [25, 6]. Efstathopoulos et al. have even gone so far
as to propose a new operating system, Asbestos, motivated
in part by the desire to make privilege separation easier for
the programmer [11, 12]. With Hard Object, privilege sep-
aration within a process can be provided by changing the
ownership of the appropriate heap pages.

Virtual Machines. Language-based virtual machines, such
as the Java Virtual Machine or the Microsoft Common Lan-
guage Runtime, offer the benefits of memory safety and
strongly typed languages, but at a performance cost. Hertz
and Berger estimate that the Java garbage collection means
five times as much memory is required to obtain performance
equivalent to a program without garbage collection [18]. In
addition, legacy C/C++ software must be rewritten to take
advantage of these benefits.

A different approach uses trusted virtual machine mon-
itors, such as Terra, to provide isolation between different
kernels running on the same physical hardware [14]. While
this provides important benefits for applications that can
tolerate coarse-grained partitioning, such as web servers, it
does not allow us to partition within a single process. In
contrast, Hard Object provides for isolation between differ-
ent modules in the same process.

Program Verification. Finally, there is a long history of
work on program verification. The vast majority of cur-
rent software is not verified due to the amazing difficulty
of the task. We suggest that by isolating modules from
one another their correctness proofs may therefore be sim-
ilarly isolated and program verification may finally become
a tractable problem.

Subsequent work on Hard Object. Subsequent to the
original writing of this paper, a U.S. patent application [32]
has been filed, which as of fall 2008 should be obtainable
from the website of the U.S. Patent and Trademark office [2].
In this paper we presented a rather simple configuration that
protects heap memory only at the page-granularity. The
patent application however presents more designs based on
re-using some of the work of Mondriaan Memory Protec-
tion [35, 34, 33], discussed elsewhere in this section. At the
cost of a bit more hardware complexity, these designs allow
for much finer-grained control over the access to objects, re-
ducing the need to alter software in order to make use of the
Hard Object mechanism. Further, the patent application
presents a design for eliminating the traditional heavyweight
user-kernel boundary by using Hard Object protections in-
stead, and further using Hard Object to protect parts of the
kernel from other parts. We do not repeat these designs here
and refer the reader to the patent application.
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APPENDIX

A. ENSURING THE HARD OBJECT
PROPERTIES

In Figure 6 we listed six computational properties that are
guaranteed to programs running under a Hard Object sys-
tem. In Section 3 we argued that these properties us achieve
our goal of hardening object interfaces. In a Hard Object
system these these six rather high-level properties are en-
sured by the enforcement by the hardware, verifier, system
software, or the module’s own compiler (not however requir-
ing help from the compilers of other modules) of many very
low-level rules. In this section we detail those rules.

• The hardware is trusted to follow the H-prefixed rules
given in Figure 3.

• The runtime loader is augmented to include a verifier
which checks that user-level code follows the V-prefixed
rules before it is run.

• The compiler must generate code that will pass the
verifier; additionally if the module it compiles is to be
protected then the compiler-generated code must follow
the C-prefixed rules.

• Modest modification is required to the libc and kernel
memory management system such that they follow the
S-prefixed rules.

We group the rules by subsection according to the property
that they enforce; we start with an additional subsection for
system-wide rules.

A.1 System-wide rules
S-init: Process initialization goes as follows. We allocate a
stack per thread; the thread-specific framePointer and bot-
tomOfStack set to top and bottom respectively. Stacks are
disjoint from each other and the heap. The stack is owned by
the empty range and stays that way throughout execution.
All data pages are marked as non-text and all executable
text pages have been through the verifier. Note that user-
mode code cannot write to a text page.

V-control: The verifier checks that it can compute an
over-approximation to the intra-procedural control flow graph
and that this graph does not leave the function except at call
and return sites. This requires jump and branch instructions
to target fixed locations, unless they are part of the function
call or return idiom. Computed gotos could also be allowed
if sufficiently constrained, such as to a list of possibilities
known at compile time – as is a C switch-statement. Note
that a signal or a longjmp can still interrupt the runtime
control flow; how this is handled is detailed below.

V-control-atomic: Some verifier-enforced restrictions re-
quire that the program use a verifier-recognized idiomatic se-
quence of instructions; for example at a function return, af-
ter restoring the old framePointer the function must immedi-
ately return. Such sequences must be atomic for their prop-
erties to be static-time verifiable; thus the verifier checks
that no branch or join node in the control flow graph occurs
within any such idiomatic sequence. This analysis works
even in multi-threaded code because we ensure threads do
not access each other’s stack frames.
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A.2 Property P-atomic

A function is called only at the top and does not
return until it chooses to.

V-call: We wish to ensure that a function can only be
called at its entry point. For direct function calls, it is easy
to verify this while loading.

Calls through function pointers are handled in a manner
similar to previous work on control-flow integrity [4]. We
insert a 32-bit callable tag at the start of each function whose
address is taken, and require that the program check for
this tag before jumping through any function pointers. A
suitable callable tag might be made using a no-op with a
garbage argument.

V-callable-integrity: In an architecture allowing non-
word-aligned instructions it is possible that the bit-string
forming a callable tag might occur as a substring of a pro-
gram, say spanning parts of more than one instruction; this
must be prevented. The loader checks for this and if it oc-
curs, the offending instruction combination is altered, per-
haps by splitting it apart with an interposing no-op.

V-return: We also wish to ensure that a function can-
not be aborted abnormally. C++-style exceptions work fine
since control must return to each stack frame temporarily to
destruct any stack-allocated objects. We discuss longjmp()
below.

A.3 Property P-frame

The stack frame of a function cannot be accessed
by another function.

S-stack-nobody: The operating system sets the pageOwner
of stack pages to be the empty range. Therefore by H-

access a stack page may only be accessed if it is between
the framePointer and bottomOfStack registers.

C-stack-heapify: Objects may no longer be allocated on
the stack: if a pointer to such an object were passed to a
function the framePointer would move at the function call
and the object would be made inaccessible. Therefore all
such objects must be allocated on the heap instead. Note
that the auto-destruction semantics of C++ stack-allocated
objects upon function return may still be implemented: the
object is still semantically “on the stack” and the compiler
ensures that the destructor is called at the right time.

V-frame: The verifier needs to check that the program uses
the framePointer in such a way as to never expose any of the
caller frames, including the saved framePointer and return
pointer, except immediately before returning. For example,
on a function call it is okay to

1. push the value of the framePointer, return address, and
function arguments, and then

2. set the framePointer to point to the top of the argu-
ments.

The old framePointer and return address are now protected
for the duration of the call. For example, on a function
return, it is okay to

1. move the framePointer up two words, exposing the old
framePointer and return address,

2. immediately restore the old framePointer, and then

3. immediately jump to the return address.

C-frame-zero: If privacy is desired a function must zero
its frame before returning.

Asynchronous control considerations
V-thread-manager: When using user threads in order
to allow thread context-switches the verifier must allow a
trusted “thread context manager” to save and restore the
framePointer and bottomOfStack registers of a thread in a
thread control block in the context manager’s reserved heap
area.

S-signal: Unless the verifier can be sure that signal han-
dlers ensure the same framePointer discipline as in V-frame,
signal handlers must run on their own stack separate from
any thread stack.

C-exception: Recall that C++ style exceptions work fine
since the exception unrolling must stop at each stack frame
to destruct any “semantically” stack allocated objects (now
on the heap); that is, they can follow the V-return frame
discipline just as normal function return.

C-longjmp: Longjmp() is possible as follows. The setjmp/
longjmp() module is trusted by the loader to manipulate
the framePointer in a non-standard way (see below for the
framePointer discipline). Functions that are prepared to al-
low a longjmp() through them without doing a proper return
can annotate themselves as such. If the verifier can prove
(possibly with help from programmer annotations to an aug-
mented compiler) that only such functions may be jumped
over, it allows the call to longjmp() to exist in a module;
otherwise it does not.

A.4 Property P-kith

A callee knows who its caller is.

V-kith: On a cross-module function call, the program counter
of the calling instruction must be passed as a callerId argu-
ment to the callee. Note that this value (or an offset of it,
such as the address of the instruction following) is normally
passed as part of the standard function call protocol so that
a function knows to which address to return. The verifier
needs to check that the correct value is passed so that the
caller module may not fool the callee module as to the source
of the function call.
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A.5 Property P-kin

An M-function can verify that a pointer refers to
a properly-constructed M-object.

The primary OO idiom is for a module, or class, to construct
upon request objects in its heap state, and to operate on
them in well-defined ways at the request of other modules
that may be untrusted. Such a module often takes a pointer,
called ‘this’, to one of its previously-constructed objects as
the argument to each function.

The P-kin property ensures that each object reference passed
from an untrusted source does indeed point to a valid object.
We establish P-kin from these sub-properties:

• P-kin-partition: Modules form a partition: their text
ranges are mutually disjoint. Only whole modules own
a page. Exactly one module owns a given page at any
time.

• P-kin-integrity: When the integrity bit is set on page
the invariants of the owner module hold of the page.

• P-kin-type: An incoming ‘this’ pointer points to an
object of the correct type.

Basic memory allocation considerations
S-brk: Any system calls that map memory into the virtual
address space, such a brk() or shmget(), take an additional
argument, Range callerOwnerRange, as the pageOwner of
new pages.

S-malloc: Similarly, user-level memory allocators, such as
malloc(), must take the same argument if they are to func-
tion properly. Two levels of ownership transfers are neces-
sary: first malloc() asks brk() to make a (probably large)
block of memory and set its owner to malloc(); later mal-
loc() uses set pageOwner to transfer ownership of smaller
blocks to client code. However, correctness does not rely on
malloc behaving this way: if malloc misbehaves a module
may not get any memory back, but it will not be corrupted.

C-alloc-local: The client must request whole pages from
malloc as that is the granularity of ownership. To implement
traditional byte-granularity allocation, the traditional call
to malloc() might be changed to a call to a module-local
allocator that further partitions the pages for the client.

Sub-propertyP-kin-partition

V-partition: The verifier computes the text range of a
module as it is loaded. The verifier checks that the ranges
do not overlap. Recall that the compiler cannot necessarily
compute module ranges for different translation units so a
module must specify other modules by name; these names
are replaced by the loader at load time. If an argument to
set pageOwner is a static module name then loader replaces
it with the literal text range of that module.

V-partition-dynamic: Any module name used as a run-
time value is replaced with an index into the verifier’s table
of module text ranges. If an argument to set pageOwner is
a runtime module identifier then the loader inserts a check
just before the instruction. The check is a switch statement:
a lookup into a table embedded into the text together with
a range check against an embedded table size ensuring that
the module id is a legal index into the table. The result of
the lookup is used as the argument to set pageOwner.

Sub-propertyP-kin-integrity

C-integrity: A module C must be able to verify that it can
trust that the data on its page satisfies its invariants; other-
wise an untrusted module U could create a subtly-corrupted
page, transfer its ownership to C, and call a method of C
passing it.

Recall that H-owner guarantees that whenever owner-
ship of a page is transferred the integrity bit is cleared. The
compiler generates code so that a module receiving a page
with no integrity bit first ensures the page satisfies its invari-
ants before setting the integrity; most commonly this would
occur when getting a page back from malloc(). Methods
expecting a ‘this’ pointer can simply refuse to operate if the
page ‘this’ points to does not have the integrity bit set.

Sub-propertyP-kin-type

C-type: When a module owns more than one type of object,
it must check that any pointer it gets from an untrusted
source points to an object of the expected type. Otherwise,
malicious code could trick a module into operating on an
object of the wrong type.

The easiest way for a compiler to enforce this is by placing
different types of objects on different pages. By marking the
start of each page with a type identifier, the compiler can
insert checks that a pointer refers to a page holding only
objects of the expected type. The integrity of this identifier
is one of the page invariants that P-kin-integrity enforces.

Additionally, a module must verify that it is not passed
a pointer into the middle of an object. The compiler can
easily insert code to subtract and compute a modulus in
order to check that the pointer is aligned with the start of
the page with respect to the object size. The object size
can be hard-coded if known at compile time, or stored in
the page header if not. Another solution for checking object
alignment is to use a “pointers to pointers” page layout:
each page has a contiguous block of pointers at the top that
point to the actual objects on the same page. Situations
where the object size is not know at compile time can occur
in situations that arise due to inheritance; see Section 4.

A.6 Property P-object

An M-object cannot be accessed by a function not
in M .

The H-access rule guarantees that only the owner can touch
the pages.

A.7 Property P-free

Only M can destroy an M-object.

S-free: Recall that H-owner prevents any other module
from taking the ownership from a page. The brk() system
call refuses to unmap pages that are still owned by a user
module unless that module is the one making the call to
brk(). To free a page, a module must transfer its ownership
to malloc()/free(), then call free(); free then may call brk().

14


