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Abstract

OpenMP is a successful approach to writing threaded parallel applications. This article describes the state of
the art in performance profiling OpenMP applications, covering vendor performance tools and platform independent
techniques. The features of the OpenMP profiler ompP are described in detail and an outlook of future directions in
this area is given.
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1. Introduction

OpenMP is a successful approach for writing shared-memory thread-parallel programs. It currently enjoys a
renewed interest in high performance computing and other areas due to the shift towards multicore computing and it
is fully supported by every major compiler. OpenMP is also being promoted as one of the recommended high-level
programming approaches for GPU accelerator computing such as for Intel’s upcoming Larrabee GPU architecture [1].

As with any programming model, developers are interested in improving the efficiency of their codes and a number
of performance tools are available to help in understanding the execution characteristics of applications. However, the
lack of a standardized monitoring interface often renders the performance analysis process more involved, complex,
and error prone than it is for other programming models.

OpenMP is a language extension (and not a library, like MPI) and the compiler is responsible for transforming
the program into threaded code. As a consequence, even a detailed analysis of the execution of the threads in the
underlying low level threading package is of limited use to understand the behavior on the OpenMP level. For
example, compilers frequently transform parallel regions into outlined routines and the mapping of routine names (the
machine’s model of the execution) to the original source code (the user’s model of the execution) is nontrivial. Vendor
tools (paired with a compiler) can overcome this problem because they are aware of the transformations a compiler
can employ and the naming scheme used for generating functions. Portable tools can’t have this kind of intricate
knowledge for every compiler and OpenMP runtime and have to resort to other mechanisms, discussed later in this
article.

The rest of this paper is organized as follows: Sect. 2 discusses the vendor-provided solutions for OpenMP profil-
ing, while Sect. 3 describes how platform independent monitoring can be achieved using a source-to-source translator
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called Opari. Sect. 4 introduces the profiling tool ompP which is built on Opari to gather a variety of useful execution
metrics for OpenMP applications. Sections 5 and 6 discuss the analysis of execution overheads and the scalability of
applications based on the data delivered by ompP, respectively. Sect. 7 concludes with an outlook on the path forward.

2. Profiling Tools supplied by Vendors

OpenMP is today supported by the compilers of every major computer vendor and the GNU compiler collec-
tion has OpenMP support since version 4.2. Most vendors also offer performance tools, such as the Intel Thread
Profiler [2], Sun Studio [3], or Cray Pat [4], supporting users in analyzing the performance of their OpenMP codes.

The vendor tools mostly rely on statistical sampling and take advantage of the knowledge of the inner workings
of the runtime and the transformations applied by the compiler. Typical performance issues that can be successfully
detected by these tools are situations of insufficient parallelism, locking overheads, load imbalances, and in some
cases memory performance issues such as false sharing.

A proposal for a platform independent standard interface for profiling was created by SUN [5]. With this proposal,
tools could register for notifications from the runtime and ask for it to supply the mapping from the runtime to user
execution model. The proposal is the basis of SUN’s own tool suite and is mostly used for statistical profiling there.
The proposal is not part of the OpenMP specification but was accepted as an official white paper by the OpenMP
Architecture Review Board (ARB). So far acceptance of the proposal outside of SUN has been limited, however, and
independent tool developers have to resort to other methods.

3. Platform Independent Monitoring

All approaches for monitoring OpenMP code in a platform independent way in tools such as ompP [6], Vampir [7],
[8], TAU [9], [10], KOJAK [11], and Scalasca [12] today use source code instrumentation. This approach has some
shortcomings, for example it requires the user to recompile their code for instrumentation. However it has been found
in practice to work well for many applications and the usage of automated preprocessor scripts eases the burden for
developers.

The monitoring approach used by all the aforementioned tools is based on a source code preprocessor called
Opari [13]. Opari is a part of the KOJAK and Scalasca toolsets and it adds calls inside and around OpenMP pragmas
according to the POMP specification [14]. An example source code fragment with Opari instrumentation is shown
in Fig. 1: In this example the user code is a simple parallel region (lines 2, 5, 6, and 12 in bold font represent the
original user code), all other lines are added by Opari. POMP_Parallel_{fork|join} calls are placed on the outside
of the parallel construct and POMP_Parallel_{begin|end} calls are placed as the first and last statements inside the
parallel region, respectively. An additional explicit barrier and corresponding POMP_Barrier_{enter|exit} calls
(lines 8–10) are placed towards the end of the parallel region as well. Doing so converts the implicit barrier at the end
of the parallel region into an explicit barrier that can subsequently be monitored by tools, for example to detect load
imbalances among threads.

4. OpenMP Profiling with ompP

ompP [6] is a profiling tool for OpenMP based on source-code instrumentation using Opari. ompP implements
the POMP interface to monitor the execution of the instrumented application. An application is linked with ompP’s
profiling library and on program termination a profiling report is written to a file. Environment variables can be used
to influence various settings of the data collection and reporting process.

Consider a simple OpenMP program fragment containing only a critical section inside a parallel region and a call
to sleep(1.0) in the critical section. Fig. 2 shows the corresponding profile for the critical section: we see that this
critical section was unnamed (for named critical sections the name would appear instead of “default”) and that it is
located at lines 34-37 in a file named “main.c”. ompP’s internal designation for this region is R00002.

The profile represents an execution with four threads. Each line displays data for a particular thread and the last
line sums over all threads. A number of columns depict the actual measured profiling values. Column names that
end in a capital “C” represent counts while columns ending with a capital “T” represent times. Evidently each thread
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1 POMP_Parallel_fork [master]



enter



main

2 #pragma omp parallel {
3 POMP_Parallel_begin [team]




body

4
5 /* user code in
6 parallel region */
7
8 POMP_Barrier_enter [team]




barr

9 #pragma omp barrier
10 POMP_Barrier_exit [team]
11 POMP_Parallel_end [team]




exit

12 }
13 POMP_Parallel_join [master]

Figure 1: Instrumentation added by Opari for the OpenMP parallel construct. The original code is shown in
boldface, the square brackets denote the threads that execute a particular POMP call. The right part shows the subregion
nesting used by ompP.

R00002 main.c (34-37) (default) CRITICAL
TID execT execC bodyT enterT exitT

0 3.00 1 1.00 2.00 0.00
1 1.00 1 1.00 0.00 0.00
2 2.00 1 1.00 1.00 0.00
3 4.00 1 1.00 3.00 0.00

SUM 10.01 4 4.00 6.00 0.00

Figure 2: An example of ompP’s profiling data for an OpenMP critical section. The body of this critical section
contains only a call to sleep(1.0).

executed the critical construct and that the total execution time (execT) varies from 1.0 second to 4.0 seconds. bodyT
is the time inside the body of the critical construct and it is 1.0 seconds corresponding to the time in sleep(), while
enterT is the time (if any) threads have to wait before they can enter the critical section. In the example in Fig. 2
thread 1 was the first one to enter, then thread 2 entered after waiting 1.0 seconds, then thread 0 after waiting 2.0
seconds, and so on.

ompP reports timings and counts in the style shown in Fig. 2 for all OpenMP constructs. Table 1 shows the full table
of constructs supported by ompP and the timing and count categories used in the profiling report. execT and execC
are always reported and represent the entire construct. An additional breakdown is provided for some constructs, such
as the startupT and shutdwnT for the time required starting up and tearing down the threads of a parallel region,
respectively. This breakdown is based on the subdivision of regions into subregions as shown on the right hand side
of Fig. 1. If applicable, a region is thought of being composed of a subregion for entering (enter), exiting (exit), a
main body (body), and a barrier (barr), and main = enter + body + barr + exit always holds.

In addition to the basic flat region profiles such as the ones shown in Fig. 2, ompP supports a number of more
productivity features.

• ompP records the application’s call graph and the nesting of the OpenMP regions and computes inclusive and
exclusive times from it. This allows performance data for the same region involved from different execution
paths to be analyzed separately.

• It allows the monitoring of hardware performance counter values using PAPI [15], [16]. If a PAPI installation
is available on a machine, ompP will include the necessary functionality to set up, start, and stop the counters
for all OpenMP constructs. Hardware counters can be used with ompP by setting the environment variable
OMPP_CTRn to the name of PAPI predefined or platform-specific event names. For example:
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MASTER • •
ATOMIC • S •
BARRIER • S •
FLUSH • S •
USER REGION • •
CRITICAL • • • S • •M
LOCK • • • S • •M
LOOP • • • • I
WORKSHARE • • • • I
SECTIONS • • • • • I/L
SINGLE • • • • • I
PARALLEL • • •M • • I •M
PARALLEL LOOP • • •M • • I •M
PARALLEL SECTIONS • • •M • • • I/L •M
PARALLEL WORKSHARE • • •M • • I •M

Table 1: Timing and count categories reported by ompP for various OpenMP constructs and overhead classification of
the times reported by ompP into one of the four overhead classes. Synchronization (S), Load Imbalance (I), Thread
Management (M), Limited Parallelism (L).

$> export OMPP_CTR1=PAPI_L2_DCM

requests the monitoring of level 2 data cache misses.

• ompP computes the parallel coverage (i.e., the fraction of total execution time spent in parallel regions). Ac-
cording to Amdahl’s law [17] a high parallel coverage is quintessential to achieve satisfactory speedups and
high parallel efficiency as the number of threads increases.

• Another feature of ompP is continuous and incremental profiling [18]. Instead of capturing only a single profile
at the end of the execution, this technique allows an attribution of profile features on the timeline axis without
the overheads typically associated with tracing.

• A further recent technique aimed at providing temporal runtime information without storing full traces is cap-
turing and analyzing the execution control flow of applications. The method described in [19] shows that this
can be achieved with low overhead and small modifications to the data collection process. The resulting flow
graphs are designed for interactive exploration together with performance data in the form of timings and hard-
ware performance counter statistics to determine phase-bases and iterative behavior [20].

5. Overheads Analysis

Any parallel algorithm and the execution of a parallel program will usually involve some overheads limiting the
scalability and the parallel efficiency. Typical sources of overheads are synchronization (the need to serialize the access
to a shared resource, for example) or any time spent in setting up and destroying the threads of parallel execution.

An example of this is also shown in Fig. 2: enterT is the time threads have to wait to enter the critical section.
From an application’s standpoint threads idle and don’t do useful work on behalf of the application and hence enterT
constitutes a form of synchronization overhead (since it arises due to the fact that the threads have to synchronize their
activity). Considering the timings reported by ompP, a total of four different overhead classes can be identified.
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Synchronization: Overheads that arise because threads need to coordinate their activity. An example is the waiting
time to enter a critical section or to acquire a lock.

Imbalance: Overhead due to different amounts of work performed by threads and subsequent idle waiting time, for
example in work-sharing regions.

Limited Parallelism: This category represents overhead resulting from unparallelized or only partly parallelized
regions of code. An example is the idle waiting time threads experience while one thread executes a single
construct.

Thread Management: Time spent by the runtime system for managing the application’s threads. That is, time for
creation and destruction of threads in parallel regions and overhead incurred in critical sections and locks for
signaling the lock or critical section as available.

Table 1 shows the classification of the timings reported by ompP into no overhead (•) or one of the four overhead
classes: S for synchronization overhead, I for imbalance, L for Limited Parallelism, and T for Thread management
overhead.

ompP’s application profile includes an overhead analysis report which offers various interesting insights into where
an application wastefully spends its time. The overhead analysis report contains an overview of the parallel regions
in a program and a breakdown into work and the four overhead classes for each parallel region separately and for the
program as a whole. The overhead breakdown forms the basis for the scalability analysis.

6. Scalability Analysis

The scalability of an application or of individual parallel regions within an application can be analyzed in a detail
by computing an overhead breakdown while varying the number of OpenMP threads for the execution.

Assuming a constant workload and increasing number of threads (i.e., a strong scaling study), one can plot scala-
bility graphs like the one shown in Fig. 3. Here the number of threads is plotted on the horizontal axis and the total
aggregated execution time (summed over all threads) is plotted on the vertical axis. The topmost line is derived from
the overall wallclock execution time of an application. From this total time one can subtract the four overhead classes
(synchronization, load imbalance, thread management, and limited parallelism) for each thread count. A perfectly
scaling code (linear decrease in the execution time the number of threads is increased) would result in a horizontal
line in this type of scalability graph. A line inclining from the horizontal corresponds to imperfect scaling and a
declining from the horizontal points towards superlinear speedup.

Figures 3a, 3b, and 3c are scalability graphs of full applications from the SPEC OpenMP benchmark suite, cor-
responding to the “mgrid”, “applu” and “swim” applications, respectively. The experiments presented in Fig. 3 were
run on SGI Alitx ccNUMA machines. The scaling studies from 2 to 32 threads were done on a 32 processor SGI Alitx
3700 Bx2 machine (1.6 GHz, 6 MByte L3-Cache) while the 32–128 thread study has been performed on a larger Altix
4700 machine with the same type of processor.

Evidently the scaling behavior of these applications is widely different:

mgrid: This code scales relatively poorly (cf. Fig. 3a). Almost all of the application’s 12 parallel loops contribute
to the bad scaling behavior with increasingly severe load imbalance. As shown in Fig. 3a, there appears to be
markedly reduced load imbalance for 32 and 16 threads. Investigating this issue further we discovered that this
behavior is only present in three of the application’s parallel loops (mgrid.f 265-301, mgrid.f 317-344,
and mgrid.f 360-384). A source-code analysis of these loops reveals that in all three instances, the loops are
always executed with an iteration count that is a power of two (which ranges from 2 to 256 for the ref dataset).
Hence, thread counts that are not powers of two generally exhibit more imbalance than powers of two.

applu: The interesting scalability graph of this application shows super-linear speedup. This behavior can be at-
tributed exclusively to one parallel region (ssor.f 138-209) in which most of the execution time is spent (this
region contributes more than 80% of total execution time), the other parallel regions do not show a super-linear
speedup. To investigate the reason for the super-linear speedup we used ompP’s ability to measure hardware
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performance counters. By common wisdom, the most likely cause of super-linear speedup is the increase in
overall cache size that allows the application’s working set to fit into the cache for a certain number of proces-
sors. To test this hypothesis we measured the number of L3 cache misses incurred in the ssor.f 138-209
region and the results indicate that, in fact, this is the case. The total number of L3 cache misses (summed over
all threads) is at 15 billion for 2 threads, and at 14.8 billion at 4 threads. At 8 threads the cache misses reduce
to 3.7 billion, at 12 threads they are at 2.0 billion from where on the number stays approximately constant up to
32 threads.

swim: The dominating source of inefficiency in this application is thread management overhead that dramatically
increases in severity from 32 to 128 threads. Its main source is the reduction of three scalar variables in the
small parallel loop swim.f 116-126. At 128 threads more than 6 percent of total accumulated application
runtime are spent in this reduction operation. The time for the reduction is actually larger than the time spent in
the body of this parallel loop.
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Figure 3: Scalability graphs for some of the applications of the SPEC OpenMP benchmark suite. Suffix m refers
to the medium size benchmark while suffix l denotes large size benchmark. The horizontal axis denotes processor
(thread) count and the vertical is the accumulated execution time (over all threads) in seconds.

In addition to scalability graphs for the whole application, ompP offers the option to analyze the scaling of individ-
ual parallel regions. As the workload characteristics of parallel regions within a program may vary considerably, so
can their scalability characteristics and each region might have a different operating sweet spot in terms of computing
throughput or energy efficiency.

Fig. 3d shows an example for a scalability graph of an individual region of the application “galgel”. Evidently this
region scales very badly. In terms of the wallclock execution time, the 32 thread version execution of this region is
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only 22% faster than the 2 thread execution and the parallel efficiency at 32 threads is only 8% – almost no benefit is
gained from using more than 2 threads for this region.

A more detailed and complete discussion of the scaling properties of several of the SPEC OpenMP benchmarks
can be found in [21].

7. Future Directions

OpenMP is a continually evolving standard and new features pose new requirements and challenges for perfor-
mance profiling. A recent major feature introduced with version 3.0 of the OpenMP specification is tasking – the
ability to dynamically specify and enqueue small chucks of work for later execution.

A preliminary study [22] investigated the feasibility of extending the source code based instrumentation approach
to handle the new tasking related constructs. The resulting modified version of ompP could successfully handle many
common use cases for tasking. The notion of overheads had to be adapted, however, to reflect the fact that with tasking
threads reaching the end of a parallel region are no longer idle but can in fact start fetching and executing tasks from
the task pool.

One use case, that of untied tasks, proved to be a challenge. With untied tasks, an executing thread can stop and
resume task execution at any time and in fact a different thread can pick up where the previous thread left off. These
events are impossible to be observed purely based on source code instrumentation without a standardized callback
mechanism that would notify a tool of such an occurrence.

To overcome these issues in particular and to simplify usage of ompP in general, tying together instrumentation
sources from multiple layers, such as source code instrumentation, interposing on the native threading library and
incorporating the SUN whitepaper seems like a promising way for the path forward.
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