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Societal Scale Information Systems 

Scalable, Reliable, 
Secure Services 

MEMS for  
Sensor Nets Building & Using  

Sensor Nets 

Clusters 

Massive Cluster 

Gigabit Ethernet 

Databases 
Information Collection 
Remote Storage 
Online Games 
Commerce 

 … 

•! The world is a large parallel system already 
–! Microprocessors in everything 
–! Vast infrastructure behind this 
–! People who say that parallel computing  

never took off have not been watching 

•! So: why are people suddenly so  
excited about parallelism? 

–! Because Parallelism is being forced  
upon the lowest level  
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ManyCore Chips: The future is here 

•! “ManyCore” refers to many processors/chip 
–! 64?  128?  Hard to say exact boundary 

•! How to program these? 
–! Use 2 CPUs for video/audio 
–! Use 1 for word processor, 1 for browser 
–! 76 for virus checking??? 

•! Something new is clearly needed here… 

•! Intel 80-core multicore chip (Feb 2007) 
–! 80 simple cores 
–! Two floating point engines /core 
–! Mesh-like "network-on-a-chip“ 
–! 100 million transistors 
–! 65nm feature size 

Frequency  Voltage  Power  Bandwidth  Performance 
3.16 GHz  0.95 V  62W  1.62 Terabits/s  1.01 

Teraflops 
5.1 GHz  1.2 V  175W  2.61 Terabits/s  1.63 

Teraflops 
5.7 GHz  1.35 V  265W  2.92 Terabits/s  1.81 

Teraflops 
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Outline of Today’s Lesson 

•! Goals: 
–! Pick up some common terminology/concepts for later in the course 

•! Uniprocessor Parallelism 
–! Pipelining, Superscalar, Out-of-order execution 

–! Vector Processing/SIMD 

–! Multithreading 

–! Uniprocessor Memory Systems 

•! Parallel Computer Architecture 
–! Programming Models 

–! Shared Memory/Synchronization primitives 

–! Message Passing 

•! Actual Parallel Machines/Multicore chips 
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Computer Architecture 
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Hardware/Software Interface 

instruction set 

software 

hardware 

•! Properties of a good abstraction 
–! Lasts through many generations (portability) 
–! Used in many different ways (generality) 
–! Provides convenient  functionality to higher levels 
–! Permits an efficient implementation at lower levels 

•! But: Lessons of RISC 
–! What is important is the combination view presented to programmer  

NOT necessarily the compiler/OS 
–! Hardware should never be optimized in the absence of the environment 
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Execution is not just about hardware 

Hardware 

Application Binary 

Library Services 

OS Services 
Hypervisor 

Linker 

Program 

Libraries 

Source-to-Source 

Transformations 

Compiler 

•! The VAX fallacy 
–! Produce one instruction for 

every high-level concept 

–! Absurdity: Polynomial Multiply 

»! Single hardware instruction 

»! But Why?  Is this really 
faster??? 

•! RISC Philosophy 
–! Full System Design 

–! Hardware mechanisms viewed in 
context of complete system 

–! Cross-boundary optimization 

•! Modern programmer does 
not see assembly language 

–! Many do not even see “low-level” 
languages like “C”. 
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Not Fooling Yourself:  
Processor performance equation 

CPU time  =  Seconds    =   Instructions  x    Cycles     x   Seconds 

      Program      Program          Instruction       Cycle 

     Inst Count    CPI  Clock Rate 
Program            X   

Compiler            X      (X) 

Inst. Set.            X       X 

Organization           X          X 

Technology       X 

inst count 

CPI 

Cycle time 
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Not Fooling Yourself: Amdahl’s Law 

Best you could ever hope to do: 
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Uniprocessor Parallelism 
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Parallelism is Everywhere 

•! Modern Processor Chips have ! 1 billion transistors 
–! Clearly must get them working in parallel 

–! Question: how much of this parallelism must programmer understand? 

•! How do uniprocessor computer architectures extract 
parallelism? 

–! By finding parallelism within instruction stream 

–! Called “Instruction Level Parallelism” (ILP) 

–! The theory: hide parallelism from programmer  

•! Goal of Computer Architects until about 2002: 
–! Hide Underlying Parallelism from everyone: OS, Compiler, Programmer 

•! Examples of ILP techniques: 
–! Pipelining: overlapping individual parts of instructions 

–! Superscalar execution: do multiple things at same time 

–! VLIW: Let compiler specify which operations can run in parallel 

–! Vector Processing: Specify groups of similar (independent) operations 

–! Out of Order Execution (OOO): Allow long operations to happen  
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What is Pipelining?  

•! In this example: 
–! Sequential execution takes     

4 * 90min = 6 hours 

–! Pipelined execution takes 
30+4*40+20 = 3.5 hours 

•! Bandwidth = loads/hour 
–! BW = 4/6 l/h w/o pipelining 

–! BW = 4/3.5  l/h w pipelining 

–! BW <= 1.5 l/h w pipelining, 
more total loads 

•! Pipelining helps bandwidth 
but not latency (90 min) 

•! Bandwidth limited by 
slowest pipeline stage 

•! Potential speedup =  
Number of pipe stages 
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Dave Patterson’s Laundry example: 4 people doing laundry 

 wash (30 min) + dry (40 min) + fold (20 min) = 90 min Latency 
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5 Steps of MIPS Pipeline 
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Visualizing The Pipeline 

I 
n 
s 
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r. 

O 
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Time (clock cycles) 

Reg A
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DMem Ifetch Reg 

Reg A
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Reg A
L
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Reg A
L
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DMem Ifetch Reg 

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7 Cycle 5 

•! In ideal case: CPI (cycles/instruction) = 1! 
–! On average, put one instruction into pipeline, get one out 

•! Superscalar: Launch more than one instruction/cycle 
–! In ideal case, CPI < 1 
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Limits to pipelining  

•! Overhead prevents arbitrary division 
–! Cost of latches (between stages) limits what can do within stage 

–! Sets minimum amount of work/stage 

•! Hazards prevent next instruction from executing during 
its designated clock cycle 

–! Structural hazards: attempt to use the same hardware to do two 
different things at once 

–! Data hazards: Instruction depends on result of prior instruction still in 
the pipeline 

–! Control hazards: Caused by delay between the fetching of instructions 
and decisions about changes in control flow (branches and jumps). 

•! Superscalar increases occurrence of hazards 
–! More conflicting instructions/cycle 
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Time (clock cycles) 

I 
n 
s 
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r. 
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lw r1, 0(r2) 

sub r4,r1,r6 

and r6,r1,r7 

or   r8,r1,r9 

Data Hazard: Must go Back in Time? 

Reg A
L
U
 

DMem Ifetch Reg 

Reg A
L
U
 

DMem Ifetch Reg 

Reg A
L
U
 

DMem Ifetch Reg 

Reg A
L
U
 

DMem Ifetch Reg 

•! Data Dependencies between adjacent instructions 
–! Must wait (“stall”) for result to be done (No “back in time” exists!) 

–! Net result is that CPI > 1 

•! Superscalar increases frequency of hazards 
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Out-of-Order (OOO) Execution  
•! Key idea: Allow instructions behind stall to proceed 

 DIVD  F0,F2,F4 
 ADDD  F10,F0,F8 
 SUBD  F12,F8,F14 

•! Out-of-order execution " out-of-order completion. 
•! Dynamic Scheduling Issues from OOO scheduling: 

–! Must match up results with consumers of instructions 
–! Precise Interrupts 

RAW 

WAR 
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Basic Idea: Tomasulo Organization 

FP adders 

Add1 
Add2 
Add3 

FP multipliers 

Mult1 
Mult2 

From Mem FP Registers 

Reservation  
Stations 

Common Data Bus (CDB) 

To Mem 

FP Op 
Queue 

Load Buffers 

Store  
Buffers 

Load1 
Load2 
Load3 
Load4 
Load5 
Load6 
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Modern ILP 
•! Dynamically scheduled, out-of-order execution 

–! Current microprocessors fetch 6-8 instructions per cycle 
–! Pipelines are 10s of cycles deep " many overlapped instructions in 

execution at once, although work often discarded  

•! What happens: 
–! Grab a bunch of instructions, determine all their dependences, eliminate 

dep’s wherever possible, throw them all into the execution unit, let each 
one move forward as its dependences are resolved 

–! Appears as if executed sequentially 

•! Dealing with Hazards: May need to guess! 
–! Called “Speculative Execution” 
–! Speculate on Branch results, Dependencies, even Values! 
–! If correct, don’t need to stall for result " yields performance 
–! If not correct, waste time and power 
–! Must be able to UNDO a result if guess is wrong 
–! Problem: accuracy of guesses decreases with number of simultaneous 

instructions in pipeline 

•! Huge complexity 
–! Complexity of many components scales as n2 (issue width) 
–! Power consumption big problem 
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IBM Power 4 

•! Combines: Superscalar and OOO 

•! Properties: 
–! 8 execution units in out-of-order engine,  

each may issue an instruction each cycle. 

–! In-order Instruction Fetch, Decode (compute  
dependencies) 

–! Reordering for in-order commit 
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8-way OOO not Panacea:  
Many Resources IDLE! 

From: Tullsen, 
Eggers, and Levy,"
“Simultaneous 

Multithreading: 
Maximizing On-chip 
Parallelism, ISCA 
1995."

For an 8-way 

superscalar.!
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Modern Limits 
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Technology Trends: Moore’s Law 

2X transistors/Chip Every 1.5 years 

Called “Moore’s Law” 

Moore’s Law 

Microprocessors have 
become smaller, denser, 
and more powerful. 

Gordon Moore (co-founder of 
Intel) predicted in 1965 that the 
transistor density of 
semiconductor chips would 
double roughly every 18 
months.  
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Uniprocessor Performance (SPECint) 

•! VAX          : 25%/year 1978 to 1986 
•! RISC + x86: 52%/year 1986 to 2002 
•! RISC + x86: ??%/year 2002 to present 

From Hennessy and Patterson, Computer Architecture: A 

Quantitative Approach, 4th edition, Sept. 15, 2006!

" Sea change in chip 
design: multiple “cores” or 
processors per chip 

3X 
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Limiting Force: Power Density 
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Limiting Forces: Clock Speed and ILP 
•! Chip density is 

continuing increase 
~2x every 2 years 

–! Clock speed is not 

–! # processors/chip (cores) 
may double instead 

•! There is little or no 
more Instruction Level 
Parallelism (ILP)  
to be found 

–! Can no longer allow 
programmer to think in 
terms of a serial 
programming model 

•! Conclusion: 
Parallelism must be 
exposed to software! 

Source: Intel, Microsoft (Sutter) and 
Stanford (Olukotun, Hammond) 
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Relaxing the Sequential Model: 
VLIW 
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VLIW: Very Long Instruction Word 

•! Each “instruction” has explicit coding for multiple operations 
–! In Itanium, grouping called a “packet” 
–! In Transmeta, grouping called a “molecule” (with “atoms” as ops) 

•! Each operation slot is for a fixed function 
•! Constant operation latencies are specified 
•! Architecture requires compiler guarantee of: 

–! Parallelism within an instruction => no x-operation RAW check 
–! No data use before data ready => no data interlocks 

•! Special compiler support must thus: 
–! Extract parallelism 
–! Prevent hazards from affecting results (through careful scheduling) 
–! May require recompilation with each new version of hardware  

Two Integer Units, 
Single Cycle Latency 

Two Load/Store Units, 
Two Cycle Latency Two Floating-Point Units, 

Three Cycle Latency 

Int Op 2 Mem Op 1 Mem Op 2 FP Op 1 FP Op 2 Int Op 1 
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Loop Unrolling in VLIW 

Memory  Memory  FP  FP  Int. op/
 Clock 

reference 1  reference 2  operation 1   op. 2  branch 

LD F0,0(R1)  LD F6,-8(R1)     1 

LD F10,-16(R1)  LD F14,-24(R1)    2 
LD F18,-32(R1)  LD F22,-40(R1) ADDD F4,F0,F2  ADDD F8,F6,F2  3 
LD F26,-48(R1)   ADDD F12,F10,F2 ADDD F16,F14,F2  4 

  ADDD F20,F18,F2 ADDD F24,F22,F2  5 
SD 0(R1),F4  SD -8(R1),F8  ADDD F28,F26,F2   6 
SD -16(R1),F12  SD -24(R1),F16    7 
SD -32(R1),F20 SD -40(R1),F24   SUBI  R1,R1,#48  8 
SD -0(R1),F28     BNEZ R1,LOOP  9 
  Unrolled 7 times to avoid delays 
  7 results in 9 clocks, or 1.3 clocks per iteration (1.8X) 
  Average: 2.5 ops per clock, 50% efficiency 

Loop:  LD  F0,0(R1)  ;F0=vector element 

   ADDD  F4,F0,F2  ;add scalar from F2 

   SD  0(R1),F4  ;store result 

   SUBI  R1,R1,8  ;decrement pointer 8B (DW) 

   BNEZ  R1,Loop  ;branch R1!=zero 

   NOP   ;delayed branch slot 
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Software Pipelining with 
Loop Unrolling in VLIW 

Memory   Memory   FP   FP  Int. op/         Clock 
reference 1  reference 2  operation 1   op. 2  branch 

LD F0,-48(R1)  ST 0(R1),F4  ADDD F4,F0,F2     1 

LD F6,-56(R1)  ST -8(R1),F8  ADDD F8,F6,F2   SUBI R1,R1,#24  2 
LD F10,-40(R1)  ST 8(R1),F12  ADDD F12,F10,F2   BNEZ R1,LOOP  3 

•! Software pipelined across 9 iterations of original loop 
–! In each iteration of above loop, we: 

»!Store to m,m-8,m-16  (iterations I-3,I-2,I-1) 
»! Compute for m-24,m-32,m-40  (iterations I,I+1,I+2) 
»! Load from m-48,m-56,m-64  (iterations I+3,I+4,I+5) 

•! 9 results in 9 cycles, or 1 clock per iteration 
•! Average: 3.3 ops per clock, 66% efficiency 
  Note: Need less registers for software pipelining 

   (only using 7 registers here, was using 15) 
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Relaxing the Sequential Model: 
Vectors/SIMD 
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Vector Code Example 
# Scalar Code 

  LI R4, 64 

loop: 

  L.D F0, 0(R1) 

  L.D F2, 0(R2) 

  ADD.D F4, F2, F0 

  S.D F4, 0(R3) 

  DADDIU R1, 8 

  DADDIU R2, 8 

  DADDIU R3, 8 

  DSUBIU R4, 1 

  BNEZ R4, loop 

# Vector Code 

  LI VLR, 64  

  LV V1, R1 

  LV V2, R2 

  ADDV.D V3, V1, V2 

  SV V3, R3 

# C code 

for (i=0; i<64; i++) 

  C[i] = A[i] + B[i]; 

•! Require programmer (or compiler) to identify parallelism 
–! Hardware does not need to re-extract parallelism 

•! Many multimedia/HPC applications are natural consumers 
of vector processing 
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+ + + + + +

[0] [1] [VLR-1] 

Vector Arithmetic 
Instructions 

ADDV v3, v1, v2 v3 

v2 
v1 

Scalar Registers 

r0 

r15 
Vector Registers 

v0 

v15 

[0] [1] [2] [VLRMAX-1] 

VLR Vector Length Register 

v1 
Vector Load and 
Store Instructions 

LV v1, r1, r2 

Base, r1 Stride, r2 
Memory 

Vector Register 

Vector Programming Model 
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V
1 

V
2 

V
3 

V3 <- v1 * v2 

Six stage multiply pipeline 

•! Use deep pipeline (" fast clock) to 
execute element operations 

•! Simplifies control of deep pipeline 
because elements in vector are 
independent (" no hazards!)  

Vector Arithmetic Execution 
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load 

Vector Instruction Parallelism 

Can overlap execution of multiple vector instructions 
–! Consider machine with 32 elements per vector register and 8 lanes: 

load 
mul 

mul 

add 

add 

Load Unit Multiply Unit Add Unit 

time 

Instruction 

issue 

Complete 24 operations/cycle while issuing 1 short instruction/cycle 
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SIMD Architecture 

•! Single Instruction Multiple Data (SIMD) 
•! Central controller broadcasts instructions to multiple 

processing elements (PEs) 
–! Only requires one controller for whole array 
–! Only requires storage for one copy of program 
–! All computations fully synchronized 

•! Recent Return to Popularity: 
–! GPU (Graphics Processing Units) have SIMD properties 
–! However, also multicore behavior, so mix of SIMD and MIMD (more later) 

•! Dual between Vector and SIMD execution 
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Pseudo SIMD: (Poor-Man’s SIMD?) 

•! Scalar processing 
–! traditional mode 

–! one operation produces 
one result 

•! SIMD processing (Intel) 
–! with SSE / SSE2 

–! one operation produces 
multiple results  

Slide Source: Alex Klimovitski & Dean Macri,  Intel Corporation 
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E.g.: SSE / SSE2 SIMD on Intel 

16x bytes 

4x floats 

2x doubles 

•! SSE2 data types: anything that fits into 16 bytes, e.g., 

•! Instructions perform add, multiply etc. on all the data in 
this 16-byte register in parallel 

•! Challenges: 
–! Need to be contiguous in memory and aligned 
–! Some instructions to move data from one part of register to another 

•! In theory, the compiler understands all of this 
–! When compiling, it will rearrange instructions to get a good “schedule” 

that maximizes pipelining, uses FMAs and SIMD 
–! It works with the mix of instructions inside an inner loop or other block 

of code 

•! But in practice the compiler may need your help 
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Relaxing the Sequential Model: 
Multithreading 



John Kubiatowicz Parallel Architecture: 40 8/19/2009 

Thread Level Parallelism (TLP) 

•! ILP exploits implicit parallel operations within 
a loop or straight-line code segment 

•! TLP explicitly represented by the use of 
multiple threads of execution that are 
inherently parallel 
–! Threads can  be on a single processor 

–! Or, on multiple processors 

•! Goal: Use multiple instruction streams to 
improve  
1.! Throughput of computers that run many programs  

2.!Execution time of multi-threaded programs 
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Common Notions of Thread Creation 

•! cobegin/coend 
cobegin      

    job1(a1); 

    job2(a2); 

coend 

•! fork/join 
tid1 = fork(job1, a1); 

job2(a2); 

join tid1; 

•! future 
v = future(job1(a1)); 

… = …v…; 

•! Cobegin cleaner than fork, but fork is more general 

•! Threads expressed in the code may not turn into 
independent computations 

–! Only create threads if processors idle 

–! Example: Thread-stealing runtimes such as cilk 

•! Statements in block may run in parallel 

•! cobegins may be nested 

•! Scoped, so you cannot have a missing coend 

•! Future expression evaluated in parallel 

•! Attempt to use return value will wait 

•! Forked procedure runs in parallel 

•! Wait at join point if it’s not finished 
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Simple Threading Example (pThreads) 

void* SayHello(void *foo) { 
  printf( "Hello, world!\n" ); 
  return NULL; 
} 

int main() { 
  pthread_t threads[16]; 
  int tn; 
  for(tn=0; tn<16; tn++) { 
    pthread_create(&threads[tn], NULL, SayHello, NULL); 
  } 
  for(tn=0; tn<16 ; tn++) { 
    pthread_join(threads[tn], NULL); 
  } 
  return 0; 
} 
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Multithreaded Execution 
•! Multitasking operating system: 

–! Gives “illusion” that multiple things happening at same time 
–! Switches at a course-grained time quanta (for instance: 10ms) 

•! Hardware Multithreading: multiple threads share 
processor simultaneously (with little OS help) 

–! Hardware does switching 

»!HW for fast thread switch in small number of cycles 
»!much faster than OS switch which is 100s to 1000s of clocks 

–! Processor duplicates independent state of each thread  
»! e.g., a separate copy of register file, a separate PC, and for 

running independent programs, a separate page table 
–! Memory shared through the virtual memory mechanisms, which 

already support multiple processes 

•! When to switch between threads? 
–! Alternate instruction per thread (fine grain) 

–! When a thread is stalled, perhaps for a cache miss, another thread 
can be executed (coarse grain) 



John Kubiatowicz Parallel Architecture: 44 8/19/2009 

What about combining ILP and TLP? 

•! TLP and ILP exploit two different kinds of 
parallel structure in a program  

•! Could a processor oriented at ILP benefit 
from exploiting TLP? 

–! functional units are often idle in data path designed for ILP 
because of either stalls or dependences in the code  

–! TLP used as a source of independent instructions that 
might keep the processor busy during stalls 

–! TLP be used to occupy functional units that would otherwise 
lie idle when insufficient ILP exists 

•! Called “Simultaneous Multithreading” 
–! Intel renamed this “Hyperthreading” 
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Quick Recall: Many Resources IDLE! 

From: Tullsen, 
Eggers, and Levy,"
“Simultaneous 

Multithreading: 
Maximizing On-chip 
Parallelism, ISCA 
1995."

For an 8-way 

superscalar.!
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Simultaneous Multi-threading ... 
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M! M! FX! FX!FP! FP!BR!CC!Cycle!
One thread, 8 units!

M = Load/Store, FX = Fixed Point, FP = Floating Point, BR = Branch, CC = Condition Codes"
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M! M! FX! FX!FP! FP!BR!CC!Cycle!
Two threads, 8 units!
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Power 5 dataflow ... 

•! Why only two threads? 
–! With 4, one of the shared resources (physical registers, cache, 

memory bandwidth) would be prone to bottleneck 

•! Cost: 
–! The Power5 core is about 24% larger than the Power4 core 

because of the addition of SMT support 
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The Sequential 
Memory System 



Limiting Force: Memory System 

CPU!

60% per yr!

2X in 1.5 yrs!

DRAM!

5.5-7% per 

yr!

<2X in 10 yrs!

10!

DRAM 

CPU!

Performance!

(1/latency)!

100!

1000!

Year!

Gap grew > 50% per 
year 

•! How do architects address this gap? 
–! Put small, fast “cache” memories between CPU and DRAM. 
–! Create a “memory hierarchy” 
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The Principle of Locality 

•! The Principle of Locality: 
–! Program access a relatively small portion of the address space at any 

instant of time 

•! Two Different Types of Locality: 
–! Temporal Locality (Locality in Time): If an item is referenced, it will 

tend to be referenced again soon (e.g., loops, reuse) 

–! Spatial Locality (Locality in Space): If an item is referenced, items 
whose addresses are close by tend to be referenced soon  
(e.g., straightline code, array access) 

•! Last  25 years, HW relied on locality for speed 



Programs with locality cache well ... 

Donald J. Hatfield, Jeanette Gerald: Program 

Restructuring for Virtual Memory. IBM Systems Journal 

10(3): 168-192 (1971)!
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Memory Hierarchy 

•! Take advantage of the principle of locality to: 
–! Present as much memory as in the cheapest technology 

–! Provide access at speed offered by the fastest technology 
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Datapath 
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Storage 

(Disk) 

Processor 
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Memory 

(DRAM) 
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Level 
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(SRAM) 

1s 10,000,000s   
   (10s ms) 

Speed (ns): 10s-100s 100s 

100s Gs Size (bytes): Ks-Ms Ms 

Tertiary 

Storage 

(Tape) 

10,000,000,000s   
   (10s sec) 
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Example of modern core: Nehalem 

•! ON-chip cache resources: 
–! For each core: L1: 32K instruction and 32K data cache, L2: 1MB 
–! L3: 8MB shared among all 4 cores 

•! Integrated, on-chip memory controller (DDR3) 
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Memory Hierarchy: Terminology 

•! Hit: data appears in some block in the upper level 
(example: Block X)  

–! Hit Rate: the fraction of memory access found in the upper level 

–! Hit Time: Time to access the upper level which consists of 

RAM access time + Time to determine hit/miss 

•! Miss: data needs to be retrieve from a block in the 
lower level (Block Y) 

–! Miss Rate  = 1 - (Hit Rate) 

–! Miss Penalty: Time to replace a block in the upper level  +  

Time to deliver the block the processor 

•! Hit Time << Miss Penalty (500 instructions on 21264!) 
Lower Level 

Memory Upper Level 

Memory 
To Processor 

From Processor 

Blk X 

Blk Y 
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Impact of Hierarchy on Algorithms 

•! Today CPU time is a function  of (ops, cache misses) 

•! What does this mean to Compilers, Data structures, 
Algorithms? 

–! Quicksort:  
 fastest comparison based sorting algorithm when keys fit in memory 

–! Radix sort: also called “linear time” sort 
 For keys of fixed length and fixed radix a constant number of passes 
 over the data is sufficient independent of the number of keys 

•! “The Influence of Caches on the Performance of 
Sorting” by A. LaMarca and R.E. Ladner. Proceedings of 
the Eighth Annual ACM-SIAM Symposium on Discrete 
Algorithms, January, 1997, 370-379. 

–! For Alphastation 250, 32 byte blocks, direct mapped L2 2MB cache, 8 
byte keys, from 4000 to 4000000 
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Quicksort vs. Radix: Instructions 

Job size in keys 
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Quicksort vs. Radix Inst & Time 

Time 

Job size in keys 

Insts 
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Quicksort vs. Radix: Cache misses 

Job size in keys 
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Experimental Study (Membench) 

•! Microbenchmark for memory system performance 

•!        for array A of length L from 4KB to 8MB by 2x 

             for stride s from 4 Bytes (1 word) to L/2 by 2x 

                   time the following loop  

                   (repeat many times and average) 

               for i from 0 to L by s 

                                load A[i] from memory (4 Bytes) 

s 

1 experiment 
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Membench: What to Expect 

•! Consider the average cost per load 
–! Plot one line for each array length, time vs. stride 

–! Small stride is best: if cache line holds 4 words, at most ! miss 

–! If array is smaller than a given cache, all those accesses will hit 
(after the first run, which is negligible for large enough runs) 

–! Picture assumes only one level of cache 

–! Values have gotten more difficult to measure on modern procs 

s = stride 

average cost per access 

total size < L1 cache 
hit time 

memory  
time 

size > L1 
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Memory Hierarchy on a Sun Ultra-2i 

L1:  
16 KB 

2 cycles (6ns) 

Sun Ultra-2i, 333 MHz!

L2: 64 byte line 

See www.cs.berkeley.edu/~yelick/arvindk/t3d-isca95.ps for details 

L2: 2 MB,  
12 cycles (36 ns) 

Mem: 396 ns 

(132 cycles) 

8 K pages,    
32 TLB entries 

L1: 16 B line 

Array length 
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Memory Hierarchy on a Power3 
Power3, 375 MHz!

L2: 8 MB 
128 B line 
9 cycles 

L1: 32 KB 
128B line 
.5-2 cycles 

Array size 

Mem: 396 ns 
(132 cycles) 
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Memory Hierarchy Lessons 

•! Caches Vastly Impact Performance 
–! Cannot consider performance without considering memory hierarchy 

•! Actual performance of a simple program can be a 
complicated function of the architecture 

–! Slight changes in the architecture or program change the performance 
significantly 

–! To write fast programs, need to consider architecture 
»! True on sequential or parallel processor 

–! We would like simple models to help us design efficient algorithms 

•! Common technique for improving cache performance, 
called blocking or tiling: 

–! Idea: used divide-and-conquer to define a problem that fits in register/
L1-cache/L2-cache 

•! Autotuning: Deal with complexity through experiments 
–! Produce several different versions of code 

»! Different algorithms, Blocking Factors, Loop orderings, etc 
–! For each architecture, run different versions to see which is fastest 
–! Can (in principle) navigate complex design options for optimum 
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Explicitly Parallel 
Computer Architecture 
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What is Parallel Architecture? 
•! A parallel computer is a collection of processing elements 

that cooperate to solve large problems 
–! Most important new element: It is all about communication! 

•! What does the programmer (or OS or Compiler writer) 
think about? 

–! Models of computation:  
»! PRAM? BSP? Sequential Consistency? 

–! Resource Allocation: 
»! how powerful are the elements? 
»! how much memory? 

•! What mechanisms must be in hardware vs software 
–! What does a single processor look like? 

»! High performance general purpose processor 
»! SIMD processor 
»! Vector Processor 

–! Data access, Communication and Synchronization 
»! how do the elements  cooperate and communicate? 
»! how are data transmitted between processors? 
»! what are the abstractions and primitives for cooperation? 
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Types of Parallelism 
T
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) Superscalar Fine-Grained Coarse-Grained Multiprocessing 
Simultaneous 

Multithreading 

Thread 1 

Thread 2 

Thread 3 

Thread 4 

Thread 5 

Idle slot 
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Parallel Programming Models 

•! Programming model is made up of the languages and 
libraries that create an abstract view of the machine 

•! Control 
–! How is parallelism created? 

–! What orderings exist between operations? 

–! How do different threads of control synchronize? 

•! Data 
–! What data is private vs. shared? 

–! How is logically shared data accessed or communicated? 

•! Synchronization 
–! What operations can be used to coordinate parallelism 

–! What are the atomic (indivisible) operations? 

•! Cost 
–! How do we account for the cost of each of the above? 
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Simple Programming Example 

•! Consider applying a function f to the 
elements of an array A and then computing 
its sum:  

•! Questions: 
–! Where does A live?  All in single memory? Partitioned? 

–! What work will be done by each processors? 

–! They need to coordinate to get a single result, how? 

A: 

fA: 
f 

sum 

A = array of all data 
fA = f(A) 
s = sum(fA) 

s: 
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Shared Memory 
Programming Model 



John Kubiatowicz Parallel Architecture: 70 8/19/2009 

Programming Model 1: Shared Memory 

•! Program is a collection of threads of control. 
–! Can be created dynamically, mid-execution, in some languages 

•! Each thread has a set of private variables, e.g., local stack 
variables  

•! Also a set of shared variables, e.g., static variables, shared common 
blocks, or global heap. 
–! Threads communicate implicitly by writing and reading shared variables. 

–! Threads coordinate by synchronizing on shared variables 

Pn P1 P0 

s       
s = ... 

y = ..s ... 

Shared memory 

i: 2 i: 5 Private 
memory 

i: 8 
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Simple Programming Example: SM 

•! Shared memory strategy: 
–! small number p << n=size(A) processors  

–! attached to single memory 

•! Parallel Decomposition:  
–! Each evaluation and each partial sum is a task. 

•! Assign n/p numbers to each of p procs 
–! Each computes independent “private” results and partial sum. 

–! Collect the p partial sums and compute a global sum. 

Two Classes of Data:  

•! Logically Shared 
–! The original n numbers, the global sum. 

•! Logically Private 
–! The individual function evaluations. 

–! What about the individual partial sums? 
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Shared Memory “Code” for sum 

Thread 1 

   for i = 0, n/2-1 
        s = s + f(A[i]) 

Thread 2 

  for i = n/2, n-1 
        s = s + f(A[i]) 

static int s = 0; 

•!Problem is a race condition on variable s in the program 

•!A race condition or data race occurs when: 

-! two processors (or two threads) access the same 
variable, and at least one does a write. 

-!The accesses are concurrent (not synchronized) so 
they could happen simultaneously 
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Better Shared Memory Code for Sum? 

Thread 1 
  …. 
   compute f([A[i]) and put in reg0 
   reg1 = s  
   reg1 = reg1 + reg0  
   s = reg1 
  … 

Thread 2 
 … 
  compute f([A[i]) and put in reg0 
   reg1 = s  
   reg1 = reg1 + reg0  
   s = reg1 
  … 

static int s = 0; 

•!Assume A = [3,5], f is the square function, and s=0 initially 

•!For this program to work, s should be 34 at the end 
•! but it may be 34,9, or 25 

•!The atomic operations are reads and writes 
•! Never see ! of one number, but += operation is not atomic 

•! All computations happen in (private) registers 

9 25 

0 0 

9 25 

25 9 

3 5 A f = square 
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Improved Code for Sum 

Thread 1 

    local_s1= 0 
    for i = 0, n/2-1 
        local_s1 = local_s1 + f(A[i]) 

    s = s + local_s1 

Thread 2 

    local_s2 = 0 
    for i = n/2, n-1 
        local_s2= local_s2 + f(A[i]) 

    s = s +local_s2 

static int s = 0; 

•!Since addition is associative, it’s OK to rearrange order 

•!Most computation is on private variables 
-! Sharing frequency is also reduced, which might improve speed  

-! But there is still a race condition on the update of shared s 

-! The race condition can be fixed by adding locks (only one thread 
can hold a lock at a time; others wait for it) 

static lock lk; 

lock(lk); 

unlock(lk); 

lock(lk); 

unlock(lk); 
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What About Caching??? 

•! Want High performance for shared memory: Use Caches! 
–! Each processor has its own cache (or multiple caches) 

–! Place data from memory into cache 

–! Writeback cache: don’t send all writes over bus to memory 

•! Caches Reduce average latency 
–! Automatic replication closer to processor 

–! More important to multiprocessor than uniprocessor: latencies longer 

•! Normal uniprocessor mechanisms to access data 
–! Loads and Stores form very low-overhead communication primitive 

•! Problem: Cache Coherence! 

I/O devices Mem 

P 1 

$ $ 

P n 

Bus 
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Example Cache Coherence Problem 

I/O devices 

Memory 

P 1 

$ $ $ 

P 2 P 3 

5 

u  = ? 

4 

u  = ? 

u  :5 
1 

u  :5 

2 

u  :5 

3 

u  = 7 

•! Things to note: 
–! Processors could see different values for u after event 3 
–! With write back caches, value written back to memory depends on 

happenstance of which cache flushes or writes back value when 

•! How to fix with a bus: Coherence Protocol 
–! Use bus to broadcast writes or invalidations 
–! Simple protocols rely on presence of broadcast medium 

•! Bus not scalable beyond about 64 processors (max) 
–! Capacitance, bandwidth limitations 
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Example: Coherence not Enough 

•! Intuition not guaranteed by coherence 

•! expect memory to respect order between accesses to 
different locations issued by a given process 

–! to preserve orders among accesses to same location by different 
processes 

•! Coherence is not enough! 
–! pertains only to single location 

–! Need statement about ordering  
between multiple locations. 

P 1 P 2 

/*Assume initial value of A and  ag is 0*/ 

A = 1; while (flag == 0);  /*spin idly*/ 

flag = 1; print A; 

Mem 

P 1 
P n 

Conceptual  
Picture 
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Memory Consistency Model 

•! Specifies constraints on the order in which memory 
operations (from any process) can appear to execute 
with respect to one another 

–! What orders are preserved? 

–! Given a load, constrains the possible values returned by it 

•! Without it, can’t tell much about a single address space 
(SAS) program’s execution 

•! Implications for both programmer and system designer 
–! Programmer uses to reason about correctness and possible results 

–! System designer can use to constrain how much accesses can be 
reordered by compiler or hardware 

•! Contract between programmer and system 
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Sequential Consistency 

•! Total order achieved by interleaving accesses from 
different processes 

–! Maintains program order, and memory operations, from all processes, 
appear to [issue, execute, complete] atomically w.r.t. others 

–! as if there were no caches, and a single memory 

•!  “A multiprocessor is sequentially consistent if the result 
of any execution is the same as if the operations of all 
the processors were executed in some sequential order, 
and the operations of each individual processor appear in 
this sequence in the order specified by its program.”  
[Lamport, 1979] 
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LD1 A "  5 

LD2 B "  7 

LD5 B "  2 

ST1 A,6 

LD6 A "  6 

ST4 B,21 

LD3 A "  6 

LD4 B "  21 

LD7 A "  6 

ST2 B,13 

ST3 B,4 

LD8 B "  4 

Sequential Consistency Example 

LD1 A  "  5 

LD2 B "  7 

ST1 A,6 

 … 

LD3 A "  6 

LD4 B "  21 

ST2 B,13 

ST3 B,4 

LD5 B "  2 

 … 

LD6 A "  6 

ST4 B,21 

 … 

LD7 A "  6 

 … 

LD8 B "  4 

Processor 1 Processor 2 One Consistent Serial Order 
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What about Synchronization? 
•! All shared-memory programs need synchronization 

–! Problem: Communication is IMPLICIT  thus, no way of knowing when 
other threads have completed their operations 

–! Consider need for “lock” primitive in previous example 

•! Barrier – global (/coordinated) synchronization 
–! simple use of barriers -- all threads hit the same one 

       work_on_my_subgrid(); 
       barrier; 
       read_neighboring_values(); 
       barrier; 

–! barriers are not provided in all thread libraries 

•! Mutexes – mutual exclusion locks 
–! threads are mostly independent and must access common data 

       lock *l = alloc_and_init();    /* shared */ 
       lock(l); 
        access data 
       unlock(l); 
•! Another Option: Transactional memory 

–! Hardware equivalent of optimistic concurrency 
–! Some think that this is the answer to all parallel programming 
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Synchronization using load and store 
•! Here is a possible two-thread synchronization: 

   Thread A   Thread B 
  Set LockA=1;  Set LockB=1; 

 while (LockB) {//X  if (!LockA) {//Y 

     do nothing;     Critical Section; 

  }   } 

       Critical Section;  Set LockB=0; 

  Set LockA=0; 
•! Does this work? Yes. Both can guarantee that:  

–! Only one will enter critical section at a time. 

•! At X:  
–! if LockB=0, safe for A to perform critical section,  
–! otherwise wait to find out what will happen 

•! At Y:  
–! if LockA=0, safe for B to perform critical section. 
–! Otherwise, A is in critical section or waiting for B to quit 

•! But: 
–! Really messy 
–! Generalization gets worse 
–! Needs Sequential Consistency to work! 
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Need Hardware Atomic Primitives  
•! test&set (&address) {   /* most architectures */ 

 result = M[address]; 
 M[address] = 1; 
 return result; 

} 

•! swap (&address, register) { /* x86 */ 
  temp = M[address]; 

 M[address] = register; 
 register = temp; 

} 

•! compare&swap (&address, reg1, reg2) { /* 68000 */ 
 if (reg1 == M[address]) { 
  M[address] = reg2; 
  return success; 
 } else { 
  return failure; 
 } 

} 

•! load-linked&store conditional(&address) {  
 /* R4000, alpha */ 

    loop: 
  ll r1, M[address]; 
  movi r2, 1;     /* Can do arbitrary comp */ 
  sc r2, M[address]; 
  beqz r2, loop; 

} 
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Implementing Locks with test&set 
•! A flawed, but simple solution: 

  int value = 0; // Free 
  Acquire() { 

  while (test&set(value)); // while busy 
 } 

  Release() { 
  value = 0; 
 } 

•! Simple explanation: 
–! If lock is free, test&set reads 0 and sets value=1, so lock is now busy.  It 

returns 0 so while exits. 
–! If lock is busy, test&set reads 1 and sets value=1 (no change). It returns 1, 

so while loop continues 
–! When we set value = 0, someone else can get lock 

•! Problems:  
–! Busy-Waiting: thread consumes cycles while waiting 
–! Unfair: may give advantage to some processors over others 
–! Expensive: Every test&set() for every processor goes across network! 

•! Better: test&test&set 
–! Use outer loop that only reads value, watches for value=0 



John Kubiatowicz Parallel Architecture: 85 8/19/2009 

Busy-wait vs Blocking 

•! Busy-wait: I.e. spin lock 
–! Keep trying to acquire lock until read 
–! Very low latency/processor overhead!   
–! Very high system overhead!   

»! Causing stress on network while spinning 
»! Processor is not doing anything else useful 

•! Blocking: 
–! If can’t acquire lock, deschedule process (I.e. unload state) 
–! Higher latency/processor overhead (1000s of cycles?) 

»! Takes time to unload/restart task 
»! Notification mechanism needed 

–! Low system overheadd 
»! No stress on network 
»! Processor does something useful 

•! Hybrid:  
–! Spin for a while, then block 
–! 2-competitive: spin until have waited blocking time 
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Scalable Shared Memory: Directories 

•! Every memory block has associated directory information 
–! keeps track of copies of cached blocks and their states 

–! on a miss, find directory entry, look it up, and communicate only with the nodes 
that have copies if necessary 

–! in scalable networks, communication with directory and copies is through network 
transactions 

•! Each Reader recorded in directory 

•! Processor asks permission of memory before writing: 
–! Send invalidation to each cache with read-only copy 

–! Wait for acknowledgements before returning permission for writes 

•  k processors.   

•  With each cache-block in memory:  
k  presence-bits, 1 dirty-bit 

•  With each cache-block in cache:     
1 valid bit, and 1 dirty (owner) bit 
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Reducing the Directory Size: 
“Limitless directories” (Alewife, MIT) 

Instead of a N-bit-vector, keep n (lg N- bit) pointers; 
if more than n children request a copy, handle the  
overflow in software 

 effective for large N and low degree of sharing 

Pz Py Px 
Pb Pa 

. . .!

Pa Pz not used Px S? not used H? O? 

memory block 
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Message Passing 
Programming Model 
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Programming Model 2: Message Passing 

•!Program consists of a collection of named processes. 
–! Usually fixed at program startup time 

–! Thread of control plus local address space -- NO shared data. 

–! Logically shared data is partitioned over local processes. 

•!Processes communicate by explicit send/receive pairs 
–! Coordination is implicit in every communication event. 

–!MPI (Message Passing Interface) is the most commonly used SW 

Pn P1 P0 

y = ..s ... 

s: 12  

i: 2 

Private 
memory 

s: 14  

i: 3 

s: 11  

i: 1 

send P1,s 

Network 

receive Pn,s 
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Compute A[1]+A[2] on each processor 

°! First possible solution – what could go wrong? 

Processor 1 
    xlocal = A[1] 
    send xlocal, proc2 
    receive xremote, proc2 
    s = xlocal + xremote    

Processor 2 
    xloadl = A[2] 
    receive xremote, proc1 
    send xlocal, proc1 
    s = xlocal + xremote 

°! Second possible solution 

Processor 1 
    xlocal = A[1] 
    send xlocal, proc2 
    receive xremote, proc2 
    s = xlocal + xremote    

Processor 2 
    xlocal = A[2] 
    send xlocal, proc1 
    receive xremote, proc1 
    s = xlocal + xremote 

°! If send/receive acts like the telephone system?  The post office? 

°! What if there are more than 2 processors?  
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MPI – the de facto standard 
•! MPI has become the de facto standard for parallel 

computing using message passing 
•! Example: 

    for(i=1;i<numprocs;i++) {  
  sprintf(buff, "Hello %d! ", i);  

  MPI_Send(buff, BUFSIZE, MPI_CHAR, i, TAG, 
               MPI_COMM_WORLD);  

   }   

   for(i=1;i<numprocs;i++) {  

  MPI_Recv(buff, BUFSIZE, MPI_CHAR, i, TAG, 
            MPI_COMM_WORLD, &stat);  

  printf("%d: %s\n", myid, buff);  

   }  

•! Pros and Cons of standards 
–! MPI created finally a standard for applications development in the HPC 

community # portability 
–! The MPI standard is a least common denominator building on mid-80s 

technology, so may discourage innovation 
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Message Passing Details 
•! All data layout must be handled by software 

–! cannot retrieve remote data except with message request/reply 
–! Often, message passing code produced by a compiler 

•! Message passing has high software overhead 
–! early machines had to invoke OS on each message (100µs-1ms/message) 
–! even user level access to network interface has dozens of cycles 

overhead (NI might be on I/O bus) 
–! sending can be cheap (just like stores), but requires HW support 

»! Still requires some sort of marshalling of data into message 
–! receiving is often expensive without special HW: 

»! need to poll or deal with an interrupt 

•! Active Message Abstraction 
–! Message contains handler that is automatically invoked at destination 
–! Can be utilized to support dataflow in hardware 
–! Can be utilized to efficiently support compiled dataflow languages  

»! i.e. Id->TAM as shown by Culler et al. 
–! Can also serve as good target for compiled Shared-Address Space 

programs running on message passing hardware 
»! i.e UPC produced by Titanium when compiling apps (Yellick et al.) 
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Dedicated Message Processor 

•! General Purpose processor performs arbitrary output processing 
(at system level) 

•! General Purpose processor interprets incoming network 
transactions (at system level) 

•! User Processor <–> Msg Processor share memory 

•! Msg Processor <–> Msg Processor via system network transaction 

Network 

° ° °  

dest 

Mem 

P M P 

NI 

User System 

Mem 

P M P 

NI 

User System 
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Asynchronous User-Level  
Networking (Alewife) 

•! Send message 
–! write words to special network 

interface registers  

–! Execute atomic launch instruction 

•! Receive 
–! Generate interrupt/launch user-level 

thread context 

–! Examine message by reading from 
special network interface registers 

–! Execute dispose message 

–! Exit atomic section 
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Danger of direct access to network: 
The Fetch Deadlock Problem 

•! Even if a node cannot issue a request, it must sink 
network transactions! 

–! Incoming transaction may be request " generate a response. 
–! Closed system (finite buffering) 

•! Deadlock occurs even if network deadlock free! 

•! May need multiple logical networks to guarantee 
forward progress with message passing 

NETWORK 
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Which is better? SM or MP? 
•! Which is better, Shared Memory or Message Passing? 

–! Depends on the program! 
–! Both are “communication Turing complete” 

»! i.e. can build Shared Memory with Message Passing and vice-versa 

•! Advantages of Shared Memory: 
–! Implicit communication (loads/stores) 
–! Low overhead when cached 

•! Disadvantages of Shared Memory: 
–! Complex to build in way that scales well 
–! Requires synchronization operations 
–! Hard to control data placement within caching system 

•! Advantages of Message Passing 
–! Explicit Communication (sending/receiving of messages) 
–! Easier to control data placement (no automatic caching) 

•! Disadvantages of Message Passing 
–! Message passing overhead can be quite high 
–! More complex to program 
–! Introduces question of reception technique (interrupts/polling)  
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A Parallel Zoo 
Of Architectures 
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MIMD Machines 

•! Multiple Instruction, Multiple Data (MIMD) 
–! Multiple independent instruction streams, program counters, etc 

–! Called “multiprocessing” instead of “multithreading”  

»! Although, each of the multiple processors may be multithreaded 

–! When independent instruction streams confined to single chip, 
becomes a “multicore” processor  

•! Shared memory: Communication through Memory 
–! Option 1: no hardware global cache coherence 

–! Option 2: hardware global cache coherence 

•! Message passing: Communication through Messages 
–! Applications send explicit messages between nodes in order to 

communicate 

•! For Most machines, Shared Memory built on top of 
message-passing network 

–! Bus-based machines are “exception” 
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Examples of MIMD Machines 

•! Symmetric Multiprocessor 
–! Multiple processors in box with shared 

memory communication 
–! Current MultiCore chips like this 
–! Every processor runs copy of OS 

•! Non-uniform shared-memory with 
separate I/O through host  

–! Multiple processors  
»! Each with local memory 
»! general scalable network  

–! Extremely light “OS” on node provides 
simple services  

»! Scheduling/synchronization 
–! Network-accessible host for I/O 

•! Cluster 
–! Many independent machine connected with 

general network  
–! Communication through messages  

P P P P 

Bus 

Memory 

P/M P/M P/M P/M 

P/M P/M P/M P/M 

P/M P/M P/M P/M 

P/M P/M P/M P/M 

Host 

Network 
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Cray T3E (1996) 
follow-on to earlier T3D (1993) using 21064’s 

•! Each node has 256MB-2GB local DRAM memory 

•! Load and stores access global memory over network 

•! Only local memory cached by on-chip caches 

•! Alpha microprocessor surrounded by custom “shell” circuitry to 
make it into effective MPP node. Shell provides: 

–! multiple stream buffers instead of board-level (L3) cache 
–! external copy of on-chip cache tags to check against remote writes to 

local memory, generates on-chip invalidates on match 
–! 512 external E registers (asynchronous vector load/store engine) 
–! address management to allow all of external physical memory to be 

addressed 
–! atomic memory operations (fetch&op) 
–! support for hardware barriers/eureka to synchronize parallel tasks 

Up to 2,048 675MHz Alpha 21164 
processors connected in 3D torus 
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Cray XT5 (2007) 

Basic 
Compute 

Node, with 

2 AMD x86 
Opterons  

Reconfigurable 
Logic Node 

2 FPGAs + 
Opteron 

Vector Node 

4-way SMP of  
SX2 Vector CPUs 

(8 lanes each) 

Also, XMT Multithreaded 
Nodes based on MTA 

design (128 threads per 

processor) 

Processor plugs into 
Opteron socket 
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Sun Starfire UE10000 (1997) 

Uses 4 interleaved address 
busses to scale snooping 
protocol 

16x16 Data Crossbar 

Memory 
Module 

Board Interconnect 

µP 

$ 

µP 

$ 

µP 

$ 

µP 

$ 

Memory 
Module 

Board Interconnect 

µP 

$ 

µP 

$ 

µP 

$ 

µP 

$ 

4 processors + memory 

module per system 

board 

 Up to 64-way SMP using bus-based snooping protocol 

Separate data 

transfer over 

high bandwidth 

crossbar 
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Scalable hypercube switching network 

supports up to 64 two-processor nodes (128 

processors total) 

(Some installations up to 512 processors) 

 Node contains: 

•! Two MIPS R10000 processors plus caches 

•! Memory module including directory 

•! Connection to global network 

•! Connection to I/O 

SGI Origin 2000 (1996) 
•! Large-Scale Distributed 

Directory SMP 
–! Scales from 2 to 512 nodes 
–! Direct-mapped directory with each 

bit standing for multiple processors 
–! Not highly scalable beyond this 
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The Alewife Multiprocessor: SM & MP 

•! Cache-coherence Shared Memory 
–! Partially in Software! 
–! Sequential Consistency 
–! LimitLESS cache coherence for better scalability 

•! User-level Message-Passing 
–! Fast, atomic launch of messages 
–! Active messages 
–! User-level interrupts 

•! Rapid Context-Switching 
–! Course-grained multithreading 

•! Single Full/Empty bit per word for synchronization 
–! Can build locks, barriers, other higher-level constructs 
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Message Passing MPPs 
(Massively Parallel Processors) 

•! Initial Research Projects 
–! Caltech Cosmic Cube (early 1980s) using custom Mosaic processors 

–! J-Machine (early 1990s) MIT 

•! Commercial Microprocessors including MPP Support 
–! Transputer (1985) 

–! nCube-1(1986) /nCube-2 (1990) 

•! Standard Microprocessors + Network Interfaces 
–! Intel Paragon/i860 (1991) 

–! TMC CM-5/SPARC (1992) 

–! Meiko CS-2/SPARC (1993) 

–! IBM SP-1/POWER (1993) 

•! MPP Vector Supers 
–! Fujitsu VPP500 (1994) 

µP 

Mem 

NI 

Interconnect Network 

µP 

Mem 

NI 

µP 

Mem 

NI 

µP 

Mem 

NI 

µP 

Mem 

NI 

µP 

Mem 

NI 

µP 

Mem 

NI 

µP 

Mem 

NI 

Designs scale to 100s-10,000s 

of nodes 
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MIT J-Machine (Jelly-bean machine) 

•! 3-dimensional network topology 
–! Non-adaptive, E-cubed routing 
–! Hardware routing 
–! Maximize density of communication 

•! 64-nodes/board, 1024 nodes total 
•! Low-powered processors  

–! Message passing instructions 
–! Associative array primitives to aid in synthesizing shared-address space 

•! Extremely fine-grained communication 
–! Hardware-supported Active Messages 
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The Earth Simulator (NEC, 2002) 

NEC SX-6 
Vector 

Microprocessor 

500MHz / 1GHz 

8 lanes 

8 GFLOPS 

NEC SX-6 
Vector 

Microprocessor 

500MHz / 1GHz 

8 lanes 

8 GFLOPS 

NEC SX-6 
Vector 

Microprocessor 

500MHz / 1GHz 

8 lanes 

8 GFLOPS 

NEC SX-6 
Vector 

Microprocessor 

500MHz / 1GHz 

8 lanes 

8 GFLOPS 

NEC SX-6 
Vector 

Microprocessor 

500MHz / 1GHz 

8 lanes 

8 GFLOPS 

NEC SX-6 
Vector 

Microprocessor 

500MHz / 1GHz 

8 lanes 

8 GFLOPS 

NEC SX-6 
Vector 

Microprocessor 

500MHz / 1GHz 

8 lanes 

8 GFLOPS 

NEC SX-6 
Vector 

Microprocessor 

500MHz / 1GHz 

8 lanes 

8 GFLOPS 

16GB in 2048 Memory Banks 

8 Processors/Node 

256 GB/s Shared 
Memory BW 

12 GB/s 

Each Way 

640x640 Node 
Full Crossbar 
Interconnect 

640 Nodes 

83,200 cables to connect crossbar! 

Was World’s fastest supercomputer, >35 TFLOPS on LINPACK (June 2002) 

      (87% of peak performance) 
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The Earth Simulator (NEC, 2002) 
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IBM Blue Gene/L Processor 
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BG/L 64K Processor System 

•! Peak Performance 360TFLOPS 

•! Power Consumption 1.4 MW 
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Clusters and Networks of Workstations 

•! Connect multiple complete machines together using 
standard fast interconnects 

–! Little or no hardware development cost  

–! Each node can boot separately and operate independently 

–! Interconnect can be attached at I/O bus (most common) or on memory 
bus (higher speed but more difficult) 

•! Berkeley Project: “Network of Workstations” (NOW) 

•! Clustering initially used to provide fault tolerance 

•! Clusters of SMPs (CluMPs) 
–! Connect multiple n-way SMPs using a cache-coherent memory bus, fast 

message passing network or non cache-coherent interconnect 

•! Build message passing MPP by connecting multiple 
workstations using fast interconnect connected to I/O 
Bus.  Main advantage? 
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MultiCore  
Architectures 
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Parallel Chip-Scale Processors 

•! Multicore processors emerging in general-purpose market 
due to power limitations in single-core performance scaling 

–! 4-16 cores in 2009, connected as cache-coherent SMP 
–! Cache-coherent shared memory 

•! Embedded applications need large amounts of computation 
–! Recent trend to build “extreme” parallel processors with dozens to 

hundreds of parallel processing elements on one die 
–! Often connected via on-chip networks, with no cache coherence 
–! Examples: 188 core “Metro” chip from CISCO 

Intel Core 2 Quad: 4 Cores AMD Opteron: 6 Cores 
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T1 (“Niagara”) 

•! Highly Threaded: 
–! 8 Cores 

–! 4 Threads/Core 

•! Target: Commercial server applications 
–! High thread level parallelism (TLP) 

»! Large numbers of parallel client 
requests 

–! Low instruction level parallelism (ILP) 

»! High cache miss rates 

»! Many unpredictable branches 

»! Frequent load-load dependencies 

•! Power, cooling, and space are major 
concerns for data centers 

•! Metric: Performance/Watt/Sq. Ft. 
•! Approach: Multicore, Fine-grain 

multithreading, Simple pipeline, Small 
L1 caches, Shared L2 
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T1 Fine-Grained Multithreading 

•! Each core supports four threads and has its own level 
one caches (16KB for instructions and 8 KB for data) 

–! Coherency is enforced among the L1 caches by a directory associated 
with each L2 cache block  

•! Switching to a new thread on each clock cycle  

•! Idle threads are bypassed in the scheduling  
–! Waiting due to a pipeline delay or cache miss 

–! Processor is idle only when all 4 threads are idle or stalled  

•! Both loads and branches incur a 3 cycle delay that can 
only be hidden by other threads  

•! A single set of floating-point functional units is shared 
by all 8 cores 

–!  floating-point performance was not a focus for T1 

–! (New T2 design has FPU per core) 
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Embedded Parallel Processors 

•! Often embody a mixture of old architectural 
styles and ideas 

•! Exposed memory hierarchies and interconnection 
networks 

–! Programmers code to the “metal” to get best cost/power/
performance 

–! Portability across platforms less important 

•! Customized synchronization mechanisms 
–! Interlocked communication channels (processor blocks on read 

if data not ready) 

–! Barrier signals 

–! Specialized atomic operation units 

•! Many more, simpler cores 
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PicoChip PC101 (2003) 
•! Target market is wireless base stations 

•! 430 cores on one die in 130nm 

•! Each core is a 3-issue VLIW 

[uPR, July 2003] 
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Cisco CSR-1 Metro Chip 

188 usable RISC-like cores  
in 130nm 
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IBM Cell Processor (Playstation-3) 

One 2-way threaded PowerPC core (PPE), plus eight specialized short-
SIMD cores (SPE)  
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Nvidia G8800 Graphics Processor 

•! This is a GPU (Graphics Processor Unit) 
–! Available in many desktops  

•! Example: 16 cores similar to a vector processor with 8 lanes (128 
stream processors total) 

–! Processes threads in SIMD groups of 32 (a “warp”) 
–! Some stripmining done in hardware 

•! Threads can branch, but loses performance compared to when all 
threads are running same code 

•! Complete parallel programming environment (CUDA) 
–! A lot of parallel codes have been ported to these GPUs 
–! For some data parallel applications, GPUs provide the fastest implementations 
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Conclusion 
•! Uniprocessor Parallelism: 

–! Pipelining, Superscalar, Out-of-order execution 
–! Vector Processing, Pseudo-SIMD 

•! Multithreading 
–! Multiple independent threads executing on same processor 

•! Memory Systems: 
–! Exploiting of Locality at many levels 
–! Greatly Impacts performance (sometimes in strange fashion) 
–! Use of Autotuning to navigate complexity 

•! Shared Memory Programming Model: 
–! Multiple threads communicating through memory 
–! Memory Consistency Model: Specifies order with which operations seem 

to occur relative to one another 
–! Sequential Consistency: Most “intuitive” model 

•! Message Passing Programming Model: 
–! Multiple threads communicating with messages 


