
PARLab Parallel Boot Camp

Introduction to

Parallel Computer Architecture

9:30am-12pm

John Kubiatowicz
Electrical Engineering and Computer Sciences

University of California, Berkeley

John Kubiatowicz Parallel Architecture: 2 8/19/09

Societal Scale Information Systems

Scalable, Reliable,
Secure Services

MEMS for
Sensor Nets Building & Using

Sensor Nets

Clusters

Massive Cluster

Gigabit Ethernet

Databases
Information Collection
Remote Storage
Online Games
Commerce

 …

•! The world is a large parallel system already
–! Microprocessors in everything
–! Vast infrastructure behind this
–! People who say that parallel computing

never took off have not been watching

•! So: why are people suddenly so
excited about parallelism?

–! Because Parallelism is being forced
upon the lowest level

John Kubiatowicz Parallel Architecture: 3 8/19/2009

ManyCore Chips: The future is here

•! “ManyCore” refers to many processors/chip
–! 64? 128? Hard to say exact boundary

•! How to program these?
–! Use 2 CPUs for video/audio
–! Use 1 for word processor, 1 for browser
–! 76 for virus checking???

•! Something new is clearly needed here…

•! Intel 80-core multicore chip (Feb 2007)
–! 80 simple cores
–! Two floating point engines /core
–! Mesh-like "network-on-a-chip“
–! 100 million transistors
–! 65nm feature size

Frequency Voltage Power Bandwidth Performance
3.16 GHz 0.95 V 62W 1.62 Terabits/s 1.01

Teraflops
5.1 GHz 1.2 V 175W 2.61 Terabits/s 1.63

Teraflops
5.7 GHz 1.35 V 265W 2.92 Terabits/s 1.81

Teraflops

John Kubiatowicz Parallel Architecture: 4 8/19/2009

Outline of Today’s Lesson

•! Goals:
–! Pick up some common terminology/concepts for later in the course

•! Uniprocessor Parallelism
–! Pipelining, Superscalar, Out-of-order execution

–! Vector Processing/SIMD

–! Multithreading

–! Uniprocessor Memory Systems

•! Parallel Computer Architecture
–! Programming Models

–! Shared Memory/Synchronization primitives

–! Message Passing

•! Actual Parallel Machines/Multicore chips

John Kubiatowicz Parallel Architecture: 5 8/19/2009

Computer Architecture

John Kubiatowicz Parallel Architecture: 6 8/19/2009

Hardware/Software Interface

instruction set

software

hardware

•! Properties of a good abstraction
–! Lasts through many generations (portability)
–! Used in many different ways (generality)
–! Provides convenient functionality to higher levels
–! Permits an efficient implementation at lower levels

•! But: Lessons of RISC
–! What is important is the combination view presented to programmer

NOT necessarily the compiler/OS
–! Hardware should never be optimized in the absence of the environment

John Kubiatowicz Parallel Architecture: 7 8/19/2009

Execution is not just about hardware

Hardware

Application Binary

Library Services

OS Services
Hypervisor

Linker

Program

Libraries

Source-to-Source

Transformations

Compiler

•! The VAX fallacy
–! Produce one instruction for

every high-level concept

–! Absurdity: Polynomial Multiply

»! Single hardware instruction

»! But Why? Is this really
faster???

•! RISC Philosophy
–! Full System Design

–! Hardware mechanisms viewed in
context of complete system

–! Cross-boundary optimization

•! Modern programmer does
not see assembly language

–! Many do not even see “low-level”
languages like “C”.

John Kubiatowicz Parallel Architecture: 8 8/19/2009

Not Fooling Yourself:
Processor performance equation

CPU time = Seconds = Instructions x Cycles x Seconds

 Program Program Instruction Cycle

 Inst Count CPI Clock Rate
Program X

Compiler X (X)

Inst. Set. X X

Organization X X

Technology X

inst count

CPI

Cycle time

John Kubiatowicz Parallel Architecture: 9 8/19/2009

Not Fooling Yourself: Amdahl’s Law

Best you could ever hope to do:

John Kubiatowicz Parallel Architecture: 10 8/19/2009

Uniprocessor Parallelism

John Kubiatowicz Parallel Architecture: 11 8/19/2009

Parallelism is Everywhere

•! Modern Processor Chips have ! 1 billion transistors
–! Clearly must get them working in parallel

–! Question: how much of this parallelism must programmer understand?

•! How do uniprocessor computer architectures extract
parallelism?

–! By finding parallelism within instruction stream

–! Called “Instruction Level Parallelism” (ILP)

–! The theory: hide parallelism from programmer

•! Goal of Computer Architects until about 2002:
–! Hide Underlying Parallelism from everyone: OS, Compiler, Programmer

•! Examples of ILP techniques:
–! Pipelining: overlapping individual parts of instructions

–! Superscalar execution: do multiple things at same time

–! VLIW: Let compiler specify which operations can run in parallel

–! Vector Processing: Specify groups of similar (independent) operations

–! Out of Order Execution (OOO): Allow long operations to happen

John Kubiatowicz Parallel Architecture: 12 8/19/2009

What is Pipelining?

•! In this example:
–! Sequential execution takes

4 * 90min = 6 hours

–! Pipelined execution takes
30+4*40+20 = 3.5 hours

•! Bandwidth = loads/hour
–! BW = 4/6 l/h w/o pipelining

–! BW = 4/3.5 l/h w pipelining

–! BW <= 1.5 l/h w pipelining,
more total loads

•! Pipelining helps bandwidth
but not latency (90 min)

•! Bandwidth limited by
slowest pipeline stage

•! Potential speedup =
Number of pipe stages

A

B

C

D

6 PM 7 8 9

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

Dave Patterson’s Laundry example: 4 people doing laundry

 wash (30 min) + dry (40 min) + fold (20 min) = 90 min Latency

John Kubiatowicz Parallel Architecture: 13 8/19/2009

5 Steps of MIPS Pipeline

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
L
U

M
e
m

ory

R
e
g F

ile

M
U

X

M
U

X

D
ata

M
e
m

ory

M
U

X

Sign
Extend

Zero?

IF
/ID

ID
/E

X

M
E
M

/W
B

E
X
/M

E
M

4

A
d
d
e
r

Next SEQ PC Next SEQ PC

RD RD RD W
B

 D
at

a

Next PC

A
d
d
re

ss

RS1

RS2

Imm

M
U

X

John Kubiatowicz Parallel Architecture: 14 8/19/2009

Visualizing The Pipeline

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7 Cycle 5

•! In ideal case: CPI (cycles/instruction) = 1!
–! On average, put one instruction into pipeline, get one out

•! Superscalar: Launch more than one instruction/cycle
–! In ideal case, CPI < 1

John Kubiatowicz Parallel Architecture: 15 8/19/2009

Limits to pipelining

•! Overhead prevents arbitrary division
–! Cost of latches (between stages) limits what can do within stage

–! Sets minimum amount of work/stage

•! Hazards prevent next instruction from executing during
its designated clock cycle

–! Structural hazards: attempt to use the same hardware to do two
different things at once

–! Data hazards: Instruction depends on result of prior instruction still in
the pipeline

–! Control hazards: Caused by delay between the fetching of instructions
and decisions about changes in control flow (branches and jumps).

•! Superscalar increases occurrence of hazards
–! More conflicting instructions/cycle

John Kubiatowicz Parallel Architecture: 16 8/19/2009

Time (clock cycles)

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or r8,r1,r9

Data Hazard: Must go Back in Time?

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

•! Data Dependencies between adjacent instructions
–! Must wait (“stall”) for result to be done (No “back in time” exists!)

–! Net result is that CPI > 1

•! Superscalar increases frequency of hazards

John Kubiatowicz Parallel Architecture: 17 8/19/2009

Out-of-Order (OOO) Execution
•! Key idea: Allow instructions behind stall to proceed

 DIVD F0,F2,F4
 ADDD F10,F0,F8
 SUBD F12,F8,F14

•! Out-of-order execution " out-of-order completion.
•! Dynamic Scheduling Issues from OOO scheduling:

–! Must match up results with consumers of instructions
–! Precise Interrupts

RAW

WAR

John Kubiatowicz Parallel Architecture: 18 8/19/2009

Basic Idea: Tomasulo Organization

FP adders

Add1
Add2
Add3

FP multipliers

Mult1
Mult2

From Mem FP Registers

Reservation
Stations

Common Data Bus (CDB)

To Mem

FP Op
Queue

Load Buffers

Store
Buffers

Load1
Load2
Load3
Load4
Load5
Load6

John Kubiatowicz Parallel Architecture: 19 8/19/2009

Modern ILP
•! Dynamically scheduled, out-of-order execution

–! Current microprocessors fetch 6-8 instructions per cycle
–! Pipelines are 10s of cycles deep " many overlapped instructions in

execution at once, although work often discarded

•! What happens:
–! Grab a bunch of instructions, determine all their dependences, eliminate

dep’s wherever possible, throw them all into the execution unit, let each
one move forward as its dependences are resolved

–! Appears as if executed sequentially

•! Dealing with Hazards: May need to guess!
–! Called “Speculative Execution”
–! Speculate on Branch results, Dependencies, even Values!
–! If correct, don’t need to stall for result " yields performance
–! If not correct, waste time and power
–! Must be able to UNDO a result if guess is wrong
–! Problem: accuracy of guesses decreases with number of simultaneous

instructions in pipeline

•! Huge complexity
–! Complexity of many components scales as n2 (issue width)
–! Power consumption big problem

John Kubiatowicz Parallel Architecture: 20 8/19/2009

IBM Power 4

•! Combines: Superscalar and OOO

•! Properties:
–! 8 execution units in out-of-order engine,

each may issue an instruction each cycle.

–! In-order Instruction Fetch, Decode (compute
dependencies)

–! Reordering for in-order commit

John Kubiatowicz Parallel Architecture: 21 8/19/2009

8-way OOO not Panacea:
Many Resources IDLE!

From: Tullsen,
Eggers, and Levy,"
“Simultaneous

Multithreading:
Maximizing On-chip
Parallelism, ISCA
1995."

For an 8-way

superscalar.!

John Kubiatowicz Parallel Architecture: 22 8/19/2009

Modern Limits

John Kubiatowicz Parallel Architecture: 23 8/19/2009

Technology Trends: Moore’s Law

2X transistors/Chip Every 1.5 years

Called “Moore’s Law”

Moore’s Law

Microprocessors have
become smaller, denser,
and more powerful.

Gordon Moore (co-founder of
Intel) predicted in 1965 that the
transistor density of
semiconductor chips would
double roughly every 18
months.

John Kubiatowicz Parallel Architecture: 24 8/19/2009

Uniprocessor Performance (SPECint)

•! VAX : 25%/year 1978 to 1986
•! RISC + x86: 52%/year 1986 to 2002
•! RISC + x86: ??%/year 2002 to present

From Hennessy and Patterson, Computer Architecture: A

Quantitative Approach, 4th edition, Sept. 15, 2006!

" Sea change in chip
design: multiple “cores” or
processors per chip

3X

John Kubiatowicz Parallel Architecture: 25 8/19/2009

Limiting Force: Power Density

John Kubiatowicz Parallel Architecture: 26 8/19/2009

Limiting Forces: Clock Speed and ILP
•! Chip density is

continuing increase
~2x every 2 years

–! Clock speed is not

–! # processors/chip (cores)
may double instead

•! There is little or no
more Instruction Level
Parallelism (ILP)
to be found

–! Can no longer allow
programmer to think in
terms of a serial
programming model

•! Conclusion:
Parallelism must be
exposed to software!

Source: Intel, Microsoft (Sutter) and
Stanford (Olukotun, Hammond)

John Kubiatowicz Parallel Architecture: 27 8/19/2009

Relaxing the Sequential Model:
VLIW

John Kubiatowicz Parallel Architecture: 28 8/19/2009

VLIW: Very Long Instruction Word

•! Each “instruction” has explicit coding for multiple operations
–! In Itanium, grouping called a “packet”
–! In Transmeta, grouping called a “molecule” (with “atoms” as ops)

•! Each operation slot is for a fixed function
•! Constant operation latencies are specified
•! Architecture requires compiler guarantee of:

–! Parallelism within an instruction => no x-operation RAW check
–! No data use before data ready => no data interlocks

•! Special compiler support must thus:
–! Extract parallelism
–! Prevent hazards from affecting results (through careful scheduling)
–! May require recompilation with each new version of hardware

Two Integer Units,
Single Cycle Latency

Two Load/Store Units,
Two Cycle Latency Two Floating-Point Units,

Three Cycle Latency

Int Op 2 Mem Op 1 Mem Op 2 FP Op 1 FP Op 2 Int Op 1

John Kubiatowicz Parallel Architecture: 29 8/19/2009

Loop Unrolling in VLIW

Memory Memory FP FP Int. op/
 Clock

reference 1 reference 2 operation 1 op. 2 branch

LD F0,0(R1) LD F6,-8(R1) 1

LD F10,-16(R1) LD F14,-24(R1) 2
LD F18,-32(R1) LD F22,-40(R1) ADDD F4,F0,F2 ADDD F8,F6,F2 3
LD F26,-48(R1) ADDD F12,F10,F2 ADDD F16,F14,F2 4

 ADDD F20,F18,F2 ADDD F24,F22,F2 5
SD 0(R1),F4 SD -8(R1),F8 ADDD F28,F26,F2 6
SD -16(R1),F12 SD -24(R1),F16 7
SD -32(R1),F20 SD -40(R1),F24 SUBI R1,R1,#48 8
SD -0(R1),F28 BNEZ R1,LOOP 9
 Unrolled 7 times to avoid delays
 7 results in 9 clocks, or 1.3 clocks per iteration (1.8X)
 Average: 2.5 ops per clock, 50% efficiency

Loop: LD F0,0(R1) ;F0=vector element

 ADDD F4,F0,F2 ;add scalar from F2

 SD 0(R1),F4 ;store result

 SUBI R1,R1,8 ;decrement pointer 8B (DW)

 BNEZ R1,Loop ;branch R1!=zero

 NOP ;delayed branch slot

John Kubiatowicz Parallel Architecture: 30 8/19/2009

Software Pipelining with
Loop Unrolling in VLIW

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op. 2 branch

LD F0,-48(R1) ST 0(R1),F4 ADDD F4,F0,F2 1

LD F6,-56(R1) ST -8(R1),F8 ADDD F8,F6,F2 SUBI R1,R1,#24 2
LD F10,-40(R1) ST 8(R1),F12 ADDD F12,F10,F2 BNEZ R1,LOOP 3

•! Software pipelined across 9 iterations of original loop
–! In each iteration of above loop, we:

»!Store to m,m-8,m-16 (iterations I-3,I-2,I-1)
»! Compute for m-24,m-32,m-40 (iterations I,I+1,I+2)
»! Load from m-48,m-56,m-64 (iterations I+3,I+4,I+5)

•! 9 results in 9 cycles, or 1 clock per iteration
•! Average: 3.3 ops per clock, 66% efficiency
 Note: Need less registers for software pipelining

 (only using 7 registers here, was using 15)

John Kubiatowicz Parallel Architecture: 31 8/19/2009

Relaxing the Sequential Model:
Vectors/SIMD

John Kubiatowicz Parallel Architecture: 32 8/19/2009

Vector Code Example
Scalar Code

 LI R4, 64

loop:

 L.D F0, 0(R1)

 L.D F2, 0(R2)

 ADD.D F4, F2, F0

 S.D F4, 0(R3)

 DADDIU R1, 8

 DADDIU R2, 8

 DADDIU R3, 8

 DSUBIU R4, 1

 BNEZ R4, loop

Vector Code

 LI VLR, 64

 LV V1, R1

 LV V2, R2

 ADDV.D V3, V1, V2

 SV V3, R3

C code

for (i=0; i<64; i++)

 C[i] = A[i] + B[i];

•! Require programmer (or compiler) to identify parallelism
–! Hardware does not need to re-extract parallelism

•! Many multimedia/HPC applications are natural consumers
of vector processing

John Kubiatowicz Parallel Architecture: 33 8/19/2009

+ + + + + +

[0] [1] [VLR-1]

Vector Arithmetic
Instructions

ADDV v3, v1, v2 v3

v2
v1

Scalar Registers

r0

r15
Vector Registers

v0

v15

[0] [1] [2] [VLRMAX-1]

VLR Vector Length Register

v1
Vector Load and
Store Instructions

LV v1, r1, r2

Base, r1 Stride, r2
Memory

Vector Register

Vector Programming Model

John Kubiatowicz Parallel Architecture: 34 8/19/2009

V
1

V
2

V
3

V3 <- v1 * v2

Six stage multiply pipeline

•! Use deep pipeline (" fast clock) to
execute element operations

•! Simplifies control of deep pipeline
because elements in vector are
independent (" no hazards!)

Vector Arithmetic Execution

John Kubiatowicz Parallel Architecture: 35 8/19/2009

load

Vector Instruction Parallelism

Can overlap execution of multiple vector instructions
–! Consider machine with 32 elements per vector register and 8 lanes:

load
mul

mul

add

add

Load Unit Multiply Unit Add Unit

time

Instruction

issue

Complete 24 operations/cycle while issuing 1 short instruction/cycle

John Kubiatowicz Parallel Architecture: 36 8/19/2009

SIMD Architecture

•! Single Instruction Multiple Data (SIMD)
•! Central controller broadcasts instructions to multiple

processing elements (PEs)
–! Only requires one controller for whole array
–! Only requires storage for one copy of program
–! All computations fully synchronized

•! Recent Return to Popularity:
–! GPU (Graphics Processing Units) have SIMD properties
–! However, also multicore behavior, so mix of SIMD and MIMD (more later)

•! Dual between Vector and SIMD execution

Array
Controller

Inter-PE Connection Network

PE

M
e
m

PE

M
e
m

PE

M
e
m

PE

M
e
m

PE

M
e
m

PE

M
e
m

PE

M
e
m

PE

M
e
m

Control

Data

John Kubiatowicz Parallel Architecture: 37 8/19/2009

Pseudo SIMD: (Poor-Man’s SIMD?)

•! Scalar processing
–! traditional mode

–! one operation produces
one result

•! SIMD processing (Intel)
–! with SSE / SSE2

–! one operation produces
multiple results

Slide Source: Alex Klimovitski & Dean Macri, Intel Corporation

John Kubiatowicz Parallel Architecture: 38 8/19/2009

E.g.: SSE / SSE2 SIMD on Intel

16x bytes

4x floats

2x doubles

•! SSE2 data types: anything that fits into 16 bytes, e.g.,

•! Instructions perform add, multiply etc. on all the data in
this 16-byte register in parallel

•! Challenges:
–! Need to be contiguous in memory and aligned
–! Some instructions to move data from one part of register to another

•! In theory, the compiler understands all of this
–! When compiling, it will rearrange instructions to get a good “schedule”

that maximizes pipelining, uses FMAs and SIMD
–! It works with the mix of instructions inside an inner loop or other block

of code

•! But in practice the compiler may need your help

John Kubiatowicz Parallel Architecture: 39 8/19/2009

Relaxing the Sequential Model:
Multithreading

John Kubiatowicz Parallel Architecture: 40 8/19/2009

Thread Level Parallelism (TLP)

•! ILP exploits implicit parallel operations within
a loop or straight-line code segment

•! TLP explicitly represented by the use of
multiple threads of execution that are
inherently parallel
–! Threads can be on a single processor

–! Or, on multiple processors

•! Goal: Use multiple instruction streams to
improve
1.! Throughput of computers that run many programs

2.!Execution time of multi-threaded programs

John Kubiatowicz Parallel Architecture: 41 8/19/2009

Common Notions of Thread Creation

•! cobegin/coend
cobegin

 job1(a1);

 job2(a2);

coend

•! fork/join
tid1 = fork(job1, a1);

job2(a2);

join tid1;

•! future
v = future(job1(a1));

… = …v…;

•! Cobegin cleaner than fork, but fork is more general

•! Threads expressed in the code may not turn into
independent computations

–! Only create threads if processors idle

–! Example: Thread-stealing runtimes such as cilk

•! Statements in block may run in parallel

•! cobegins may be nested

•! Scoped, so you cannot have a missing coend

•! Future expression evaluated in parallel

•! Attempt to use return value will wait

•! Forked procedure runs in parallel

•! Wait at join point if it’s not finished

John Kubiatowicz Parallel Architecture: 42 8/19/2009

Simple Threading Example (pThreads)

void* SayHello(void *foo) {
 printf("Hello, world!\n");
 return NULL;
}

int main() {
 pthread_t threads[16];
 int tn;
 for(tn=0; tn<16; tn++) {
 pthread_create(&threads[tn], NULL, SayHello, NULL);
 }
 for(tn=0; tn<16 ; tn++) {
 pthread_join(threads[tn], NULL);
 }
 return 0;
}

John Kubiatowicz Parallel Architecture: 43 8/19/2009

Multithreaded Execution
•! Multitasking operating system:

–! Gives “illusion” that multiple things happening at same time
–! Switches at a course-grained time quanta (for instance: 10ms)

•! Hardware Multithreading: multiple threads share
processor simultaneously (with little OS help)

–! Hardware does switching

»!HW for fast thread switch in small number of cycles
»!much faster than OS switch which is 100s to 1000s of clocks

–! Processor duplicates independent state of each thread
»! e.g., a separate copy of register file, a separate PC, and for

running independent programs, a separate page table
–! Memory shared through the virtual memory mechanisms, which

already support multiple processes

•! When to switch between threads?
–! Alternate instruction per thread (fine grain)

–! When a thread is stalled, perhaps for a cache miss, another thread
can be executed (coarse grain)

John Kubiatowicz Parallel Architecture: 44 8/19/2009

What about combining ILP and TLP?

•! TLP and ILP exploit two different kinds of
parallel structure in a program

•! Could a processor oriented at ILP benefit
from exploiting TLP?

–! functional units are often idle in data path designed for ILP
because of either stalls or dependences in the code

–! TLP used as a source of independent instructions that
might keep the processor busy during stalls

–! TLP be used to occupy functional units that would otherwise
lie idle when insufficient ILP exists

•! Called “Simultaneous Multithreading”
–! Intel renamed this “Hyperthreading”

John Kubiatowicz Parallel Architecture: 45 8/19/2009

Quick Recall: Many Resources IDLE!

From: Tullsen,
Eggers, and Levy,"
“Simultaneous

Multithreading:
Maximizing On-chip
Parallelism, ISCA
1995."

For an 8-way

superscalar.!

John Kubiatowicz Parallel Architecture: 46 8/19/2009

Simultaneous Multi-threading ...

1

2

3

4

5

6

7

8

9

M! M! FX! FX!FP! FP!BR!CC!Cycle!
One thread, 8 units!

M = Load/Store, FX = Fixed Point, FP = Floating Point, BR = Branch, CC = Condition Codes"

1

2

3

4

5

6

7

8

9

M! M! FX! FX!FP! FP!BR!CC!Cycle!
Two threads, 8 units!

John Kubiatowicz Parallel Architecture: 47 8/19/2009

Power 5 dataflow ...

•! Why only two threads?
–! With 4, one of the shared resources (physical registers, cache,

memory bandwidth) would be prone to bottleneck

•! Cost:
–! The Power5 core is about 24% larger than the Power4 core

because of the addition of SMT support

John Kubiatowicz Parallel Architecture: 48 8/19/2009

The Sequential
Memory System

Limiting Force: Memory System

CPU!

60% per yr!

2X in 1.5 yrs!

DRAM!

5.5-7% per

yr!

<2X in 10 yrs!

10!

DRAM

CPU!

Performance!

(1/latency)!

100!

1000!

Year!

Gap grew > 50% per
year

•! How do architects address this gap?
–! Put small, fast “cache” memories between CPU and DRAM.
–! Create a “memory hierarchy”

John Kubiatowicz Parallel Architecture: 50 8/19/2009

The Principle of Locality

•! The Principle of Locality:
–! Program access a relatively small portion of the address space at any

instant of time

•! Two Different Types of Locality:
–! Temporal Locality (Locality in Time): If an item is referenced, it will

tend to be referenced again soon (e.g., loops, reuse)

–! Spatial Locality (Locality in Space): If an item is referenced, items
whose addresses are close by tend to be referenced soon
(e.g., straightline code, array access)

•! Last 25 years, HW relied on locality for speed

Programs with locality cache well ...

Donald J. Hatfield, Jeanette Gerald: Program

Restructuring for Virtual Memory. IBM Systems Journal

10(3): 168-192 (1971)!

Time!

M
e
m

o
ry

 A
d

d
re

s
s
 (

o
n

e
 d

o
t

p
e
r

a
c
c
e
s
s
)!

Spatial
Locality

Temporal
 Locality

Bad locality behavior

John Kubiatowicz Parallel Architecture: 52 8/19/2009

Memory Hierarchy

•! Take advantage of the principle of locality to:
–! Present as much memory as in the cheapest technology

–! Provide access at speed offered by the fastest technology

O
n

-C
h

ip

C
a
ch

e

R
eg

isters

Control

Datapath

Secondary

Storage

(Disk)

Processor

Main

Memory

(DRAM)

Second

Level

Cache

(SRAM)

1s 10,000,000s
 (10s ms)

Speed (ns): 10s-100s 100s

100s Gs Size (bytes): Ks-Ms Ms

Tertiary

Storage

(Tape)

10,000,000,000s
 (10s sec)

Ts

John Kubiatowicz Parallel Architecture: 53 8/19/2009

Example of modern core: Nehalem

•! ON-chip cache resources:
–! For each core: L1: 32K instruction and 32K data cache, L2: 1MB
–! L3: 8MB shared among all 4 cores

•! Integrated, on-chip memory controller (DDR3)

John Kubiatowicz Parallel Architecture: 54 8/19/2009

Memory Hierarchy: Terminology

•! Hit: data appears in some block in the upper level
(example: Block X)

–! Hit Rate: the fraction of memory access found in the upper level

–! Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/miss

•! Miss: data needs to be retrieve from a block in the
lower level (Block Y)

–! Miss Rate = 1 - (Hit Rate)

–! Miss Penalty: Time to replace a block in the upper level +

Time to deliver the block the processor

•! Hit Time << Miss Penalty (500 instructions on 21264!)
Lower Level

Memory Upper Level

Memory
To Processor

From Processor

Blk X

Blk Y

John Kubiatowicz Parallel Architecture: 55 8/19/2009

Impact of Hierarchy on Algorithms

•! Today CPU time is a function of (ops, cache misses)

•! What does this mean to Compilers, Data structures,
Algorithms?

–! Quicksort:
 fastest comparison based sorting algorithm when keys fit in memory

–! Radix sort: also called “linear time” sort
 For keys of fixed length and fixed radix a constant number of passes
 over the data is sufficient independent of the number of keys

•! “The Influence of Caches on the Performance of
Sorting” by A. LaMarca and R.E. Ladner. Proceedings of
the Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, January, 1997, 370-379.

–! For Alphastation 250, 32 byte blocks, direct mapped L2 2MB cache, 8
byte keys, from 4000 to 4000000

John Kubiatowicz Parallel Architecture: 56 8/19/2009

Quicksort vs. Radix: Instructions

Job size in keys

John Kubiatowicz Parallel Architecture: 57 8/19/2009

Quicksort vs. Radix Inst & Time

Time

Job size in keys

Insts

John Kubiatowicz Parallel Architecture: 58 8/19/2009

Quicksort vs. Radix: Cache misses

Job size in keys

John Kubiatowicz Parallel Architecture: 59 8/19/2009

Experimental Study (Membench)

•! Microbenchmark for memory system performance

•! for array A of length L from 4KB to 8MB by 2x

 for stride s from 4 Bytes (1 word) to L/2 by 2x

 time the following loop

 (repeat many times and average)

 for i from 0 to L by s

 load A[i] from memory (4 Bytes)

s

1 experiment

John Kubiatowicz Parallel Architecture: 60 8/19/2009

Membench: What to Expect

•! Consider the average cost per load
–! Plot one line for each array length, time vs. stride

–! Small stride is best: if cache line holds 4 words, at most ! miss

–! If array is smaller than a given cache, all those accesses will hit
(after the first run, which is negligible for large enough runs)

–! Picture assumes only one level of cache

–! Values have gotten more difficult to measure on modern procs

s = stride

average cost per access

total size < L1 cache
hit time

memory
time

size > L1

John Kubiatowicz Parallel Architecture: 61 8/19/2009

Memory Hierarchy on a Sun Ultra-2i

L1:
16 KB

2 cycles (6ns)

Sun Ultra-2i, 333 MHz!

L2: 64 byte line

See www.cs.berkeley.edu/~yelick/arvindk/t3d-isca95.ps for details

L2: 2 MB,
12 cycles (36 ns)

Mem: 396 ns

(132 cycles)

8 K pages,
32 TLB entries

L1: 16 B line

Array length

John Kubiatowicz Parallel Architecture: 62 8/19/2009

Memory Hierarchy on a Power3
Power3, 375 MHz!

L2: 8 MB
128 B line
9 cycles

L1: 32 KB
128B line
.5-2 cycles

Array size

Mem: 396 ns
(132 cycles)

John Kubiatowicz Parallel Architecture: 63 8/19/2009

Memory Hierarchy Lessons

•! Caches Vastly Impact Performance
–! Cannot consider performance without considering memory hierarchy

•! Actual performance of a simple program can be a
complicated function of the architecture

–! Slight changes in the architecture or program change the performance
significantly

–! To write fast programs, need to consider architecture
»! True on sequential or parallel processor

–! We would like simple models to help us design efficient algorithms

•! Common technique for improving cache performance,
called blocking or tiling:

–! Idea: used divide-and-conquer to define a problem that fits in register/
L1-cache/L2-cache

•! Autotuning: Deal with complexity through experiments
–! Produce several different versions of code

»! Different algorithms, Blocking Factors, Loop orderings, etc
–! For each architecture, run different versions to see which is fastest
–! Can (in principle) navigate complex design options for optimum

John Kubiatowicz Parallel Architecture: 64 8/19/2009

Explicitly Parallel
Computer Architecture

John Kubiatowicz Parallel Architecture: 65 8/19/2009

What is Parallel Architecture?
•! A parallel computer is a collection of processing elements

that cooperate to solve large problems
–! Most important new element: It is all about communication!

•! What does the programmer (or OS or Compiler writer)
think about?

–! Models of computation:
»! PRAM? BSP? Sequential Consistency?

–! Resource Allocation:
»! how powerful are the elements?
»! how much memory?

•! What mechanisms must be in hardware vs software
–! What does a single processor look like?

»! High performance general purpose processor
»! SIMD processor
»! Vector Processor

–! Data access, Communication and Synchronization
»! how do the elements cooperate and communicate?
»! how are data transmitted between processors?
»! what are the abstractions and primitives for cooperation?

John Kubiatowicz Parallel Architecture: 66 8/19/2009

Types of Parallelism
T

im
e

(p
ro

ce
ss

or
 c

yc
le

) Superscalar Fine-Grained Coarse-Grained Multiprocessing
Simultaneous

Multithreading

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Idle slot

John Kubiatowicz Parallel Architecture: 67 8/19/2009

Parallel Programming Models

•! Programming model is made up of the languages and
libraries that create an abstract view of the machine

•! Control
–! How is parallelism created?

–! What orderings exist between operations?

–! How do different threads of control synchronize?

•! Data
–! What data is private vs. shared?

–! How is logically shared data accessed or communicated?

•! Synchronization
–! What operations can be used to coordinate parallelism

–! What are the atomic (indivisible) operations?

•! Cost
–! How do we account for the cost of each of the above?

John Kubiatowicz Parallel Architecture: 68 8/19/2009

Simple Programming Example

•! Consider applying a function f to the
elements of an array A and then computing
its sum:

•! Questions:
–! Where does A live? All in single memory? Partitioned?

–! What work will be done by each processors?

–! They need to coordinate to get a single result, how?

A:

fA:
f

sum

A = array of all data
fA = f(A)
s = sum(fA)

s:

John Kubiatowicz Parallel Architecture: 69 8/19/2009

Shared Memory
Programming Model

John Kubiatowicz Parallel Architecture: 70 8/19/2009

Programming Model 1: Shared Memory

•! Program is a collection of threads of control.
–! Can be created dynamically, mid-execution, in some languages

•! Each thread has a set of private variables, e.g., local stack
variables

•! Also a set of shared variables, e.g., static variables, shared common
blocks, or global heap.
–! Threads communicate implicitly by writing and reading shared variables.

–! Threads coordinate by synchronizing on shared variables

Pn P1 P0

s
s = ...

y = ..s ...

Shared memory

i: 2 i: 5 Private
memory

i: 8

John Kubiatowicz Parallel Architecture: 71 8/19/2009

Simple Programming Example: SM

•! Shared memory strategy:
–! small number p << n=size(A) processors

–! attached to single memory

•! Parallel Decomposition:
–! Each evaluation and each partial sum is a task.

•! Assign n/p numbers to each of p procs
–! Each computes independent “private” results and partial sum.

–! Collect the p partial sums and compute a global sum.

Two Classes of Data:

•! Logically Shared
–! The original n numbers, the global sum.

•! Logically Private
–! The individual function evaluations.

–! What about the individual partial sums?

John Kubiatowicz Parallel Architecture: 72 8/19/2009

Shared Memory “Code” for sum

Thread 1

 for i = 0, n/2-1
 s = s + f(A[i])

Thread 2

 for i = n/2, n-1
 s = s + f(A[i])

static int s = 0;

•!Problem is a race condition on variable s in the program

•!A race condition or data race occurs when:

-! two processors (or two threads) access the same
variable, and at least one does a write.

-!The accesses are concurrent (not synchronized) so
they could happen simultaneously

John Kubiatowicz Parallel Architecture: 73 8/19/2009

Better Shared Memory Code for Sum?

Thread 1
 ….
 compute f([A[i]) and put in reg0
 reg1 = s
 reg1 = reg1 + reg0
 s = reg1
 …

Thread 2
 …
 compute f([A[i]) and put in reg0
 reg1 = s
 reg1 = reg1 + reg0
 s = reg1
 …

static int s = 0;

•!Assume A = [3,5], f is the square function, and s=0 initially

•!For this program to work, s should be 34 at the end
•! but it may be 34,9, or 25

•!The atomic operations are reads and writes
•! Never see ! of one number, but += operation is not atomic

•! All computations happen in (private) registers

9 25

0 0

9 25

25 9

3 5 A f = square

John Kubiatowicz Parallel Architecture: 74 8/19/2009

Improved Code for Sum

Thread 1

 local_s1= 0
 for i = 0, n/2-1
 local_s1 = local_s1 + f(A[i])

 s = s + local_s1

Thread 2

 local_s2 = 0
 for i = n/2, n-1
 local_s2= local_s2 + f(A[i])

 s = s +local_s2

static int s = 0;

•!Since addition is associative, it’s OK to rearrange order

•!Most computation is on private variables
-! Sharing frequency is also reduced, which might improve speed

-! But there is still a race condition on the update of shared s

-! The race condition can be fixed by adding locks (only one thread
can hold a lock at a time; others wait for it)

static lock lk;

lock(lk);

unlock(lk);

lock(lk);

unlock(lk);

John Kubiatowicz Parallel Architecture: 75 8/19/2009

What About Caching???

•! Want High performance for shared memory: Use Caches!
–! Each processor has its own cache (or multiple caches)

–! Place data from memory into cache

–! Writeback cache: don’t send all writes over bus to memory

•! Caches Reduce average latency
–! Automatic replication closer to processor

–! More important to multiprocessor than uniprocessor: latencies longer

•! Normal uniprocessor mechanisms to access data
–! Loads and Stores form very low-overhead communication primitive

•! Problem: Cache Coherence!

I/O devices Mem

P 1

$ $

P n

Bus

John Kubiatowicz Parallel Architecture: 76 8/19/2009

Example Cache Coherence Problem

I/O devices

Memory

P 1

$ $ $

P 2 P 3

5

u = ?

4

u = ?

u :5
1

u :5

2

u :5

3

u = 7

•! Things to note:
–! Processors could see different values for u after event 3
–! With write back caches, value written back to memory depends on

happenstance of which cache flushes or writes back value when

•! How to fix with a bus: Coherence Protocol
–! Use bus to broadcast writes or invalidations
–! Simple protocols rely on presence of broadcast medium

•! Bus not scalable beyond about 64 processors (max)
–! Capacitance, bandwidth limitations

John Kubiatowicz Parallel Architecture: 77 8/19/2009

Example: Coherence not Enough

•! Intuition not guaranteed by coherence

•! expect memory to respect order between accesses to
different locations issued by a given process

–! to preserve orders among accesses to same location by different
processes

•! Coherence is not enough!
–! pertains only to single location

–! Need statement about ordering
between multiple locations.

P 1 P 2

/*Assume initial value of A and ag is 0*/

A = 1; while (flag == 0); /*spin idly*/

flag = 1; print A;

Mem

P 1
P n

Conceptual
Picture

John Kubiatowicz Parallel Architecture: 78 8/19/2009

Memory Consistency Model

•! Specifies constraints on the order in which memory
operations (from any process) can appear to execute
with respect to one another

–! What orders are preserved?

–! Given a load, constrains the possible values returned by it

•! Without it, can’t tell much about a single address space
(SAS) program’s execution

•! Implications for both programmer and system designer
–! Programmer uses to reason about correctness and possible results

–! System designer can use to constrain how much accesses can be
reordered by compiler or hardware

•! Contract between programmer and system

John Kubiatowicz Parallel Architecture: 79 8/19/2009

Sequential Consistency

•! Total order achieved by interleaving accesses from
different processes

–! Maintains program order, and memory operations, from all processes,
appear to [issue, execute, complete] atomically w.r.t. others

–! as if there were no caches, and a single memory

•! “A multiprocessor is sequentially consistent if the result
of any execution is the same as if the operations of all
the processors were executed in some sequential order,
and the operations of each individual processor appear in
this sequence in the order specified by its program.”
[Lamport, 1979]

John Kubiatowicz Parallel Architecture: 80 8/19/2009

LD1 A " 5

LD2 B " 7

LD5 B " 2

ST1 A,6

LD6 A " 6

ST4 B,21

LD3 A " 6

LD4 B " 21

LD7 A " 6

ST2 B,13

ST3 B,4

LD8 B " 4

Sequential Consistency Example

LD1 A " 5

LD2 B " 7

ST1 A,6

 …

LD3 A " 6

LD4 B " 21

ST2 B,13

ST3 B,4

LD5 B " 2

 …

LD6 A " 6

ST4 B,21

 …

LD7 A " 6

 …

LD8 B " 4

Processor 1 Processor 2 One Consistent Serial Order

John Kubiatowicz Parallel Architecture: 81 8/19/2009

What about Synchronization?
•! All shared-memory programs need synchronization

–! Problem: Communication is IMPLICIT thus, no way of knowing when
other threads have completed their operations

–! Consider need for “lock” primitive in previous example

•! Barrier – global (/coordinated) synchronization
–! simple use of barriers -- all threads hit the same one

 work_on_my_subgrid();
 barrier;
 read_neighboring_values();
 barrier;

–! barriers are not provided in all thread libraries

•! Mutexes – mutual exclusion locks
–! threads are mostly independent and must access common data

 lock *l = alloc_and_init(); /* shared */
 lock(l);
 access data
 unlock(l);
•! Another Option: Transactional memory

–! Hardware equivalent of optimistic concurrency
–! Some think that this is the answer to all parallel programming

John Kubiatowicz Parallel Architecture: 82 8/19/2009

Synchronization using load and store
•! Here is a possible two-thread synchronization:

 Thread A Thread B
 Set LockA=1; Set LockB=1;

 while (LockB) {//X if (!LockA) {//Y

 do nothing; Critical Section;

 } }

 Critical Section; Set LockB=0;

 Set LockA=0;
•! Does this work? Yes. Both can guarantee that:

–! Only one will enter critical section at a time.

•! At X:
–! if LockB=0, safe for A to perform critical section,
–! otherwise wait to find out what will happen

•! At Y:
–! if LockA=0, safe for B to perform critical section.
–! Otherwise, A is in critical section or waiting for B to quit

•! But:
–! Really messy
–! Generalization gets worse
–! Needs Sequential Consistency to work!

John Kubiatowicz Parallel Architecture: 83 8/19/2009

Need Hardware Atomic Primitives
•! test&set (&address) { /* most architectures */

 result = M[address];
 M[address] = 1;
 return result;

}

•! swap (&address, register) { /* x86 */
 temp = M[address];

 M[address] = register;
 register = temp;

}

•! compare&swap (&address, reg1, reg2) { /* 68000 */
 if (reg1 == M[address]) {
 M[address] = reg2;
 return success;
 } else {
 return failure;
 }

}

•! load-linked&store conditional(&address) {
 /* R4000, alpha */

 loop:
 ll r1, M[address];
 movi r2, 1; /* Can do arbitrary comp */
 sc r2, M[address];
 beqz r2, loop;

}

John Kubiatowicz Parallel Architecture: 84 8/19/2009

Implementing Locks with test&set
•! A flawed, but simple solution:

 int value = 0; // Free
 Acquire() {

 while (test&set(value)); // while busy
 }

 Release() {
 value = 0;
 }

•! Simple explanation:
–! If lock is free, test&set reads 0 and sets value=1, so lock is now busy. It

returns 0 so while exits.
–! If lock is busy, test&set reads 1 and sets value=1 (no change). It returns 1,

so while loop continues
–! When we set value = 0, someone else can get lock

•! Problems:
–! Busy-Waiting: thread consumes cycles while waiting
–! Unfair: may give advantage to some processors over others
–! Expensive: Every test&set() for every processor goes across network!

•! Better: test&test&set
–! Use outer loop that only reads value, watches for value=0

John Kubiatowicz Parallel Architecture: 85 8/19/2009

Busy-wait vs Blocking

•! Busy-wait: I.e. spin lock
–! Keep trying to acquire lock until read
–! Very low latency/processor overhead!
–! Very high system overhead!

»! Causing stress on network while spinning
»! Processor is not doing anything else useful

•! Blocking:
–! If can’t acquire lock, deschedule process (I.e. unload state)
–! Higher latency/processor overhead (1000s of cycles?)

»! Takes time to unload/restart task
»! Notification mechanism needed

–! Low system overheadd
»! No stress on network
»! Processor does something useful

•! Hybrid:
–! Spin for a while, then block
–! 2-competitive: spin until have waited blocking time

John Kubiatowicz Parallel Architecture: 86 8/19/2009

Scalable Shared Memory: Directories

•! Every memory block has associated directory information
–! keeps track of copies of cached blocks and their states

–! on a miss, find directory entry, look it up, and communicate only with the nodes
that have copies if necessary

–! in scalable networks, communication with directory and copies is through network
transactions

•! Each Reader recorded in directory

•! Processor asks permission of memory before writing:
–! Send invalidation to each cache with read-only copy

–! Wait for acknowledgements before returning permission for writes

• k processors.

• With each cache-block in memory:
k presence-bits, 1 dirty-bit

• With each cache-block in cache:
1 valid bit, and 1 dirty (owner) bit

John Kubiatowicz Parallel Architecture: 87 8/19/2009

Reducing the Directory Size:
“Limitless directories” (Alewife, MIT)

Instead of a N-bit-vector, keep n (lg N- bit) pointers;
if more than n children request a copy, handle the
overflow in software

 effective for large N and low degree of sharing

Pz Py Px
Pb Pa

. . .!

Pa Pz not used Px S? not used H? O?

memory block

John Kubiatowicz Parallel Architecture: 88 8/19/2009

Message Passing
Programming Model

John Kubiatowicz Parallel Architecture: 89 8/19/2009

Programming Model 2: Message Passing

•!Program consists of a collection of named processes.
–! Usually fixed at program startup time

–! Thread of control plus local address space -- NO shared data.

–! Logically shared data is partitioned over local processes.

•!Processes communicate by explicit send/receive pairs
–! Coordination is implicit in every communication event.

–!MPI (Message Passing Interface) is the most commonly used SW

Pn P1 P0

y = ..s ...

s: 12

i: 2

Private
memory

s: 14

i: 3

s: 11

i: 1

send P1,s

Network

receive Pn,s

John Kubiatowicz Parallel Architecture: 90 8/19/2009

Compute A[1]+A[2] on each processor

°! First possible solution – what could go wrong?

Processor 1
 xlocal = A[1]
 send xlocal, proc2
 receive xremote, proc2
 s = xlocal + xremote

Processor 2
 xloadl = A[2]
 receive xremote, proc1
 send xlocal, proc1
 s = xlocal + xremote

°! Second possible solution

Processor 1
 xlocal = A[1]
 send xlocal, proc2
 receive xremote, proc2
 s = xlocal + xremote

Processor 2
 xlocal = A[2]
 send xlocal, proc1
 receive xremote, proc1
 s = xlocal + xremote

°! If send/receive acts like the telephone system? The post office?

°! What if there are more than 2 processors?

John Kubiatowicz Parallel Architecture: 91 8/19/2009

MPI – the de facto standard
•! MPI has become the de facto standard for parallel

computing using message passing
•! Example:

 for(i=1;i<numprocs;i++) {
 sprintf(buff, "Hello %d! ", i);

 MPI_Send(buff, BUFSIZE, MPI_CHAR, i, TAG,
 MPI_COMM_WORLD);

 }

 for(i=1;i<numprocs;i++) {

 MPI_Recv(buff, BUFSIZE, MPI_CHAR, i, TAG,
 MPI_COMM_WORLD, &stat);

 printf("%d: %s\n", myid, buff);

 }

•! Pros and Cons of standards
–! MPI created finally a standard for applications development in the HPC

community # portability
–! The MPI standard is a least common denominator building on mid-80s

technology, so may discourage innovation

John Kubiatowicz Parallel Architecture: 92 8/19/2009

Message Passing Details
•! All data layout must be handled by software

–! cannot retrieve remote data except with message request/reply
–! Often, message passing code produced by a compiler

•! Message passing has high software overhead
–! early machines had to invoke OS on each message (100µs-1ms/message)
–! even user level access to network interface has dozens of cycles

overhead (NI might be on I/O bus)
–! sending can be cheap (just like stores), but requires HW support

»! Still requires some sort of marshalling of data into message
–! receiving is often expensive without special HW:

»! need to poll or deal with an interrupt

•! Active Message Abstraction
–! Message contains handler that is automatically invoked at destination
–! Can be utilized to support dataflow in hardware
–! Can be utilized to efficiently support compiled dataflow languages

»! i.e. Id->TAM as shown by Culler et al.
–! Can also serve as good target for compiled Shared-Address Space

programs running on message passing hardware
»! i.e UPC produced by Titanium when compiling apps (Yellick et al.)

John Kubiatowicz Parallel Architecture: 93 8/19/2009

Dedicated Message Processor

•! General Purpose processor performs arbitrary output processing
(at system level)

•! General Purpose processor interprets incoming network
transactions (at system level)

•! User Processor <–> Msg Processor share memory

•! Msg Processor <–> Msg Processor via system network transaction

Network

° ° °

dest

Mem

P M P

NI

User System

Mem

P M P

NI

User System

John Kubiatowicz Parallel Architecture: 94 8/19/2009

Asynchronous User-Level
Networking (Alewife)

•! Send message
–! write words to special network

interface registers

–! Execute atomic launch instruction

•! Receive
–! Generate interrupt/launch user-level

thread context

–! Examine message by reading from
special network interface registers

–! Execute dispose message

–! Exit atomic section

John Kubiatowicz Parallel Architecture: 95 8/19/2009

Danger of direct access to network:
The Fetch Deadlock Problem

•! Even if a node cannot issue a request, it must sink
network transactions!

–! Incoming transaction may be request " generate a response.
–! Closed system (finite buffering)

•! Deadlock occurs even if network deadlock free!

•! May need multiple logical networks to guarantee
forward progress with message passing

NETWORK

John Kubiatowicz Parallel Architecture: 96 8/19/2009

Which is better? SM or MP?
•! Which is better, Shared Memory or Message Passing?

–! Depends on the program!
–! Both are “communication Turing complete”

»! i.e. can build Shared Memory with Message Passing and vice-versa

•! Advantages of Shared Memory:
–! Implicit communication (loads/stores)
–! Low overhead when cached

•! Disadvantages of Shared Memory:
–! Complex to build in way that scales well
–! Requires synchronization operations
–! Hard to control data placement within caching system

•! Advantages of Message Passing
–! Explicit Communication (sending/receiving of messages)
–! Easier to control data placement (no automatic caching)

•! Disadvantages of Message Passing
–! Message passing overhead can be quite high
–! More complex to program
–! Introduces question of reception technique (interrupts/polling)

John Kubiatowicz Parallel Architecture: 97 8/19/2009

A Parallel Zoo
Of Architectures

John Kubiatowicz Parallel Architecture: 98 8/19/2009

MIMD Machines

•! Multiple Instruction, Multiple Data (MIMD)
–! Multiple independent instruction streams, program counters, etc

–! Called “multiprocessing” instead of “multithreading”

»! Although, each of the multiple processors may be multithreaded

–! When independent instruction streams confined to single chip,
becomes a “multicore” processor

•! Shared memory: Communication through Memory
–! Option 1: no hardware global cache coherence

–! Option 2: hardware global cache coherence

•! Message passing: Communication through Messages
–! Applications send explicit messages between nodes in order to

communicate

•! For Most machines, Shared Memory built on top of
message-passing network

–! Bus-based machines are “exception”

John Kubiatowicz Parallel Architecture: 99 8/19/2009

Examples of MIMD Machines

•! Symmetric Multiprocessor
–! Multiple processors in box with shared

memory communication
–! Current MultiCore chips like this
–! Every processor runs copy of OS

•! Non-uniform shared-memory with
separate I/O through host

–! Multiple processors
»! Each with local memory
»! general scalable network

–! Extremely light “OS” on node provides
simple services

»! Scheduling/synchronization
–! Network-accessible host for I/O

•! Cluster
–! Many independent machine connected with

general network
–! Communication through messages

P P P P

Bus

Memory

P/M P/M P/M P/M

P/M P/M P/M P/M

P/M P/M P/M P/M

P/M P/M P/M P/M

Host

Network

John Kubiatowicz Parallel Architecture: 100 8/19/2009

Cray T3E (1996)
follow-on to earlier T3D (1993) using 21064’s

•! Each node has 256MB-2GB local DRAM memory

•! Load and stores access global memory over network

•! Only local memory cached by on-chip caches

•! Alpha microprocessor surrounded by custom “shell” circuitry to
make it into effective MPP node. Shell provides:

–! multiple stream buffers instead of board-level (L3) cache
–! external copy of on-chip cache tags to check against remote writes to

local memory, generates on-chip invalidates on match
–! 512 external E registers (asynchronous vector load/store engine)
–! address management to allow all of external physical memory to be

addressed
–! atomic memory operations (fetch&op)
–! support for hardware barriers/eureka to synchronize parallel tasks

Up to 2,048 675MHz Alpha 21164
processors connected in 3D torus

John Kubiatowicz Parallel Architecture: 101 8/19/2009

Cray XT5 (2007)

Basic
Compute

Node, with

2 AMD x86
Opterons

Reconfigurable
Logic Node

2 FPGAs +
Opteron

Vector Node

4-way SMP of
SX2 Vector CPUs

(8 lanes each)

Also, XMT Multithreaded
Nodes based on MTA

design (128 threads per

processor)

Processor plugs into
Opteron socket

John Kubiatowicz Parallel Architecture: 102 8/19/2009

Sun Starfire UE10000 (1997)

Uses 4 interleaved address
busses to scale snooping
protocol

16x16 Data Crossbar

Memory
Module

Board Interconnect

µP

$

µP

$

µP

$

µP

$

Memory
Module

Board Interconnect

µP

$

µP

$

µP

$

µP

$

4 processors + memory

module per system

board

 Up to 64-way SMP using bus-based snooping protocol

Separate data

transfer over

high bandwidth

crossbar

John Kubiatowicz Parallel Architecture: 103 8/19/2009

Scalable hypercube switching network

supports up to 64 two-processor nodes (128

processors total)

(Some installations up to 512 processors)

 Node contains:

•! Two MIPS R10000 processors plus caches

•! Memory module including directory

•! Connection to global network

•! Connection to I/O

SGI Origin 2000 (1996)
•! Large-Scale Distributed

Directory SMP
–! Scales from 2 to 512 nodes
–! Direct-mapped directory with each

bit standing for multiple processors
–! Not highly scalable beyond this

John Kubiatowicz Parallel Architecture: 104 8/19/2009

The Alewife Multiprocessor: SM & MP

•! Cache-coherence Shared Memory
–! Partially in Software!
–! Sequential Consistency
–! LimitLESS cache coherence for better scalability

•! User-level Message-Passing
–! Fast, atomic launch of messages
–! Active messages
–! User-level interrupts

•! Rapid Context-Switching
–! Course-grained multithreading

•! Single Full/Empty bit per word for synchronization
–! Can build locks, barriers, other higher-level constructs

John Kubiatowicz Parallel Architecture: 105 8/19/2009

Message Passing MPPs
(Massively Parallel Processors)

•! Initial Research Projects
–! Caltech Cosmic Cube (early 1980s) using custom Mosaic processors

–! J-Machine (early 1990s) MIT

•! Commercial Microprocessors including MPP Support
–! Transputer (1985)

–! nCube-1(1986) /nCube-2 (1990)

•! Standard Microprocessors + Network Interfaces
–! Intel Paragon/i860 (1991)

–! TMC CM-5/SPARC (1992)

–! Meiko CS-2/SPARC (1993)

–! IBM SP-1/POWER (1993)

•! MPP Vector Supers
–! Fujitsu VPP500 (1994)

µP

Mem

NI

Interconnect Network

µP

Mem

NI

µP

Mem

NI

µP

Mem

NI

µP

Mem

NI

µP

Mem

NI

µP

Mem

NI

µP

Mem

NI

Designs scale to 100s-10,000s

of nodes

John Kubiatowicz Parallel Architecture: 106 8/19/2009

MIT J-Machine (Jelly-bean machine)

•! 3-dimensional network topology
–! Non-adaptive, E-cubed routing
–! Hardware routing
–! Maximize density of communication

•! 64-nodes/board, 1024 nodes total
•! Low-powered processors

–! Message passing instructions
–! Associative array primitives to aid in synthesizing shared-address space

•! Extremely fine-grained communication
–! Hardware-supported Active Messages

John Kubiatowicz Parallel Architecture: 107 8/19/2009

The Earth Simulator (NEC, 2002)

NEC SX-6
Vector

Microprocessor

500MHz / 1GHz

8 lanes

8 GFLOPS

NEC SX-6
Vector

Microprocessor

500MHz / 1GHz

8 lanes

8 GFLOPS

NEC SX-6
Vector

Microprocessor

500MHz / 1GHz

8 lanes

8 GFLOPS

NEC SX-6
Vector

Microprocessor

500MHz / 1GHz

8 lanes

8 GFLOPS

NEC SX-6
Vector

Microprocessor

500MHz / 1GHz

8 lanes

8 GFLOPS

NEC SX-6
Vector

Microprocessor

500MHz / 1GHz

8 lanes

8 GFLOPS

NEC SX-6
Vector

Microprocessor

500MHz / 1GHz

8 lanes

8 GFLOPS

NEC SX-6
Vector

Microprocessor

500MHz / 1GHz

8 lanes

8 GFLOPS

16GB in 2048 Memory Banks

8 Processors/Node

256 GB/s Shared
Memory BW

12 GB/s

Each Way

640x640 Node
Full Crossbar
Interconnect

640 Nodes

83,200 cables to connect crossbar!

Was World’s fastest supercomputer, >35 TFLOPS on LINPACK (June 2002)

 (87% of peak performance)

John Kubiatowicz Parallel Architecture: 108 8/19/2009

The Earth Simulator (NEC, 2002)

John Kubiatowicz Parallel Architecture: 109 8/19/2009

IBM Blue Gene/L Processor

John Kubiatowicz Parallel Architecture: 110 8/19/2009

BG/L 64K Processor System

•! Peak Performance 360TFLOPS

•! Power Consumption 1.4 MW

John Kubiatowicz Parallel Architecture: 111 8/19/2009

Clusters and Networks of Workstations

•! Connect multiple complete machines together using
standard fast interconnects

–! Little or no hardware development cost

–! Each node can boot separately and operate independently

–! Interconnect can be attached at I/O bus (most common) or on memory
bus (higher speed but more difficult)

•! Berkeley Project: “Network of Workstations” (NOW)

•! Clustering initially used to provide fault tolerance

•! Clusters of SMPs (CluMPs)
–! Connect multiple n-way SMPs using a cache-coherent memory bus, fast

message passing network or non cache-coherent interconnect

•! Build message passing MPP by connecting multiple
workstations using fast interconnect connected to I/O
Bus. Main advantage?

John Kubiatowicz Parallel Architecture: 112 8/19/2009

MultiCore
Architectures

John Kubiatowicz Parallel Architecture: 113 8/19/2009

Parallel Chip-Scale Processors

•! Multicore processors emerging in general-purpose market
due to power limitations in single-core performance scaling

–! 4-16 cores in 2009, connected as cache-coherent SMP
–! Cache-coherent shared memory

•! Embedded applications need large amounts of computation
–! Recent trend to build “extreme” parallel processors with dozens to

hundreds of parallel processing elements on one die
–! Often connected via on-chip networks, with no cache coherence
–! Examples: 188 core “Metro” chip from CISCO

Intel Core 2 Quad: 4 Cores AMD Opteron: 6 Cores

John Kubiatowicz Parallel Architecture: 114 8/19/2009

T1 (“Niagara”)

•! Highly Threaded:
–! 8 Cores

–! 4 Threads/Core

•! Target: Commercial server applications
–! High thread level parallelism (TLP)

»! Large numbers of parallel client
requests

–! Low instruction level parallelism (ILP)

»! High cache miss rates

»! Many unpredictable branches

»! Frequent load-load dependencies

•! Power, cooling, and space are major
concerns for data centers

•! Metric: Performance/Watt/Sq. Ft.
•! Approach: Multicore, Fine-grain

multithreading, Simple pipeline, Small
L1 caches, Shared L2

John Kubiatowicz Parallel Architecture: 115 8/19/2009

T1 Fine-Grained Multithreading

•! Each core supports four threads and has its own level
one caches (16KB for instructions and 8 KB for data)

–! Coherency is enforced among the L1 caches by a directory associated
with each L2 cache block

•! Switching to a new thread on each clock cycle

•! Idle threads are bypassed in the scheduling
–! Waiting due to a pipeline delay or cache miss

–! Processor is idle only when all 4 threads are idle or stalled

•! Both loads and branches incur a 3 cycle delay that can
only be hidden by other threads

•! A single set of floating-point functional units is shared
by all 8 cores

–! floating-point performance was not a focus for T1

–! (New T2 design has FPU per core)

John Kubiatowicz Parallel Architecture: 116 8/19/2009

Embedded Parallel Processors

•! Often embody a mixture of old architectural
styles and ideas

•! Exposed memory hierarchies and interconnection
networks

–! Programmers code to the “metal” to get best cost/power/
performance

–! Portability across platforms less important

•! Customized synchronization mechanisms
–! Interlocked communication channels (processor blocks on read

if data not ready)

–! Barrier signals

–! Specialized atomic operation units

•! Many more, simpler cores

John Kubiatowicz Parallel Architecture: 117 8/19/2009

PicoChip PC101 (2003)
•! Target market is wireless base stations

•! 430 cores on one die in 130nm

•! Each core is a 3-issue VLIW

[uPR, July 2003]

John Kubiatowicz Parallel Architecture: 118 8/19/2009

Cisco CSR-1 Metro Chip

188 usable RISC-like cores
in 130nm

John Kubiatowicz Parallel Architecture: 119 8/19/2009

IBM Cell Processor (Playstation-3)

One 2-way threaded PowerPC core (PPE), plus eight specialized short-
SIMD cores (SPE)

John Kubiatowicz Parallel Architecture: 120 8/19/2009

Nvidia G8800 Graphics Processor

•! This is a GPU (Graphics Processor Unit)
–! Available in many desktops

•! Example: 16 cores similar to a vector processor with 8 lanes (128
stream processors total)

–! Processes threads in SIMD groups of 32 (a “warp”)
–! Some stripmining done in hardware

•! Threads can branch, but loses performance compared to when all
threads are running same code

•! Complete parallel programming environment (CUDA)
–! A lot of parallel codes have been ported to these GPUs
–! For some data parallel applications, GPUs provide the fastest implementations

John Kubiatowicz Parallel Architecture: 121 8/19/2009

Conclusion
•! Uniprocessor Parallelism:

–! Pipelining, Superscalar, Out-of-order execution
–! Vector Processing, Pseudo-SIMD

•! Multithreading
–! Multiple independent threads executing on same processor

•! Memory Systems:
–! Exploiting of Locality at many levels
–! Greatly Impacts performance (sometimes in strange fashion)
–! Use of Autotuning to navigate complexity

•! Shared Memory Programming Model:
–! Multiple threads communicating through memory
–! Memory Consistency Model: Specifies order with which operations seem

to occur relative to one another
–! Sequential Consistency: Most “intuitive” model

•! Message Passing Programming Model:
–! Multiple threads communicating with messages

