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I III Societal Scale Information Systems

* The world is a large parallel system already
- Microprocessors in everything
- Vast infrastructure behind this
- People who say that parallel computing | - B L Cuest
never took oft have hot been watching Fomeess e ois T

- So: why are people suddenly so
excited about parallelism?

- Because Parallelism is being forced
upon the lowest level

Secure Services

Databases
Information Collection
Remote Storage
Online Games
Commerce
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| ||IManyCor'e Chips: The future is here /M.
* Intel 80-core multicore chip (Feb 2007)

- 80 simple cores

Two floating point engines /core
Mesh-like "network-on-a-chip®
100 million transistors

65nm feature size

\

Frequency Voltage Power Bandwidth Performance

3.16 GHz 0.95 V 62W 1.62 Terabits/s 1.01
Teraflops

516Hz 1.2V 175W 2.61 Terabits/s 1.63
Teraflops

5.7 6Hz 1.35V 265W 2.92 Terabits/s 1.81
Teraflops

* "ManyCore" refers to many processors/chip
- 64? 128? Hard to say exact boundary

* How to program these?
- Use 2 CPUs for video/audio
- Use 1 for word processor, 1 for browser
- 76 for virus checking???

-+ Something new is clearly needed here...



| III Outline of Today's Lesson

Goals:
- Pick up some common terminology/concepts for later in the course

Uniprocessor Parallelism
- Pipelining, Superscalar, Out-of-order execution
- Vector Processing/ SIMD
- Multithreading
- Uniprocessor Memory Systems

Parallel Computer Architecture
- Programming Models
- Shared Memory/Synchronization primitives
- Message Passing

Actual Parallel Machines/Multicore chips
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I l'IHar'dwar'e/Softwar'e Interface

% N
software e \1

instruction set

hardware

* Properties of a good abstraction
- Lasts through many generations (portability)
- Used in many different ways (generality)
- Provides convenient functionality to higher levels
- Permits an efficient implementation at lower levels

« But: Lessons of RISC

- What is important is the combination view presented to programmer
NOT necessarily the compiler/0OS

- Hardware should never be optimized in the absence of the environment



|"®'Execution is not just about hardware/}

*+ The VAX fallacy

- Produce one instruction for
every high-level concept

- Absurdity: Polynomial Multiply
» Single hardware instruction

» But Why? Is this really
faster???

[ Giker ] - RISC Philosophy

. - Full System Design

Aoplication Bi - Hardware mechanisms viewed in
pplication Binary context of complete system

- Cross-boundary optimization

* Modern programmer does
not see assembly language

e | e o
languages like "C".
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| #Not Fooling Yourself: X
Processor performance equation
inst count Cycle time
CPUtime = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle
Inst Count| CPI | Clock Rate
Program X
Compiler X (X)
Inst. Set. X X
Organization X X
Technology X
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I'lislot Fooling Yourself: Amdahl's Law /Z,

\
!

ExTime,,ew = ExTime 4 x (1_ Fraction pnanced )+

Frac'ﬁonenhanced }
speedupenhanced

ExTime 1
sPeedupovemll = od _

ExTime,.,

Fraction, ponced

speedupenhanced

(1- Fraction, panceq ) +

Best you could ever hope to do:

1
) (1 - FraCTionenhanced)

- r 7~ [ [ |
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| # Parallelism is Everywhere

Modern Processor Chips have = 1 billion transistors
- Clearly must get them working in parallel
- Question: how much of this parallelism must programmer understand?

How do uniprocessor computer architectures extract
parallelism?

- By finding parallelism within instruction stream

- Called "Instruction Level Parallelism" (ILP)

- The theory: hide parallelism from programmer

Goal of Computer Architects until about 2002:

- Hide Underlying Parallelism from everyone: OS, Compiler, Programmer

Examples of ILP techniques:
- Pipelining: overlapping individual parts of instructions
- Superscalar execution: do multiple things at same time
- VLIW: Let compiler specify which operations can run in parallel
- Vector Processing: Specify groups of similar (independent) operations
- Out of Order Execution (OOO): Allow long operations to happen
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|'®What is Pipelining?

Dave Patterson’s Laundry example: 4 people doing laundry

6 PM 7
I

IS0QYTQ XTWao Y

8/19/2009

wash (30 min) + dry (40 min) + fold (20 min) = 90 min Latency
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John Kubiatowicz

In this example:

- Sequential execution takes
4 * 90min = 6 hours

- Pipelined execution takes
30+4*40+20 = 3.5 hours

Bandwidth = loads/hour
- BW =4/6 1/h w/o pipelining
- BW=4/35 |/hw pipelining

- BW<=151/h w pipelining,
more total loads

Pipelining helps bandwidth
but not latency (90 min)

Bandwidth limited by
slowest pipeline stage

Potential speedup =
Number of pipe stages

Parallel Architecture: 12



|'|_reps of MIPS Pipeline

Instruction éInsTr. Decode Execute Memory Write
Fetch i Reg. Fetch i Addr. Calc { Access : Back

o

Next SEQ PC

—

Next PC

Next SEQ PC.

p—

4

RS1

RS2

Imm

WB Data
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I l'lVisuaIizinq The Pibeline

Time (clock cycles)

Cycle 1: Cycle 2: Cycle 3 Cycle 4 Cycle 5 : Cycle 6: Cycle 7

I
n Ifetch Reg DMem Reg
s : _
f :
r Ife'rch Reg DMem Reg
0 .
r Ifetch Reg DMem Reg
e .
r Ifetch Reg DMem Reg

* In |dea| case: CPI (cycles/ ms’rruc’rlon) 1|
- On average, put one instruction into pipeline, get one out

» Superscalar: Launch more than one instruction/cycle
- Inideal case, CPI <1




'@ Limits to pipelining

* Overhead prevents arbitrary division
- Cost of latches (between stages) limits what can do within stage
- Sets minimum amount of work/stage

* Hazards prevent next instruction from executing during
its designated clock cycle

- Structural hazards: attempt to use the same hardware to do two
different things at once

- Data hazards: Instruction depends on result of prior instruction still in
the pipeline

- Control hazards: Caused by delay between the fetching of instructions
and decisions about changes in control flow (branches and jumps).

- Superscalar increases occurrence of hazards
- More conflicting instructions/cycle



Time (clock cycles)

I | 1w rl, 0 (xr2) Ffen
n

s

T | sub r4,r1,r6

r.

o and r6,rl,r7

r

d

e

r or r8,rl,r9

Reg

Ife'rch[l:
Ife'rcAEI:

* Data Dependencies between adjacent instructions

- Must wait ("stall”) for result to be done (No "back in time" exists!)
- Net result is that CPI > 1

- Superscalar increases frequency of hazards

8/19/2009

Reg

John Kubiatowicz Parallel Architecture: 16




I Out=of-Order (000) Execution

- Key idea: Allow instructions behind stall o proceed ©= ~
DIVD FO,F2,F4
ADDD F10,F0,F8
SUBD F12,F8,F1l4

* Out-of-order execution = out-of-order completion.
* Dynamic Scheduling Issues from OOO scheduling:

- Must match up results with consumers of instructions
- Precise Interrupts

b Fe34R2)
LD  F245(R3)
MULTD FOF2,F4
SUBD F8F6F2
DIVD FI0,FOF6
ADDD  F6 F8 F2

IF ID EX MEM WB
IF ID EX MEM WB RAW
IF ID stal M1 M2 M3 M4 M5 Mé M7 M8 M9 MIO MEM WB
IF ID Al A2 MEM WB
IF ID stall stall stall stall stall stall stall stall stall,_D1 D2

8/19/2009

IF ID Al A2 MEM WB A/WA_R'
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| |II Basic Idea: Tomasulo Organization /

From Mem FP Op FP Registers
ueue
Load Buffers
Load1
Load?2
Load3
Load4
s
Buffers

Addl \ 4 \ 4 \ 4 l l |

Add?2 Multl

Add3 Mult2

Reservation To Mem
Stations ' Y

P adderd P multipliers

Common Data Bus (CDB)
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| ||IModer'n ILP

» Dynamically scheduled, out-of-order execution
- Current microprocessors fetch 6-8 instructions per cycle
- Pipelines are 10s of cycles deep = many overlapped instructions in
execution at once, although work often discarded
* What happens:

- Grab a bunch of instructions, determine all their dependences, eliminate
dep's wherever possible, throw them all into the execution unit, let each
one move forward as its dependences are resolved

- Appears as if executed sequentially

- Dealing with Hazards: May need to guess!/
- Called "Speculative Execution”
Speculate on Branch results, Dependencies, even Values!
If correct, don't need to stall for result = yields performance
If not correct, waste time and power
Must be able to UNDO a result if guess is wrong
Problem: accuracy of guesses decreases with number of simultaneous
instructions in pipeline
* Huge complexity
- Complexity of many components scales as n? (issue width)
- Power consumption big problem




I lII IBM Power 4

- Combines: Superscalar and OOO

* Properties:
- 8 execution units in out-of-order engine,
each may issue an instruction each cycle.

- In-order Instruction Fetch, Decode (compute
dependencies)

- Reordering for in-order commit

e

ATE S gy
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|'|_ay OO0 not Panacea:

Many Resour'ces IDLE

8/19/2009
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| ||ITechnology Trends: Moore's Law

\.

3
1975 1980 1985 1990 1995
N
10M Micro 500
(transistors) sono  (mips)
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™M Pentium 25
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2X transistors/Chip Every 1.5 years
Called “Moore’s Law”

Gordon Moore (co-founder of
Intel) predicted in 1965 that the

transistor density of Microprocessors have
semiconductor chips would become smaller, denser,
double roughly every 18 and more powerful.

months.



I |Il Uniprocessor Performance (SPECint)

10000
From Hennessy and Patterson, Computer Architecture: A
Quantitative Approach, 4th edition, Sept. 15, 2006
??%Iyear
= 1000
% 52%lyear
<
g 100
£ “A
P => Sea change in chip
design: multiple “cores” or
processors per chip
1 &&=—T T T T T T T T T T T T T
1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006
* VAX : 25%l/year 1978 to 1986

* RISC + x86: 52%/year 1986 to 2002

* RISC + x86: ??%l/year 2002 to present
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|'|-\i'ring Force: Power Density

Moore’s Law Extrapolation:
Power Density for Leading Edge Microprocessors

10000
‘g 1000 Rocket Nozzle — .
8 Nuclear Reactor sy  +—
2 100 —
> —
S 10 A Hot Plate
: g
]
o
g 1 1 1] 1]
3)
o

1996 1998 2000 2002 2004 2006 2008

Power Density Becomes Too High to Cool Chips Inexpensively

Source: Shekhar Borkar, intei Corp
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| ||'Limi1'ing Forces: Clock Speed and ILP

» Chip density is
continuing increase
~2X every 2 years

- Clock speed is not
- # processors/chip (cores)
may double instead

* There is little or no

more Instruction Level
Parallelism (ILP)
to be found

- Can no longer allow
programmer to think in
terms of a serial
programming model

- Conclusion:
Parallelism must be

exposed to softwarel

8/19/2009

1000 00 »

90 000 SO0

Source: Intel, Microsoft (Sutter) and
Stanford (Olukotun, Hammond)

WO 000 »

00 »

o Trarantars 1000)
o Claah Ypred V4
"an & Ponver '
S Pt Clnih A0

W0 5 190 1S 1D WS 00 X5 0%
John Kubiatowicz Parallel Architecture: 26



8/19/2009 John Kubiatowicz Parallel Architecture: 27



| lII VLIW: Very Long Instruction Word £,

IntOp1 | IntOp2 | MemOp1 Mem Op 2 FP Op 1 FP Op 2

! ! ' ! ' '

Two Integer Units,
Single Cycle Latency

Two Load/Store Units,
Two Cycle Latency  Two Floating-Point Units,
Three Cycle Latency
Each "instruction” has explicit coding for multiple operations
- In Itanium, grouping called a "packet”
- In Transmeta, grouping called a "molecule” (with "atoms” as ops)
Each operation slot is for a fixed function
Constant operation latencies are specified

Architecture requires compiler guarantee of:
- Parallelism within an instruction => no x-operation RAW check
- No data use before data ready => no data interlocks

Special compiler support must thus:
- Extract parallelism
- Prevent hazards from affecting results (through careful scheduling)

- May require recompilation with each new version of hardware
8/19/2009 John Kubiatowicz Parallel Architecture: 28




| I'ILoop Unr'ollmg in VLIW

Loop: FO,0(R1l) ;FO=vector element
ADDD F4 ,F0,F2 ;add scalar from F2
SD O(Rl) ,F4 ;store result
SUBI R1,R1,8 ;decrement pointer 8B (DW)
BNEZ R1l,Loop ;branch Rl!=zero
NOP ;delayed branch slot

Memory /Cl'/i/gzn/?r'y FP FP Int. op/

. ~ I 1
rel 27 erice 1 re] 27 (A4[O i Up27 arion 1 op. c ordaricri

LD FO,O(RT)——+b-Fé,-R(R1 1
LD F10,-16(R1) LD F14 -24(R1) — 2
LD F18.-32(R1) LD F22,-40 D F4FOF2 ADDD F8,F6F2 3
LD F26 -48(R1) ADDD F12,F10, F2 ADDD F16 F14 F2 4

ADDD F20 F18 F2 ADDD F24 F22 F2 5
SDO(R1)F4  SD -8(R1)F8 ADDD F28 F26 F2 6
SD -16(R1),F12 SD -24(R1) F16 7
SD -32(R1),F20 SD -40(R1),F24 SUBT R1R1#48 8
SD -O(R1) F28 BNEZR1LOOP 9

Unrolled 7 times to avoid delays
7 results in 9 clocks, or 1.3 clocks per iteration (1.8X)
8/19/26werage: 2.5 ops per alockpBOviszefficiency paraliel Architecture: 29



I IFI$of1'war'e Pipelining with
Loop Unrolling in VLIW

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op. 2 branch

LD FO,-48(R1) ST O(R1),F4 ADDD F4,FO,F2 1
LD F6,-56(R1) ST -8(R1),F8 ADDD F8,F6,F2 SUBT R1,R1,#24 2
LD F10,-40(R1) ST 8(R1),F12 ADDD F12,F10,F2 BNEZ R1,LOOP 3

- Software pipelined across 9 iterations of original loop
- In each iteration of above loop, we:
» Store to m,m-8 m-16 (iterations I-3,I-2,I-1)
» Compute for m-24,m-32,m-40 (iterations I,I+1,I+2)
» Load from m-48 m-56 m-64 (iterations I+3,I+4,I+5H)

* 9 results in 9 cycles, or 1 clock per iteration
+ Average: 3.3 ops per clock, 66% efficiency

Note: Need less registers for software pipelining
(only using 7 registers here, was using 15)

8/19/2009 John Kubiatowicz Parallel Architecture: 30
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| & Vector Code Example

# C code # Scalar Code # Vector Code
for (i=0; i<64; i++) LI R4, 64 LI VLR, 64
C[i] = A[i] + B[i];|1o°P: LV V1, R1
L.D FO, O(R1) LV V2, R2
L.D F2, 0(R2) ADDV.D V3, V1, V2

ADD.D F4, F2, FO SV V3, R3
S.D F4, O0(R3)
DADDIU R1l, 8
DADDIU R2, 8
DADDIU R3, 8
DSUBIU R4, 1
BNEZ R4, loop

* Require programmer (or compiler) to identify parallelism
- Hardware does not need to re-extract parallelism

* Many multimedia/HPC applications are natural consumers
of vector processing



| |I'Vec'ror' Programming Model

/ Scalar Registers Vector Registers | \
r15 v15
r0 vo 0] M1 [2] [VLRMAX-1]
\\ Vector Length Register VLR /
. Vector Arithmetic z; : , ‘ — T A

Instructions Q @ Q @l/ \Q‘/ \Qil

ADDV v3, v1, v2

_ [0] [1] [VLR-1] )
/" Vector Load and Vector Reglster N
Store Instructions '

LV v1,r1, r2 // /'
1 Memory

\_ Base, r1 Stride, 2




I I'IVec’ror Arithmetic Execution

» Use deep pipeline (= fast clock) to
execute element operations v

+ Simplifies control of deep pipeline
because elements in vector are
independent (= no hazards!)

- - - - /
Six stage multiply pipeline

V3 <- vl * v2

N <
w <<
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I lII Vector Instruction Parallelism

Can overlap execution of multiple vector instructions
- Consider machine with 32 elements per vector register and 8 lanes:

Load Unit Multiply Unit Add Unit
'l I

olee @0
oeoee d MU AaTala 4ala

time o eooeeoeoeblaajaaajliadd fam/m/m/m/mnm

OQQOOOO AAAAAAALmmEmnn N

ololofo]o]==Nalalalalala/alalm/m/mim|nnin=

QQQQQd,-"-L‘-"AAAAA@..A. EEEnEnnn

ololololololo[blalajalalajiadd fu[m/mm(Emmm

ololololololololalalalalalalalklmm/m/mm|m m|im

AlAalalalalalalmmmmmmmn

Instruction LML ILIE L

issue

Coms)lete 24 operations/cycle while issuing 1 short instruction/cycle
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| ||I SIMD Architecture

m—
Array [*| Inter-PE Connection Network
Controller ) 1 1 1 % 7 3 .
v ! 1 1 T3 I
Control —> 1 1 I 1 I 1 1 1
Data «—> M M M M M M M M
> e > e > e > e e e e e
m m m m m m m m

- Single Instruction Multiple Data (SIMD)

- Central controller broadcasts instructions to multiple

processing elements (PEs)
- Only requires one controller for whole array
- Only requires storage for one copy of program
- All computations fully synchronized

* Recent Return to Popularity:

- GPU (Graphics Processing Units) have SIMD properties
- However, also multicore behavior, so mix of SIMD and MIMD (more later)

* Dual between Vector and SIMD execution
8/19/2009 John Kubiatowicz Parallel Architecture: 36



I.I_udo SIMD: (Poor-Man's SIMD?)

» Scalar processing » SIMD processing (Intel)
- traditional mode - with SSE / SSE2
- onhe operation produces - one operation produces
one result

multiple results

X x3
+
Y y3
X+Y | x3+y3

Slide Source: Alex Klimovitski & Dean Macri, Intel Corporation
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" ElG1:'SSE / SSE2 SIMD on Infel /)
+ SSE2 data types: anything that fits into 16 bytes, e. 9

I N |
[ f

* Instructions perform add, multiply etc. on all the data in
this 16-byte register in parallel

* Challenges:

- Need to be contiguous in memory and aligned
- Some instructions o move data from one part of register to another

* In theory, the compiler understands all of this

- When compiling, it will rearrange instructions to get a good "schedule”
that maximizes pipelining, uses FMAs and SIMD

- I]’g wocri'ks with the mix of instructions inside an inner loop or other block
of code

* But in practice the compiler may need your help
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| I'IThr'ead Level Parallelism (TLP)

ILP exploits implicit parallel operations within
a loop or straight-line code segment

TLP explicitly represented by the use of
multiple threads of execution that are
inherently parallel

- Threads can be on a single processor

- Or, on multiple processors

Goal: Use multiple instruction streams to
improve

1. Throughput of computers that run many programs
2. Execution time of multi-threaded programs



I'I_l Notions of Thread Creation

» cobegin/coend

cobegin « Statements in block may run in parallel
jobl (al);  cobegins may be nested
job2 (a2) ; « Scoped, so you cannot have a missing coend
coend
+ fork/join
tidl = fork(jobl, al); _
j<1>b2 (a2)<-)r e =) » Forked procedure runs in parallel
join tid],.; « Wait at join point if it's not finished
- future
v = future (jobl(al)); * Future expression evaluated in parallel

» Attempt to use return value will wait

Cobegin cleaner than fork, but fork is more general

Threads expressed in the code may not furn into
independent computations

- Only create threads if processors idle

- Example: Thread-stealing runtimes such as cilk
8/19/2009 John Kubiatowicz Parallel Architecture: 41




I'I'Simple Threading Example (pThreads

void* SayHello (void *foo) ({
printf( "Hello, world!\n" );
return NULL;

}

int main() {
pthread t threads[16];
int tn;
for(tn=0; tn<l6; tn++) {
pthread create (&threads[tn], NULL, SayHello, NULL) ;

}
for (tn=0; tn<l6 ; tn++) {

pthread join(threads[tn], NULL);
}

return 0;

8/19/2009 John Kubiatowicz Parallel Architecture: 42



| l'IMultiThr'eaded Execution M
* Multitasking operating system: _

- Gives "illusion” that multiple things happening at same time
- Switches at a course-grained time quanta (for instance: 10ms)

* Hardware Multithreading: multiple threads share
processor simultaneously (with little OS help)
- Hardware does switching
» HW for fast thread switch in small number of cycles
» much faster than OS switch which is 100s to 1000s of clocks
- Processor duplicates independent state of each thread

» e.g., a separate copy of register file, a separate PC, and for
running independent programs, a separate page table

- Memory shared through the virtual memory mechanisms, which
already support multiple processes

- When to switch between threads?

- Alternate instruction per thread (fine grain)

- When a thread is stalled, perhaps for a cache miss, another thread
can be executed (coarse grain)



I ||lWha'r about combining ILP and TLP?//'\/'\

» TLP and ILP exploit two different kinds of
parallel structure in a program

» Could a processor oriented at ILP benefit
from exploiting TLP?

- functional units are often idle in data path designed for ILP
because of either stalls or dependences in the code

- TLP used as a source of independent instructions that
might keep the processor busy during stalls

- TLP be used to occupy functional units that would otherwise
lie idle when insufficient ILP exists

+ Called "Simultaneous Multithreading”
- Intel renamed this "Hyperthreading”
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I'I_Taneous Multi-threading ...

One thread, 8 units Two threads, 8 units
Cycle M M FX FX FP FP BRCC Cycle M M FX FX FP FPBRCC

1

2

3

M = Load/Store, FX = Fixed Point, FP = Floating Point, BR = Branch, CC = Condition Codes

8/19/2009 John Kubiatowicz Parallel Architecture: 46
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* Why only two threads?

- With 4, one of the shared resources (physical registers, cache,
memory bandwidth) would be prone to bottleneck

« Cost:

- The Power5 core is about 24% larger than the Power4 core
because of the addition of SMT support
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| ||'Limi1'ing Force: Memory System

Performance
(1/latency) CPU
41000 v 60% per yr
2Xin1.5yrs
100 \
Gap grew > 50% per
year
10 / DRAM
., 2:9-7% per
—————t—+—t+—t+—f—t+—t+—t+—————+— yr
1980 1020 209%2X in 10 yrs

Year

- How do architects address this gap?
- Put small, fast "cache” memories between CPU and DRAM.
- Create a "memory hierarchy”



| # The Principle of Locality

* The Principle of Locality:

- Program access a relatively small portion of the address space at any
instant of time

»+ Two Different Types of Locality:

- Temporal Locality (LOCGIITY in Time): If an item is referenced, it will
tend to be referenced again soon (e.g., loops, reuse)

- Spatial Locality (Locality in Space): If an item is referenced, items
whose addresses are close by tend to be referenced soon
(e.g., straightline code, array access)

* Last 25 years, HW relied on locality for speed

8/19/2009 John Kubiatowicz Parallel Architecture: 50



Memory Address (one dot per access)
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Donald J. Hatfield, Jeanette Gerald: Program
Restructuring for Virtual Memory. IBM Systems Journal
10(3): 168-192 (1971)



| ||IMemor'y Hierarchy NN

» Take advantage of the principle of locality to:
- Present as much memory as in the cheapest technology
- Provide access at speed offered by the fastest technology

Processor
Control Tertiary
/ Secondary S
Second Main ST (Tape)
= = Level (Disk)
A Qs Memory
Datapath |2 e Cache (DRAM)
@ =
3 & _g (SRAM)
— \—
\
Speed (ns): 1s 10s-100s 100s 10,000,000s 10,000,000,000s
(10s ms) (10s sec)

Size (bytes): 100s Ks-Ms Ms Gs Ts



Memory Controller

Shared L3 Cache

 ON-chip cache resources:
- For each core: L1: 32K instruction and 32K data cache, L2: 1IMB
- L3: 8MB shared among all 4 cores

* Integrated, on-chip memory controller (DDR3)
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| l'IMemor'y Hierarchy: Terminology

. data appears in some block in the upper level
(example: Block X)
: the fraction of memory access found in the upper level
: Time to access the upper level which consists of
RAM access time + Time to determine hit/miss

: data needs to be retrieve from a block in the
lower level (Block Y)
=1 - (Hit Rate)
: Time to replace a block in the upper level +
Time to deliver the block the processor

» Hit Time << Miss Penalty (500 instructions on 21264!)

Lower Level

To Processor | Upper Level Memory
Memory
Blk X
From Processor R BIkY




| ||'Impac'r of Hierarchy on Algorithms

» Today CPU time is a function of (ops, cache misses)

- What does this mean to Compilers, Data structures,
Algorithms?

- Quicksort:
fastest comparison based sorting algorithm when keys fit in memory

- Radix sort: also called "“linear time" sort
For keys of fixed length and fixed radix a constant number of passes
over the data is sufficient independent of the number of keys
» "The Influence of Caches on the Performance of
Sorting” by A. LaMarca and R.E. Ladner. Proceedings of
the Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, January, 1997, 370-379.

- For Alphastation 250, 32 byte blocks, direct mapped L2 2MB cache, 8
byte keys, from 4000 to 4000000



| ||I Quicksort vs. Radix: Instructions
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| |II Quicksort vs. Radix Inst & Time

800
700
600
900
400
300
200
100

0

\ Time
/A

Insts

1000 1000 1E+ 1E+ 1E+
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—— Quick
(Instr/ikey)

—— RadiXx
(Instr/ikey)

—— Quick
(Clocks/key)

Radix
(clocks/key)
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|"#Quicksort vs. Radix: Cache misses Y/

N A

0 | | | |

1000 1000 1E+0 1E+0 1E+O
0 S 6 7

5 —— Quick(miss/k
\ ey)

4 \ —— Radix(miss/k

3

2

Job size in keys
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| ||IExper'imen1'aI Study (Membench)

* Microbenchmark for memory system performance

.V Al Y e

. for array A of length L from 4KB to 8MB by 2x
for stride s from 4 Bytes (1 word) to L/2 by 2x 1 experiment
time the following loop
(repeat many times and average)
forifromOtoL
load A[i] from memory (4 Bytes)

-
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|'# Membench: What to Expect

average cost per access

j \size > L1

total size < L1

ENNNENNNN
B N N N N

e N S S

s = stride

- Consider the average cost per load
- Plot one line for each array length, time vs. stride
- Small stride is best: if cache line holds 4 words, at most % miss

- If array is smaller than a given cache, all those accesses will hit
(after the first run, which is negligible for large enough runs)

- Picture assumes only one level of cache
- Values have gotten more difficult to measure on modern procs
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I'I_Hier'ar'chy on a Sun Ultra-

Sun Ultra-21, 333 MHz
A A A
Array length
450 1 I I 1 1 1 I I I ) 1
4KB —+—
8KB ---x---
a0 } . 16K8 x|
v M v v v v A ¢ v . .
B G64KB ——m— Mem: 396 ns
350 | T T 256KB ---e-- (132 cycles)
! [ S 512KB - -&--
! ‘\ ". E‘: :'n —_—v
300 r / oL AMB ——ve
{ oL 8MB ---o---
—_ |l | ' 1 168MB -
@ 250 F i Vo i 3OMB ——ime ]
1] I 1 ‘ \
5 ! II ", H i
Q / 3 x & ) 1
1S . N i i
= 200 W
150 / -
100 A -
L2: 2 MB,
e IS ot e e i o DT . 12 cycles (36 ns)
0 — T T I I T >
4 1t i‘ 256 1K 4K 16K 64K 256K iM 2M 4M 8M 16M32M L1:
Stride (bytes)
L1: 16 Bline L2: 64 byte line

16 KB
8 K pages,

2 cycles (6ns)
32 TLB entries _
See www.cs.berkeley.edu/~yelick/arvindk/t3d-isca95.ps for details
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I'_lr'chy on a Power3

Power3, 375 MHZ Sasvadra-Bavers Bercnant Tine & sacute & med Posacy Array size
r 3 ' ! I a8 |
’ L | D
Mem: 396 ns . 1 tesd
el
(132 cycles) 3 o
» . - 1288
- s
o . —.'t... - T
. " 518
3 Tom X Ll a9 e e 1
. 9 t - - R
> o - "
- mwa
k P | A
.9 ) & 5 - 2 .8 W
2 ‘ .o. ® 8+ uw
Lo v [ ’ e e g e e \ ]
- *
128 B line . . |
9 cycles : ' !
L
'
o
|
L1: 32 KB N '
128B line w' /
.5-2 cycles f .. y :
. LA '.;‘ ‘Vj. .'; \D;\ l."' ";OI \'.:0. \.; ‘l' .'\.:
>rce
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| ||I Memory Hierarchy Lessons

Caches Vastly Impact Performance
- Cannot consider performance without considering memory hierarchy

Actual performance of a simple program can be a
complicated function of the architecture

- Slight changes in the architecture or program change the performance
significantly
- To write fast programs, need to consider architecture
» True on sequential or parallel processor
- We would like simple models to help us design efficient algorithms

Common technique for improving cache performance,
called blocking or tiling:

- Idea: used divide-and-conquer to define a problem that fits in register/

L1-cache/L2-cache

Autotuning: Deal with complexity through experiments

- Produce several different versions of code

» Different algorithms, Blocking Factors, Loop orderings, etc
- For each architecture, run different versions to see which is fastest
- Can (in principle) navigate complex design options for optimum
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I l'IWhaT is Parallel Architecture? 2NN

/ \
* A parallel computer is a collection of processing elements
that cooperate to solve large problems

- Most important new element: It is all about communication!

* What does the programmer (or OS or Compiler writer)
think about?
- Models of computation:
» PRAM? BSP? Sequential Consistency?
- Resource Allocation:
» how powerful are the elements?
» how much memory?

- What mechanisms must be in hardware vs software
- What does a single processor look like?
» High performance general purpose processor
» SIMD processor
» Vector Processor
- Data access, Communication and Synchronization
» how do the elements cooperate and communicate?
» how are data transmitted between processors?

» what are the abstractions and primitives for cooperation?
8/19/2009 John Kubiatowicz Parallel Architecture: 65

s



| ®Types of Parallelism

Simultaneous

oy Superscalar Fine-Grained Coarse-Grained Muyltithreading | Multiprogcessing
< DO il il DENL | IESS
S EE N
» OO i = AEN
$ \‘ \\ &\ e '?::E.%
S EEEE SNNNO DEEE
S HMm SRNO S8S B
~—" NN
. . AN 2
“E’ AEE : HEN
= HININ
. . . ] .
l 1 N 2 N B
] Thread 1 Thread 3 Thread 5
N Thread 2 # Thread 4 Idle slot

8/19/2009 John Kubiatowicz Parallel Architecture: 66



| lII Parallel Programming Models

* Programming model is made up of the languages and
libraries that create an abstract view of the machine

Control
- How is parallelism created?
- What orderings exist between operations?
- How do different threads of control synchronize?

Data

- What data is private vs. shared?
- How is logically shared data accessed or communicated?

Synchronization
- What operations can be used to coordinate parallelism
- What are the atomic (indivisible) operations?

Cost

- How do we account for the cost of each of the above?
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I I'ISimpIe Programming Example

» Consider applying a function f to the
elements of an array A and then computing
Its sum: -
S CALZD)

+ Questions:
- Where does A live? All in single memory? Partitioned?

- What work will be done by each processors?
- They need to coordinate to get a single result, how?

A LLL LT T T T T T T T T T T[]

A = array of all data *f
fA = f(A) fA: T IIIIIIIITTIITIITTIT]
s = sum(fA) sum

S.
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* Program is a collection of threads of control.
- Can be created dynamically, mid-execution, in some languages

* Each thread has a set of private variables, e.g., local stack
variables

* Also a set of shared variables, e.g., static variables, shared common
blocks, or global heap.

- Threads communicate implicitly by writing and reading shared variables.
- Threads coordinate by synchronizing on shared variables

Shared memory

y=.s. // k—\\ —
E e, |\
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I l'ISirane Programming Example: SM

* Shared memory strategy: -
- small humber p << n=size(A) processors J CALZD
- attached to single memory =

* Parallel Decomposition:
- Each evaluation and each partial sum is a task.

» Assign n/p numbers to each of p procs
- Each computes independent "private” results and partial sum.
- Collect the p partial sums and compute a global sum.

000QgPOO0gPLOO0O0POOC

Two Classes of Data:
* Logically Shared

- The original n numbers, the global sum.
* Logically Private

- The individual function evaluations.

- What about the individual partial sums?




| ||'Shar'ed Memory “Code” for sum

static int s = 0;

Thread 1

fori=0, n/2-1
s =s + f(A[i])

Thread 2

fori=n/2, n-1
s = s + f(A[i])

* Problem is a race condition on variable s in the program
* A race condition or data race occurs when:

- two processors (or two threads) access the same
variable, and at least one does a write.

- The accesses are concurrent (not synchronized) so
they could happen simultaneously

8/19/2009
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| l'IBe'l"l'er' Shared Memory Code for Sum:

Al 3|5 f = square
static int s = 0;
Thread 1 Thread 2
compute f([A[i]) and putinreg0 9 compute f([A[i]) and put in reg0 25
regl=s 0 regl =s 0
reg1 =reg1 + reg0 9 reg1 =reg1 + reg0 25
s =reg1 9 s =reg1 25

« Assume A = [3,9], fis the square function, and s=0 initially

 For this program to work, s should be 34 at the end
 but it may be 34,9, or 25

* The atomic operations are reads and writes
* Never see Y2 of one number, but += operation is not atomic
 All computations happen in (private) registers



| I'IImpr'oved Code for Sum

static int s = 0;
static lock Ik;

Thread 1 Thread 2
local_s1=0 local_ s2=0
fori=0, n/2-1 fori=n/2, n-1
local_s1 =local_s1 + f(A[i]) local_s2= local_s2 + f(A[i])
lock(lk); lock(lk);
s =s + local_s1 s =s +local_s2
unlock(lk); unlock(lk);

 Since addition is associative, it's OK to rearrange order

* Most computation is on private variables
- Sharing frequency is also reduced, which might improve speed
- But there is still a race condition on the update of shared s

- The race condition can be fixed by adding locks (only one thread
can hold a lock at a time; others wait for it)



Mem I/0O devices

 Want High performance for shared memory: Use Caches!
- Each processor has its own cache (or multiple caches)
- Place data from memory into cache
- Writeback cache: don't send all writes over bus to memory

- Caches Reduce average latency
- Automatic replication closer to processor
- More important to multiprocessor than uniprocessor: latencies longer

* Normal uniprocessor mechanisms to access data
- Loads and Stores form very low-overhead communication primitive

* Problem: Cache Coherencel
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| I'IExample Cache Coherence Problem

&

I/0O devices

<D\\ w5 l— @)

Memory

» Things to note:
- Processors could see different values for u after event 3
- With write back caches, value written back to memory depends on
happenstance of which cache flushes or writes back value when
* How to fix with a bus: Coherence Protocol
- Use bus to broadcast writes or invalidations
- Simple protocols rely on presence of broadcast medium

* Bus not scalable beyond about 64 processors (max)

- Capacitance, bandwidth limitations
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| Example: Coherence not Enough

P P>
[*Assume initial value of Aand ag is 0*/
A= 1; while (flag == 0); /*spinidly*/
flag = 1; print A;

» Intuition not guaranteed by coherence

- expect memory to respect order between accesses to
different locations issued by a given process
- to preserve orders among accesses to same location by different

processes
» Coherence is not enough!
- pertains only to single location @
- Need statement about ordering
between multiple locations.
Conceptual
Picture Mem
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| ||IMemor'y Consistency Model

+ Specifies constraints on the order in which memory
operations (from any process) can appear to execute
with respect to one another

- What orders are preserved?
- Given a load, constrains the possible values returned by it

+ Without it, can't tell much about a single address space
(SAS) program'’s execution

» Implications for both programmer and system designer
- Programmer uses to reason about correctness and possible results

- System designer can use to constrain how much accesses can be
reordered by compiler or hardware

- Contract between programmer and system



Processors
issuing memory
references as

per program order

The “switch” is randomly
set after each memory
T reference

Memory

+ Total order achieved by interleaving accesses from
different processes

- Maintains program order, and memory operations, from all processes,
appear to [issue, execute, complete] atomically w.r.t. others

- as if there were no caches, and a single memory

* "A multiprocessor is sequentially consistent if the result
of any execution is the same as If the operations of all
the processors were executed in some sequential order,
and the operations of each individual processor appear in
this sequence in the order specified by its program.”
[Lamport, 1979]



| lII Sequential Consistency Example

Processor 1

¢ LD, A = 5
LD, B = 7
( 2

<s'rl A,6
LD, A = 6 /

<-LD4 B = 21

Cs

T2
<-s-r3 B,4

8/19/2009

B,21

A=

B =

John Kubiatowicz

Processor 2

LD, B = 2

LD, A = 6

6

( LD,

LD,
< LD,
ST,
LD,
ST,

LD,
<LD7

(STZ

ST,
LD,

One Consistent Serial Order

A= 5
B = 7
B = 2
A,G\\
A= 6
B,2

A = \6
B = 21
A= 6
B,13
B,4\\

B = 4
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| III What about Synchronization?

- All shared-memory programs need synchronization” © %

- Problem: Communication is IMPLICIT thus, no way of knowing when
other threads have completed their operations

- Consider need for "lock” primitive in previous example
* Barrier - global (/coordinated) synchronization
- simple use of barriers -- all threads hit the same one
work on my subgrid() ;
barrier;
read neighboring values() ;
barrier;
- barriers are not provided in all thread libraries

* Mutexes - mutual exclusion locks
- threads are mostly independent and must access common data
lock *1 = alloc and init(); /* shared */
lock(l) ;
access data
unlock(l) ;

* Another Option: Transactional memory
- Hardware equivalent of optimistic concurrency

- Some think that this is the answer to all parallel pr‘ogr'ammin?
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| l"$ynchr'oniza'rion using load and store £

* Here is a possible two-thread synchronization: g

Thread A Thread B
Set Lock,=1; Set Lockg=1;
while (Lockg) {//X if (!Lock,) {//Y
do nothing; Critical Section;
} }
Critical Section; Set Lockg=0;

Set Lock,=0;

Does this work? Yes. Both can guarantee that:
- Only one will enter critical section at a time.
At X:
- if Locky=0, safe for A to perform critical section,
- otherwise wait to find out what will happen
At Y:
- if Lock,=0, safe for B to perform critical section.
- Otherwise, A is in critical section or waiting for B to quit
But:
- Readlly messy

- Generalization gets worse

- Needs Sequential Consistency to work!
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I'I.Need Hardware Atomic Primitives

e testé&set (&address) { /* most architectures */
result = M[address];
M[address] = 1;

return result;
}
» swap (&address, register) { /* x86 */
temp = M[address];
M[address] = register;
register = temp;
}
e compare&swap (&address, regl, reg2) { /* 68000 */

if (regl == M[address]) {
M[address] = reg2?;
return success;

} else {

return failure;

}
}

e load-linked&store conditional (&address) {
/* R4000, alpha */

loop:
11 rl, M[address];
movi r2, 1; /* Can do arbitrary comp */

sc r2, M[address];
begz r2, loop;
}
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| Implementing Locks with test&set ~.

+ A flawed, but simple solution:

int value = 0; // Free

Acquire () {
while (testé&set(value)); // while busy

}

Release () |
value = 0;
}
- Simple explanation:
- If lock is free, testé&set reads O and sets value=1, so lock is now busy. Tt
returns O so while exits.

- If lock is busy, test&set reads 1 and sets value=1 (no change). It returns 1,
so while loop continues

- When we set value = O, someone else can get lock

* Problems:
- Busy-Waiting: thread consumes cycles while waiting
- Unfair: may give advantage to some processors over others
- Expensive: Every testéset() for every processor goes across network!

+ Better: test&test&set

- Use outer loop that only reads value, watches for value=0



| lII Busy-wait vs Blocking

» Busy-wait: I.e. spin lock
- Keep trying to acquire lock until read
- Very low latency/processor overhead!
- Very high system overhead!
» Causing stress on network while spinning
» Processor is not doing anything else useful
» Blocking:
- If can't acquire lock, deschedule process (I.e. unload state)
- Higher latency/processor overhead (1000s of cycles?)
» Takes time to unload/restart task
» Notification mechanism needed
- Low system overheadd
» No stress on network
» Processor does something useful
* Hybrid:
- Spin for a while, then block
- 2-competitive: spin until have waited blocking time



I l'IScalabIe Shared Memory: Directorieg:

() eee &

Cache Cache * k processors.
| | » With each cache-block in memory:
Interconnection Network k presence-bits, 1 dirty-bit
] I » With each cache-block in cache:
Memory =Ll UL pirectory 1 valid bit, and 1 dirty (owner) bit

/4
presence bits  dirty bit

Every memory block has associated directory information
- keeps track of copies of cached blocks and their states

- ona miss, find directory entry, look it up, and communicate only with the nodes
that have copies if necessary

- in scalable networks, communication with directory and copies is through network
transactions

Each Reader recorded in directory
Processor asks permission of memory before writing:

- Send invalidation to each cache with read-only copy
- Wait for acknowledgements before returning permission for writes



| ||IReducing the Directory Size:
“Limitless directories” (Alewife, MIT)

PZ
—1 ‘P, Py ——
p, | Po
memory block
H?|s?| P, P, | notused P, | notused |0?

Instead of a N-bit-vector, keep n (/g N- bit) pointers;
if more than n children request a copy, handle the
overflow in software

effective for large N and low degree of sharing
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| ||lPr'ogr-amming Model 2: Message Passid

* Program consists of a collection of named processes.
- Usually fixed at program startup time
- Thread of control plus local address space -- NO shared data.
- Logically shared data is partitioned over local processes.

* Processes communicate by explicit send/receive pairs
- Coordination is implicit in every communication event.
- MPT (Message Passing Interface) is the most commonly used SW

Private
memory

receive Pn,s

@ send P1,s @

Network




| ||ICompu1'e A[1]+A[2] on each processor-

° First possible solution — what could go wrong?

Processor 1 Processor 2
xlocal = A[1] xlocal = A[2]
send xlocal, proc2 send xlocal, proc1
receive xremote, proc2 receive xremote, proc1
s = xlocal + xremote s = xlocal + xremote

° If send/receive acts like the telephone system? The post office?

° Second possible solution

Processor 1 Processor 2
xlocal = A[1] xloadl = A[2]
send xlocal, proc2 receive xremote, proc1
receive xremote, proc2 send xlocal, proc1
s = xlocal + xremote s = xlocal + xremote

° What if there are more than 2 processors?



I lII MPI - the de facto standard

* MPT has become the de facto standard for parallel
computing using message passing
+ Example:
for (i=1;i<numprocs;i++) {
sprintf (buff, "Hello %d! ", 1i);

MPI Send(buff, BUFSIZE, MPI CHAR, i, TAG,
MPI_COMM WORLD) ;

}

for (i=1;i<numprocs;i++) {
MPI Recv (buff, BUFSIZE, MPI CHAR, i, TAG,
MPI COMM WORLD, é&stat);
printf ("%d: %$s\n", myid, buff);
}

* Pros and Cons of standards

- MPI created finally a standard for applications development in the HPC
community — portability

- The MPT standard is a least common denominator building on mid-80s
technology, so may discourage innovation



| lII Message Passing Details
+ All data layout must be handled by software

- cannot retrieve remote data except with message request/reply
- Often, message passing code produced by a compiler

Message passing has high software overhead
- early machines had to invoke OS on each message (100us-1ms/message)

- even user level access to network interface has dozens of cycles
overhead (NI might be on I/0 bus)

- sending can be cheap (just like stores), but requires HW support
» Still requires some sort of marshalling of data into message
- receiving is offen expensive without special HW:
» need to poll or deal with an interrupt

- Active Message Abstraction
- Message contains handler that is automatically invoked at destination
- Can be utilized to support dataflow in hardware
- Can be utilized to efficiently support compiled dataflow languages
» i.e. Id->TAM as shown by Culler et al.

- Can also serve as good target for comﬁlled Shared-Address Space
programs running on message passing hardware

» i.e UPC produced by Titanium when compiling apps (Yellick et al.)



| III Dedicated Message Processor

[ Network

User System User System
* General Purpose processor performs arbitrary output processing
(at system level)

» General Purpose processor interprets incoming network
transactions (at system level)

User Processor <-> Msg Processor share memory
* Msg Processor <-> Msg Processor via system network transaction
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I l'IAsynchr'onous User-Level
Networking (Alewife)

- Send message

.
- write words to special network ——
interface registers . oee
- Execute atomic launch instruction
- Receive e
- Generate interrupt/launch user-level —vite 020200 e Tabie
thread context - )
- Examine message by reading from - g
special network interface registers Ty e
- Execute dispose message
- Exit atomic section
deaczile l LrAans it ‘ orify Tedeive sptional
Tine ignored SOCUPpaAncy threoal
Sender o
q nesnade-avatlalle «nd
Nemwork interrupt atomic
Yegine harsdle: gect ion
;"\ﬂ - ATOBLC SecCction

A

|
injece
(laanch inatrustion

\
[
A
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I |II Danger of direct access to network:
The Fetch Deadlock Problem

+ Even if a node cannot issue a request, it must sink
network transactions!

- Incoming transaction may be request = generate a response.
- Closed system (finite buffering)

- Deadlock occurs even if network deadlock free!

iy
\iTWOIIﬁ D

* May need multiple logical networks to guarantee
forward progress with message passing



| lII Which is better? SM or MP? f
* Which is better, Shared Memory or Message Passmg7

- Depends on the program!
- Both are "communication Turing complete”
» i.e. can build Shared Memory with Message Passing and vice-versa

Advantages of Shared Memory:
- Implicit communication (loads/stores)
- Low overhead when cached

Disadvantages of Shared Memory:
- Complex to build in way that scales well
- Requires synchronization operations
- Hard to control data placement within caching system

Advantages of Message Passing
- Explicit Communication (sending/receiving of messages)
- Easier to control data placement (ho automatic caching)

Disadvantages of Message Passing
- Message passing overhead can be quite high
- More complex to program
- Introduces question of reception technique (interrupts/polling)




8/19/2009 John Kubiatowicz Parallel Architecture: 97



| III MIMD Machines
* Multiple Instruction, Multiple Data (MIMD)

- Multiple independent instruction streams, program counters, etc
- Called "multiprocessing” instead of "multithreading”
» Although, each of the multiple processors may be multithreaded

- When independent instruction streams confined to single chip,
becomes a "multicore” processor

» Shared memory: Communication through Memory
- Option 1. no hardware global cache coherence
- Option 2: hardware global cache coherence

* Message passing: Communication through Messages

- Applications send explicit messages between nodes in order to
communicate

* For Most machines, Shared Memory built on top of
message-passing network
- Bus-based machines are "exception”




| I'IExamples of MIMD Machines JININ

+ Symmetric Multiprocessor @ @ @ @
- Multiple processors in box with shared
memory communication | Bus |

- Current MultiCore chips like this
- Every processor runs copy of OS

* Non-uniform shared-memory with
separate I/0 through host
- Multiple processors
» Each with local memory
» general scalable network

- Extremely light "OS" on node provides
simple services

» Scheduling/synchronization
- Network-accessible host for I/0

» Cluster

- Many independent machine connected with é_
general network —

- Communication through messages

I

I

|
Network



|'# Cray T3E (1996)

follow-on to earlier T3D (1993) using 21064’s

Up to 2,048 675MHz Alpha 21164 ==
processors connected in 3D torus | eetEEs
= c
* Each node has 256 MB-2GB local DRAM memory & ;(x
* Load and stores access global memory over network z

* Only local memory cached by on-chip caches

» Alpha microprocessor surrounded by custom "shell” circuitry to
make it into effective MPP node. Shell provides:

- multiple stream buffers instead of board-level (L3) cache

external copy of on-chip cache tags to check against remote writes to
local memory, generates on-chip invalidates on match

512 external E registers (asynchronous vector load/store engine)
address management to allow all of external physical memory to be
addressed

atomic memory operations (fetchéop)

support for hardware barriers/eureka to synchronize parallel tasks




|'# Cray XT5 (2007)

Basic
Compute
Node, with
2 AMD x86

U\
Vector Node
4-way SMP of

i  SX2 Vector CPUs
(8 lanes each)

Opterons J h ﬂ
Cray SeaStar2+ g

Architecture

Logic Node

E ﬁ ,,(ﬁ i Reconfigurable
ﬂi 2 FPGASs +

Opteron

Also, XMT Multithreaded
Nodes based on MTA
design (128 threads per
processor)

Processor plugs into

Opteron socket : .
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4 processors + memory
P P P P|:: P P P P :
u u u u N W b b : module per system

FEEREE PR R

REENENG 1 P R
: ¥ : protocol

/

Board Interconnect | : i | Board Interconnect

16x16 Data Crossbar

1 I \ Separate data

Memory Memory transfer over
Module Module high bandwidth
s 3 crossbar

00000
.....
--------------------------------------------------------------
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I"#S6T Origin 2000 (1996)

* Large-Scale Distributed Nods |

Directory SMP o
R10000] [FiOOOO

- Scales from 2 to 512 nodes @*’ "_|o_|a-o_%|

- Direct-mapped directory with each

. : : ¥
bit standing for multiple processor Directory?
- Not highly scalable beyond thi anory Hue —
Node contains: —
» Two MIPS R10000 processors plus caches
. . . to
* Memory module including directory CrayLink
» Connection to global network interconnect
» Connection to I/O ‘ Module ‘ T
Router THouter
‘ ¥ ¥ 3
Router Fouter
Module CrayLink Interconnect Module
b 4 4 B
Scalable hypercube switching network Router Router Router
4

processors total)
odule

supports up to 64 two-processor nodes (128 r—u r'—,
U]

Module | Module

(Some installations up to 512 processors)




Alewife-1000 CMMU

| #'The Alewife Multiprocessor: SM & MBI\

Timer and
Statistics

uguy aoualayo)
/Ia[npayag AIOWagN

. Processor and O Transaction O Asynchronous

Cache Control Buffer Hetwork
O Memory and O Registers and . IPI Message
DRAM Control Statistics Interface

8/19/2009

\
\
a L oy o e r
e R EREE R ! ol T 5
L ElE | 4 i ] | | £7 "
3 EE i
3 H | v g 3
i i 1 | | X g -
* 3
3 >
H
b
H
H

----------

Cache-coherence Shared Memory
- Partially in Software!
- Sequential Consistency
- LimitLESS cache coherence for better scalability

User-level Message-Passing
- Fast, atomic launch of messages
- Active messages
- User-level interrupts

Rapid Context-Switching

- Course-grained multithreading

Single Full/Empty bit per word for synchronization

- Can build locks, barriers, other higher-level constructs
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| |lI Message Passing MPPs

(Massively Parallel Processors)

Initial Research Projects

- Caltech Cosmic Cube (early 1980s) using custom Mosaic processors
- J-Machine (early 1990s) MIT

Commercial Microprocessors including MPP Support
- Transputer (1985)
- nCube-1(1986) /nCube-2 (1990)

Standard Microprocessors + Network Interfaces

- Intel Paragon/i860 (1991)
- TMC CM-5/SPARC (1992) Interconnect Network

- Meiko CS-2/SPARC (1993) P 1 111 1 1 1
- IBM SP-1/POWER (1993) NI | NI|| NI| NI NI| NI NI| NI

MPP Vector Supers T I
- Fujitsu VPP500 (1994)

Designs scale to 100s-10,000s I 1 I 1 1 1 1 1
of nodes




3-dimensional network topology
- Non-adaptive, E-cubed routing
- Hardware routing
- Maximize density of communication

64-nodes/board, 1024 nodes total

Low-powered processors
- Message passing instructions
- Associative array primitives to aid in synthesizing shared-address space

Extremely fine-grained communication
- Hardware-supported Active Messages
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| ||'The Earth Simulator (NEc. 2002)

8 Processors/Node

NEC SX-6
Vector
Microprocessor

500MHz / 1GHz
8 lanes
8 GFLOPS

256 GB/s Shared
Memory BW

16GB in 2048 Memory Banks

\

640x640 Node

\

\

Full Crossbar
Interconnect

12 GB/s

Each Way

83,200 cables to connect crossbar!

\/2 640 Nodes

Was World’s fastest supercomputer, >35 TFLOPS on LINPACK (June 2002)
(87% of peakperfermance)



The Tarth Simsiataar Lot
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* Peak Performance 360TFLOPS
* Power Consumption 1.4 MW

8/19/2009 John Kubiatowicz
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» Connect multiple complete machines together using
standard fast interconnects
- Little or no hardware development cost
- Each node can boot separately and operate independently

- Interconnect can be attached at I/0 bus (most common) or on memory
bus (higher speed but more difficult)

* Berkeley Project: "Network of Workstations"” (NOW)

» Clustering initially used to provide fault tolerance
* Clusters of SMPs (CluMPs)

- Connect multiple n-way SMPs using a cache-coherent memory bus, fast
message passing network or non cache-coherent interconnect
» Build message passing MPP by connecting multiple
workstations using fast interconnect connected to I/0
Bus. Main advantage?
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| & Parallel Chip-Scale Processors

..... Memory Controller 4 d ‘:-:

.....

.......

Shared L3 Cache

Intel Core 2 Quad: 4 Cores AMD Opteron: 6 Cores

* Multicore processors emerging in general-purpose market
due to power limitations in single-core performance scaling
- 4-16 cores in 2009, connected as cache-coherent SMP
- Cache-coherent shared memory

+ Embedded applications need large amounts of computation

- Recent trend to build "extreme” ||sar'alle| processors with dozens to
hundreds of parallel processing elements on one die

- Often connected via on-chip networks, with no cache coherence

- Examples: 188 core "Metro” chip from CISCO
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& T (“Niagara”)

Highly Threaded:

- 8 Cores
- 4 Threads/Core

Target: Commercial server applications
- High thread level parallelism (TLP)

» Large numbers of parallel client
requests

- Low instruction level parallelism (ILP)
» High cache miss rates
» Many unpredictable branches
» Frequent load-load dependencies

Power, cooling, and space are major
concerns for data centers

Metric: Performance/Watt/Sq. Ft.

Approach: Multicore, Fine-grain
multithreading, Simple pipeline, Small
L1 caches, Shared L2
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| lII T1 Fine-6Grained Multithreading

» Each core supports four threads and has its own level
one caches (16KB for instructions and 8 KB for data)

- Coherency is enforced among the L1 caches by a directory associated
with each L2 cache block

» Switching to a new thread on each clock cycle
+ Idle threads are bypassed in the scheduling

- Waiting due to a pipeline delay or cache miss
- Processor is idle only when all 4 threads are idle or stalled

* Both loads and branches incur a 3 cycle delay that can
only be hidden by other threads

+ A single set of floating-point functional units is shared
by all 8 cores
- floating-point performance was not a focus for T1
- (New T2 design has FPU per core)



' Embedded Parallel Processors

+ Often embody a mixture of old architectural
styles and ideas

* Exposed memory hierarchies and interconnection
networks

- Programmers code to the "metal” to get best cost/power/
performance

- Portability across platforms less important

» Customized synchronization mechanisms

- Interlocked communication channels (processor blocks on read
if data not ready)

- Barrier signals
- Specialized atomic operation units

* Many more, simpler cores



|'# PicoChip PC101 (2003)

+ Target market is wireless base stations
« 430 cores on one die in 130nm
- Each core is a 3-issue VLIW
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. Eiscall = | S 188 usable RISC-like cores
w oM R e in 130nm



| ' # IBM cell Processor (Playstation-3) Z

» -
- . - - | - - | — .-
L AR wis - L. . " -~ s -~ e LAY - ..
' e | Ve Y - e - - - A tnie
0...... Ic“.- - -— . vo - :..-0 '--1 - —
» L J . L - - - L
» - . . - » -
. . » . - » . -
| | " ™ » w | " 1
[ L. A R T nan. - as no.‘ an RN
. . . . ] ] . .
t sl R L. .- o » TR ! [ R l .-
AL . il 1 » i b T ) ‘e ..i. R RE ' L ‘ - i.o-.
1 et A
.- .7 P .. -
e e - -, CYET & . 0...0:
e B e !
TR R ! l ""."

bee
' ..‘ . .
»
:
.lt. LE
- [
_ -
i
.- e TR
- e
.*—

Lo ) s M.

-uo

One 2-way threaded PowerPC core (PPE), plus eight specialized short-
SIMD cores (SPE)
8/19/2009
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This is a GPU (Graphics Processor Unit)

- Available in many desktops
Example: 16 cores similar to a vector processor with 8 lanes (128
stream processors total)

- Processes threads in SIMD groups of 32 (a "warp")

- Some stripmining done in hardware

Threads can branch, but loses performance compared to when all
threads are running same code

Complete parallel programming environment (CUDA)
- A lot of parallel codes have been ported to these GPUs
- For some data parallel applications, GPUs provide the fastest implementations




| III Conclusion

* Uniprocessor Parallelism:
- Pipelining, Superscalar, Out-of-order execution
- Vector Processing, Pseudo-SIMD

Multithreading

- Multiple independent threads executing on same processor

Memory Systems:
- Exploiting of Locality at many levels
- Greatly Impacts performance (sometimes in strange fashion)
- Use of Autotuning to navigate complexity

Shared Memory Programming Model:

- Multiple threads communicating through memory

- Memory Consistency Model: Specifies order with which operations seem
to occur relative to one another

- Sequential Consistency: Most "intuitive” model

Message Passing Programming Model:
- Multiple threads communicating with messages




