
Practicality of Large Scale Fast Matrix Multiplication

Grey Ballard, James Demmel, Olga Holtz,
Benjamin Lipshitz and Oded Schwartz

UC Berkeley

IWASEP
June 5, 2012

Napa Valley, CA

Research supported by Microsoft (Award #024263) and Intel (Award #024894) funding and by matching funding by U.C.
Discovery (Award #DIG07-10227). Additional support comes from Par Lab affiliates National Instruments, NEC, Nokia,

NVIDIA, and Samsung. Research is also supported by DOE grants DE-SC0003959, DE-SC0004938, and DE-AC02-05CH11231;
the Sofja Kovalevskaja programme of Alexander von Humboldt Foundation; and by the National Science Foundation under

agreement DMS-0635607.

Benjamin Lipshitz IWASEP 9 1

Introduction

Classical matrix multiplication is nearly ubiquitous, even though
asymptotically faster algorithms have been know since 1969

Concerns about fast matrix multiplication:

Practical speed

Stability

This talk addresses both concerns

Benjamin Lipshitz IWASEP 9 2

Outline

Strassen’s algorithm

New parallel algorithm

Communication optimal

Faster in practice

Stability of Strassen

Normwise error bound

Diagonal scaling, improved error bounds

Stability experiments

Benjamin Lipshitz IWASEP 9 3

Recall: Strassen’s fast matrix multiplication

Strassen’s original algorithm uses 7 multiplies and 18 adds for n = 2.
It is applied recursively (blockwise).

M1 = (A11 + A22) · (B11 + B22)

M2 = (A21 + A22) · B11

M3 = A11 · (B12 − B22)

M4 = A22 · (B21 − B11)

M5 = (A11 + A12) · B22

M6 = (A21 − A11) · (B11 + B12)

M7 = (A12 − A22) · (B21 + B22)

C11 = M1 +M4 −M5 +M7

C12 = M3 +M5

C21 = M2 +M4

C22 = M1 −M2 +M3 +M6

T (n) = 7 · T (n/2) + O(n2)

T (n) = Θ
(
nlog2 7

)
Improved by Winograd to 15 additions

Benjamin Lipshitz IWASEP 9 4

Communication costs

Two kinds of costs:

Arithmetic (FLOPs)

Communication: moving data between

levels of a memory hierarchy (sequential case)

over a network connecting processors (parallel case)

Communication is becoming more expensive relative to computation

Benjamin Lipshitz IWASEP 9 5

Communication lower bounds for matrix multiplication

Strassen: Classic (cubic):

Ω

((
n√
M

)log2 7

M

)
Ω

((
n√
M

)log2 8

M

)

Ω

((
n√
M

)log2 7 M

P

)
Ω

((
n√
M

)log2 8 M

P

)

Ω

(
n2

P2/ log2 7

)
Ω

(
n2

P2/ log2 8

)
Benjamin Lipshitz IWASEP 9 6

Communication lower bounds for matrix multiplication

Algorithms attaining these bounds?

Strassen: Classic (cubic):

Ω

((
n√
M

)log2 7

M

)
Ω

((
n√
M

)log2 8

M

)

Ω

((
n√
M

)log2 7 M

P

)
Ω

((
n√
M

)log2 8 M

P

)

Ω

(
n2

P2/ log2 7

)
Ω

(
n2

P2/ log2 8

)
Benjamin Lipshitz IWASEP 9 6

Communication lower bounds for matrix multiplication

Algorithms attaining these bounds?

Strassen: Classic (cubic):

Ω

((
n√
M

)log2 7

M

)
Ω

((
n√
M

)log2 8

M

)

Ω

((
n√
M

)log2 7 M

P

)
Ω

((
n√
M

)log2 8 M

P

)

Ω

(
n2

P2/ log2 7

)
Ω

(
n2

P2/ log2 8

)
Benjamin Lipshitz IWASEP 9 6

Lessons from lower bounds

Don’t use a classical algorithm for the communication

Strassen can communicate less than classical

Make local multiplies as large as possible

Use all available memory, up to O(n2/P2/ log2 7)

Communication bound decreases with increased memory

Send memory size messages to minimize latency

Benjamin Lipshitz IWASEP 9 7

Main Idea of CAPS algorithm

At each level of recursion tree, choose either breadth-first or depth-first
traversal of the recursion tree

Breadth-First-Search (BFS) Depth-First-Search (DFS)

Runs all 7 multiplies in parallel

each uses P/7 processors

Requires 7/4 as much extra memory

Requires communication, but

All BFS minimizes communication if
possible

Runs all 7 multiplies sequentially

each uses all P processors

Requires 1/4 as much extra memory

No immediate communication

Increases bandwidth by factor of 7/4

Increases latency by factor of 7

CAPS
if enough memory and P ≥ 7
then BFS step
else DFS step

end if

Benjamin Lipshitz IWASEP 9 8

Main Idea of CAPS algorithm

At each level of recursion tree, choose either breadth-first or depth-first
traversal of the recursion tree

Breadth-First-Search (BFS) Depth-First-Search (DFS)

CAPS
if enough memory and P ≥ 7
then BFS step
else DFS step

end if

Benjamin Lipshitz IWASEP 9 8

Asymptotic costs analysis

Flops Bandwidth
S

tr
as

se
n

Lower Bound nω0

P max
{

nω0

PMω0/2−1 ,
n2

P2/ω0

}
2D-Strassen nω0

P(ω0−1)/2
n2

P1/2

Strassen-2D
(

7
8

)` n3

P

(
7
4

)` n2

P1/2

CAPS nω0

P max
{

nω0

PMω0/2−1 ,
n2

P2/ω0

}

C
la

ss
ic

al

Lower Bound n3

P max
{

n3

PM1/2 ,
n2

P2/3

}
2D n3

P
n2

P1/2

2.5D n3

P max
{

n3

PM1/2 ,
n2

P2/3

}

Benjamin Lipshitz IWASEP 9 9

Performance of CAPS

Strong-scaling on Franklin (Cray XT4), n = 94080.

Benjamin Lipshitz IWASEP 9 10

24%-184% faster than previous Strassen-based algorithms
51%-84% faster than best classical algorithm

CAPS Summary

The CAPS matrix multiplication algorithm

is communication optimal

matches the communication lower bounds

moves asymptotically less data than all existing algorithms

is faster: asymptotically and in practice

faster than any parallel classical algorithm can be

faster than any parallel Strassen-based algorithm we are aware of

applies to other fast matrix multiplication algorithms

but there might not be any other practical ones

Benjamin Lipshitz IWASEP 9 11

Stability

CAPS has the same stability properties as any other Strassen
(Strassen-Winograd) algorithm.

Weaker stability guarantee than classical, but still norm-wise stable.

This can be improved through diagonal scaling.

Two best scaling schemes give incomparable bounds

Can check which bound is better in O(n2) time

The improved error bounds match those of matrix factorization such
as classical LU and QR.

Benjamin Lipshitz IWASEP 9 12

Diagonal Scaling

Outside scaling: DACDB = (DAA)(BDB)

Scale so each row of A and each column of B has unit norm.

Explicitly:

Let DA
ii = (‖A(i , :)‖)−1, and DB

jj = (‖B(:, j)‖)−1.

Scale A′ = DAA, and B ′ = BDB .
Use Strassen for the product C ′ = A′B ′.

Unscale C =
(
DA
)−1

C ′
(
DB
)−1

.

Inside scaling: C = (AD)(D−1B)

Scale so each column of A has the same norm as the corresponding
row of B.

Explicitly:

Let Dii = (‖A(:, i)‖/‖B(i , :)‖)−1/2.
Scale A′ = AD, and B ′ = D−1B.
Use Strassen for the product C = A′B ′.

Benjamin Lipshitz IWASEP 9 13

Diagonal Scaling

Outside scaling: DACDB = (DAA)(BDB)

Scale so each row of A and each column of B has unit norm.

Explicitly:

Let DA
ii = (‖A(i , :)‖)−1, and DB

jj = (‖B(:, j)‖)−1.

Scale A′ = DAA, and B ′ = BDB .
Use Strassen for the product C ′ = A′B ′.

Unscale C =
(
DA
)−1

C ′
(
DB
)−1

.

Inside scaling: C = (AD)(D−1B)

Scale so each column of A has the same norm as the corresponding
row of B.

Explicitly:

Let Dii = (‖A(:, i)‖/‖B(i , :)‖)−1/2.
Scale A′ = AD, and B ′ = D−1B.
Use Strassen for the product C = A′B ′.

Benjamin Lipshitz IWASEP 9 13

Error bounds

|Cij − Ĉij | ≤ O(ε)f (n) · . . .

Classical:
(|A|·|B|)ij

Outside-Inside:
‖A(i ,:)‖‖B(:,j)‖‖|DAA|·|BDB |‖

Inside-Outside:
‖(AD)(i ,:)‖‖(D−1B)(:,j)‖

Outside:
‖A(i ,:)‖‖B(:,j)‖

Inside:
‖|A|·|B|‖

No Scaling:
‖A‖‖B‖

X → Y means that bound X is stronger than bound Y .

Benjamin Lipshitz IWASEP 9 14

Scaling example: easy case

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0 2 4 6 8 10

Number of Strassen Steps

No scaling
Outer
Inner

Outer-Inner
Inner-Outer

Benjamin Lipshitz IWASEP 9 15

m
ax

ij
|Ĉ

ij
−
C
ij
|

(|
A
|·|
B
|)
ij (

1 1
1 1

)
·
(

1 1
1 1

)

n = 1024

Scaling example: needs outer scaling

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0 2 4 6 8 10

Number of Strassen Steps

No scaling
Outer
Inner

Outer-Inner
Inner-Outer

Benjamin Lipshitz IWASEP 9 16

m
ax

ij
|Ĉ

ij
−
C
ij
|

(|
A
|·|
B
|)
ij (

1 1
1 1

)
·
(

ε 1
ε 1

)

n = 1024

Scaling example: needs inner and outer

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0 2 4 6 8 10

Number of Strassen Steps

No scaling
Outer
Inner

Outer-Inner
Inner-Outer

Benjamin Lipshitz IWASEP 9 17

m
ax

ij
|Ĉ

ij
−
C
ij
|

(|
A
|·|
B
|)
ij (
1 ε
ε ε

)
·
(

ε 1
1 ε−1

)

n = 1024

Scaling example: inner-outer better than outer-inner

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0 2 4 6 8 10

Number of Strassen Steps

No scaling
Outer
Inner

Outer-Inner
Inner-Outer

Benjamin Lipshitz IWASEP 9 18

m
ax

ij
|Ĉ

ij
−
C
ij
|

(|
A
|·|
B
|)
ij (
ε ε
1 1

)
·
(

1 ε−1

1 1

)

n = 1024

Scaling example: outer-inner better than inner-outer

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0 2 4 6 8 10

Number of Strassen Steps

No scaling
Outer
Inner

Outer-Inner
Inner-Outer

Benjamin Lipshitz IWASEP 9 19

m
ax

ij
|Ĉ

ij
−
C
ij
|

(|
A
|·|
B
|)
ij (
1 ε−1

1 1

)
·
(

ε 1
ε 1

)

n = 1024

Scaling example: problems scaling can’t fix

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0 2 4 6 8 10

Number of Strassen Steps

No scaling
Outer
Inner

Outer-Inner
Inner-Outer

Benjamin Lipshitz IWASEP 9 20

m
ax

ij
|Ĉ

ij
−
C
ij
|

(|
A
|·|
B
|)
ij (
1 ε−1

1 1

)
·
(

1 ε−1

1 1

)

n = 1024

Error bounds

|Cij − Ĉij | ≤ O(ε)f (n) · . . .

Classical:
(|A|·|B|)ij

Outside-Inside:
‖A(i ,:)‖‖B(:,j)‖‖|DAA|·|BDB |‖

Inside-Outside:
‖(AD)(i ,:)‖‖(D−1B)(:,j)‖

Outside:
‖A(i ,:)‖‖B(:,j)‖

Inside:
‖|A|·|B|‖

No Scaling:
‖A‖‖B‖

X → Y means that bound X is stronger than bound Y .

Benjamin Lipshitz IWASEP 9 21

Stability summary

Scaling improves error bound of Strassen

To be comparable to many other algorithms

But still not a good as classical algorithm

Applies to other fast matrix multiplication algorithms

Inner-then-outer or outer-then-inner scaling are best

Can choose between them by evaluating their bounds

Open problem: simultaneously attain inner and outer scaling bounds?

Benjamin Lipshitz IWASEP 9 22

Practicality of Large Scale Fast Matrix Multiplication

Grey Ballard, James Demmel, Olga Holtz,
Benjamin Lipshitz and Oded Schwartz

Research supported by Microsoft (Award #024263) and Intel (Award #024894) funding and by matching funding by U.C.
Discovery (Award #DIG07-10227). Additional support comes from Par Lab affiliates National Instruments, NEC, Nokia,

NVIDIA, and Samsung. Research is also supported by DOE grants DE-SC0003959, DE-SC0004938, and DE-AC02-05CH11231;
the Sofja Kovalevskaja programme of Alexander von Humboldt Foundation; and by the National Science Foundation under

agreement DMS-0635607.

Benjamin Lipshitz IWASEP 9 23

Thank You!

References

G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and O. Schwartz.

Communication-optimal parallel algorithm for Strassen’s matrix multiplication.
Technical Report EECS-2012-32, UC Berkeley, March 2012.
To appear in SPAA 2012.

G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and O. Schwartz.

Strong scaling of matrix multiplication algorithms and memory-independent communication lower bounds.
Technical Report EECS-2012-31, UC Berkeley, March 2012.
To appear in SPAA 2012.

G. Ballard, J. Demmel, O. Holtz, and O. Schwartz.

Graph expansion and communication costs of fast matrix multiplication.
In Proceedings of the 23rd ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’11, pages 1–12, New
York, NY, USA, 2011. ACM.

B. Lipshitz, G. Ballard, O. Schwartz, and J. Demmel.

Communication-avoiding parallel Strassen: Implementation and performance.
Technical Report EECS-2012-90, UC Berkeley, May 2012.
Submitted to SC 2012.

Benjamin Lipshitz IWASEP 9 24

Extra slides

1 Previous Parallel Strassen

2 Data Layout

3 Strassen-Winograd Algorithm

4 Hardware scaling

5 Time breakdown

6 Small problems

Benjamin Lipshitz IWASEP 9 25

Previous parallel Strassen-based algorithms

2D-Strassen: [Luo, Drake 95]

Run classical 2D inter-processors.

Same communication costs as classical 2D.

Run Strassen locally.

Can’t use Strassen on the full matrix size.

Strassen-2D: [Luo, Drake 95; Grayson, Shah, van de
Geijn 95]

Run Strassen inter-processors

This part can be done without communication.

Then run classical 2D.

Communication costs grow exponentially with
the number of Strassen steps.

Neither is communication optimal

Benjamin Lipshitz IWASEP 9 26

Extras

Previous parallel Strassen-based algorithms

2D-Strassen: [Luo, Drake 95]

Run classical 2D inter-processors.

Same communication costs as classical 2D.

Run Strassen locally.

Can’t use Strassen on the full matrix size.

Strassen-2D: [Luo, Drake 95; Grayson, Shah, van de
Geijn 95]

Run Strassen inter-processors

This part can be done without communication.

Then run classical 2D.

Communication costs grow exponentially with
the number of Strassen steps.

Neither is communication optimal

Benjamin Lipshitz IWASEP 9 26

Extras

Previous parallel Strassen-based algorithms

2D-Strassen: [Luo, Drake 95]

Run classical 2D inter-processors.

Same communication costs as classical 2D.

Run Strassen locally.

Can’t use Strassen on the full matrix size.

Strassen-2D: [Luo, Drake 95; Grayson, Shah, van de
Geijn 95]

Run Strassen inter-processors

This part can be done without communication.

Then run classical 2D.

Communication costs grow exponentially with
the number of Strassen steps.

Neither is communication optimal

Benjamin Lipshitz IWASEP 9 26

Extras

Data Layout

Benjamin Lipshitz IWASEP 9 27

Extras

Strassen-Winograd Algorithm

(
C11 C12

C21 C22

)
= C = A · B =

(
A11 A12

A21 A22

)
·
(

A11 A12

A21 A22

)

Qi = Si · Ti

S0 = A11 T0 = B11 U1 = Qi + Q4

S1 = A12 T1 = B21 U2 = U1 + Q5

S2 = A21 + A22 T2 = B12 + B11 U3 = U1 + Q5

S3 = S2 − A12 T3 = B22 − T2 C11 = Q1 + Q2

S4 = A11 − A21 T4 = B22 − B12 C12 = U3 + Q6

S5 = A12 + S3 T5 = B22 C21 = U2 − Q7

S6 = A22 T6 = T3 − B21 C22 = U2 + Q3

Benjamin Lipshitz IWASEP 9 28

Extras

Implications for hardware scaling

Requirements so that dense matrix multiplication is computation bound.

Bandwidth Latency
Requirement Requirement

Classic γM1/2 & β γM3/2 & α

Strassen γMω0/2−1 & β γMω0/2 & α

Strassen performs fewer flops and less communication, but is more
demanding on the hardware.

Benjamin Lipshitz IWASEP 9 29

Extras

CAPS time breakdown

n = 94080 on Franklin

 0.1

 1

 10

 100

 1000

P=49 P=343 P=2401

W
al

l t
im

e
(s

ec
on

ds
)

strong scaling range

local multiplications
communication
local additions
re-arrangement
other
perfect scaling

Benjamin Lipshitz IWASEP 9 30

Extras

Performance on small problems

n = 3136 on Franklin

 0.01

 0.1

 1

1e1 1e2 1e3 1e4

E
x
e
c
u
ti
o
n
 t
im

e
,
s
e
c
o
n
d
s

Number of Cores

Benjamin Lipshitz IWASEP 9 31

Extras

Sequential recursive Strassen is communication optimal

Run Strassen algorithm recursively.

When blocks are small enough, work in localy memory, so no further
bandwidth cost

W (n,M) =

{
7W (n2 ,M) + O(n2) if 3n2 > M
O(n2) otherwise

Solution is

W (n,M) = O

(
nω0

Mω0/2−1

)

Benjamin Lipshitz IWASEP 9 32

Extras

Extra slides

1 Previous Parallel Strassen

2 Data Layout

3 Strassen-Winograd Algorithm

4 Hardware scaling

5 Time breakdown

6 Small problems

Benjamin Lipshitz IWASEP 9 33

