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Introduction

Classical matrix multiplication is nearly ubiquitous, even though
asymptotically faster algorithms have been know since 1969

Concerns about fast matrix multiplication:

Practical speed

Stability

This talk addresses both concerns
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Outline

Strassen’s algorithm

New parallel algorithm

Communication optimal

Faster in practice

Stability of Strassen

Normwise error bound

Diagonal scaling, improved error bounds

Stability experiments
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Recall: Strassen’s fast matrix multiplication

Strassen’s original algorithm uses 7 multiplies and 18 adds for n = 2.
It is applied recursively (blockwise).

M1 = (A11 + A22) · (B11 + B22)

M2 = (A21 + A22) · B11

M3 = A11 · (B12 − B22)

M4 = A22 · (B21 − B11)

M5 = (A11 + A12) · B22

M6 = (A21 − A11) · (B11 + B12)

M7 = (A12 − A22) · (B21 + B22)

C11 = M1 +M4 −M5 +M7

C12 = M3 +M5

C21 = M2 +M4

C22 = M1 −M2 +M3 +M6

T (n) = 7 · T (n/2) + O(n2)

T (n) = Θ
(
nlog2 7

)
Improved by Winograd to 15 additions
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Communication costs

Two kinds of costs:

Arithmetic (FLOPs)

Communication: moving data between

levels of a memory hierarchy (sequential case)

over a network connecting processors (parallel case)

Communication is becoming more expensive relative to computation
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Communication lower bounds for matrix multiplication

Strassen: Classic (cubic):
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Lessons from lower bounds

Don’t use a classical algorithm for the communication

Strassen can communicate less than classical

Make local multiplies as large as possible

Use all available memory, up to O(n2/P2/ log2 7)

Communication bound decreases with increased memory

Send memory size messages to minimize latency
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Main Idea of CAPS algorithm

At each level of recursion tree, choose either breadth-first or depth-first
traversal of the recursion tree

Breadth-First-Search (BFS) Depth-First-Search (DFS)

Runs all 7 multiplies in parallel

each uses P/7 processors

Requires 7/4 as much extra memory

Requires communication, but

All BFS minimizes communication if
possible

Runs all 7 multiplies sequentially

each uses all P processors

Requires 1/4 as much extra memory

No immediate communication

Increases bandwidth by factor of 7/4

Increases latency by factor of 7

CAPS
if enough memory and P ≥ 7
then BFS step
else DFS step

end if
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Asymptotic costs analysis
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Performance of CAPS

Strong-scaling on Franklin (Cray XT4), n = 94080.
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24%-184% faster than previous Strassen-based algorithms
51%-84% faster than best classical algorithm



CAPS Summary

The CAPS matrix multiplication algorithm

is communication optimal

matches the communication lower bounds

moves asymptotically less data than all existing algorithms

is faster: asymptotically and in practice

faster than any parallel classical algorithm can be

faster than any parallel Strassen-based algorithm we are aware of

applies to other fast matrix multiplication algorithms

but there might not be any other practical ones
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Stability

CAPS has the same stability properties as any other Strassen
(Strassen-Winograd) algorithm.

Weaker stability guarantee than classical, but still norm-wise stable.

This can be improved through diagonal scaling.

Two best scaling schemes give incomparable bounds

Can check which bound is better in O(n2) time

The improved error bounds match those of matrix factorization such
as classical LU and QR.
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Diagonal Scaling

Outside scaling: DACDB = (DAA)(BDB)

Scale so each row of A and each column of B has unit norm.

Explicitly:

Let DA
ii = (‖A(i , :)‖)−1, and DB

jj = (‖B(:, j)‖)−1.

Scale A′ = DAA, and B ′ = BDB .
Use Strassen for the product C ′ = A′B ′.

Unscale C =
(
DA
)−1

C ′
(
DB
)−1

.

Inside scaling: C = (AD)(D−1B)

Scale so each column of A has the same norm as the corresponding
row of B.

Explicitly:

Let Dii = (‖A(:, i)‖/‖B(i , :)‖)−1/2.
Scale A′ = AD, and B ′ = D−1B.
Use Strassen for the product C = A′B ′.
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Error bounds

|Cij − Ĉij | ≤ O(ε)f (n) · . . .

Classical:
(|A|·|B|)ij

Outside-Inside:
‖A(i ,:)‖‖B(:,j)‖‖|DAA|·|BDB |‖

Inside-Outside:
‖(AD)(i ,:)‖‖(D−1B)(:,j)‖

Outside:
‖A(i ,:)‖‖B(:,j)‖

Inside:
‖|A|·|B|‖

No Scaling:
‖A‖‖B‖

X → Y means that bound X is stronger than bound Y .
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Scaling example: easy case
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Scaling example: needs outer scaling
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Scaling example: needs inner and outer

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0  2  4  6  8  10

Number of Strassen Steps

No scaling
Outer
Inner

Outer-Inner
Inner-Outer

Benjamin Lipshitz IWASEP 9 17

m
ax

ij
|Ĉ
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Scaling example: inner-outer better than outer-inner
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Scaling example: problems scaling can’t fix
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Stability summary

Scaling improves error bound of Strassen

To be comparable to many other algorithms

But still not a good as classical algorithm

Applies to other fast matrix multiplication algorithms

Inner-then-outer or outer-then-inner scaling are best

Can choose between them by evaluating their bounds

Open problem: simultaneously attain inner and outer scaling bounds?
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Previous parallel Strassen-based algorithms

2D-Strassen: [Luo, Drake 95]

Run classical 2D inter-processors.

Same communication costs as classical 2D.

Run Strassen locally.

Can’t use Strassen on the full matrix size.

Strassen-2D: [Luo, Drake 95; Grayson, Shah, van de
Geijn 95]

Run Strassen inter-processors

This part can be done without communication.

Then run classical 2D.

Communication costs grow exponentially with
the number of Strassen steps.

Neither is communication optimal
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Data Layout
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Strassen-Winograd Algorithm

(
C11 C12

C21 C22

)
= C = A · B =

(
A11 A12

A21 A22

)
·
(

A11 A12

A21 A22

)

Qi = Si · Ti

S0 = A11 T0 = B11 U1 = Qi + Q4

S1 = A12 T1 = B21 U2 = U1 + Q5

S2 = A21 + A22 T2 = B12 + B11 U3 = U1 + Q5

S3 = S2 − A12 T3 = B22 − T2 C11 = Q1 + Q2

S4 = A11 − A21 T4 = B22 − B12 C12 = U3 + Q6

S5 = A12 + S3 T5 = B22 C21 = U2 − Q7

S6 = A22 T6 = T3 − B21 C22 = U2 + Q3
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Implications for hardware scaling

Requirements so that dense matrix multiplication is computation bound.

Bandwidth Latency
Requirement Requirement

Classic γM1/2 & β γM3/2 & α

Strassen γMω0/2−1 & β γMω0/2 & α

Strassen performs fewer flops and less communication, but is more
demanding on the hardware.
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CAPS time breakdown

n = 94080 on Franklin
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Performance on small problems

n = 3136 on Franklin

 0.01

 0.1

 1

1e1 1e2 1e3 1e4

E
x
e
c
u
ti
o
n
 t
im

e
, 
s
e
c
o
n
d
s

Number of Cores

Benjamin Lipshitz IWASEP 9 31

Extras



Sequential recursive Strassen is communication optimal

Run Strassen algorithm recursively.

When blocks are small enough, work in localy memory, so no further
bandwidth cost

W (n,M) =

{
7W (n2 ,M) + O(n2) if 3n2 > M
O(n2) otherwise

Solution is

W (n,M) = O

(
nω0

Mω0/2−1

)
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