Practicality of Large Scale Fast Matrix Multiplication

Grey Ballard, James Demmel, Olga Holtz,
Benjamin Lipshitz and Oded Schwartz

UC Berkeley

IWASEP
June 5, 2012
Napa Valley, CA

\/

Research supported by Microsoft (Award #024263) and Intel (Award #024894) funding and by matching funding by U.C.
Discovery (Award #DIG07-10227). Additional support comes from Par Lab affiliates National Instruments, NEC, Nokia,
NVIDIA, and Samsung. Research is also supported by DOE grants DE-SC0003959, DE-SC0004938, and DE-AC02-05CH11231;
the Sofja Kovalevskaja programme of Alexander von Humboldt Foundation; and by the National Science Foundation under
agreement DMS-0635607.

Benjamin Lipshitz IWASEP 9 1

Introduction

@ Classical matrix multiplication is nearly ubiquitous, even though
asymptotically faster algorithms have been know since 1969

@ Concerns about fast matrix multiplication:

e Practical speed

e Stability

@ This talk addresses both concerns

Benjamin Lipshitz IWASEP 9 2

@ Strassen’s algorithm

o New parallel algorithm
o Communication optimal
o Faster in practice

@ Stability of Strassen

o Normwise error bound
e Diagonal scaling, improved error bounds

o Stability experiments

Benjamin Lipshitz IWASEP 9 3

Recall: Strassen’s fast matrix multiplication

Strassen’s original algorithm uses 7 multiplies and 18 adds for n = 2.
It is applied recursively (blockwise).

My = (Au+ Ax») - (B + Bx)

M, = (Axn+ Ax)- Bu

Ms; = Au - (B — Bx) 2 c, | oo 4, | 4, B, | B,
My = Ax-(Bx— Bi1) = .

Ms = (Au+ A1) Bx n/2 Gy | Co Az | Az B,; | B
Ms = (Aa — A1) (B + Bi2)

My = (A2 —A») (Ba+B») T(n)=7-T(n/2)+ O(n?)

|
Cui = M+ Mi— Ms+ M T(n)=0© (n°g27>
Cor = M3+ Ms
Cn = Mo+ M Improved by Winograd to 15 additions
Cnr = M — M+ M+ Ms

Benjamin Lipshitz IWASEP 9 4

Communication costs

Two kinds of costs:

o Arithmetic (FLOPs)

e Communication: moving data between

o levels of a memory hierarchy (sequential case)
@ over a network connecting processors (parallel case)

Communication is becoming more expensive relative to computation

Sequential Distributed

\

(),

Benjamin Lipshitz IWASEP 9 5

Communication lower bounds for matrix multiplication

Strassen: Classic (cubic):

=S (C O I (CH i)

=),
i i n logy 7 M n log, 8 M
=, Q () _ Q () w
Distributed \/M P \/M P
iﬁi Q n Q n?
Distguted W W

Benjamin Lipshitz IWASEP 9 6

Communication lower bounds for matrix multiplication

Algorithms attaining these bounds?

Strassen: ‘/ Classic (cubic)‘:/
A oG (G

=),

By e
v

8 o)

Benjamin Lipshitz IWASEP 9 6

Communication lower bounds for matrix multiplication

Algorithms attaining these bounds?

Strassen: Classic (cubic):

¥l sV
quu Q ((jﬁ) M) Q ((\/”M> M)
1

Distributed ((/U
algorithm

iﬁi i n2/
Q Q
P2/Iog27> <P2/Iog28>

Distributed

Benjamin Lipshitz IWASEP 9 6

Lessons from lower bounds

@ Don't use a classical algorithm for the communication
e Strassen can communicate less than classical
o Make local multiplies as large as possible

o Use all available memory, up to O(n?/P?/10827)

e Communication bound decreases with increased memory

Send memory size messages to minimize latency

Benjamin Lipshitz IWASEP 9 7

Main Idea of CAPS algorithm

At each level of recursion tree, choose either breadth-first or depth-first

traversal of the recursion tree

Breadth-First-Search (BFS)

AB

TS, T;S, T;8, T3S, T;S, T:S, T:S,

@ Runs all 7 multiplies in parallel

@ each uses P/7 processors
@ Requires 7/4 as much extra memory
@ Requires communication, but

@ All BFS minimizes communication if
possible

Benjamin Lipshitz IWASEP 9

Depth-First-Search (DFS)

AB

TeS, T3S, T;S, T3S, T;S, T:S, TS

0% 1721 2 323 "4 '575 6%

Runs all 7 multiplies sequentially

@ each uses all P processors
Requires 1/4 as much extra memory
No immediate communication
Increases bandwidth by factor of 7/4

Increases latency by factor of 7

Main Idea of CAPS algorithm

At each level of recursion tree, choose either breadth-first or depth-first
traversal of the recursion tree

Breadth-First-Search (BFS) Depth-First-Search (DFS)
AB AB
TS, T;S, T;S, T;S, T, S, T:S, T; S, TS, T3S, T;S, T3S, T;S, T:S, T; S,
CAPS

if enough memory and P > 7
then BFS step
else DFS step

end if

Benjamin Lipshitz IWASEP 9 8

Asymptotic costs analysis

Flops Bandwidth
n“o n“o n?
Lower Bound e max {—PMw0/2—1) p2/wg }
c n“o n2
2 2D-Strassen | Si—n72 pi/z
o] ¢ 3 L 2
= 7 n 7 n
B Strassen-2D (§) v (z) P12
n“o n“0 n?
CAPS P max { PMwo/2=17 p2/wq }
Lower Bound | 2 ST s
- ower boun = maXx PM1/25 p2/3
2 | v
4 P P1/2
() n3 n3 I'I2
2.5D = max{wa P2/3
Benjamin Lipshitz IWASEP 9

Performance of CAPS

Effective GFLOPS per node

Strong-scaling on Franklin (Cray XT4), n = 94080.

50

CAPS —+—
2.5D-Strassen —»—
2D-Strassen ---e---
Strassen-2D ---&---
2.5D Classical —&—
ScalAPACK ---6---

absolute maximum for all classical algorithms

24%-184% faster than previous Strassen-based algorithms
51%-84% faster than best classical algorithm

L 1

P=49

P=343 P=2401

Benjamin Lipshitz IWASEP 9

10

CAPS Summary

The CAPS matrix multiplication algorithm
@ is communication optimal
e matches the communication lower bounds
e moves asymptotically less data than all existing algorithms
@ is faster: asymptotically and in practice
o faster than any parallel classical algorithm can be
o faster than any parallel Strassen-based algorithm we are aware of
@ applies to other fast matrix multiplication algorithms

e but there might not be any other practical ones

Benjamin Lipshitz IWASEP 9 11

@ CAPS has the same stability properties as any other Strassen
(Strassen-Winograd) algorithm.

o Weaker stability guarantee than classical, but still norm-wise stable.

@ This can be improved through diagonal scaling.

e Two best scaling schemes give incomparable bounds

o Can check which bound is better in O(n?) time

@ The improved error bounds match those of matrix factorization such
as classical LU and QR.

Benjamin Lipshitz IWASEP 9 12

Diagonal Scaling

Outside scaling: DACD®B = (DAA)(BD?)
@ Scale so each row of A and each column of B has unit norm.
o Explicitly:

Let D7 = (|A(/,2)))7", and DF = (|IB(:,)N~

Scale A’ = D?A, and B’ = BDB

Use Strassen for the product C' = A’'B’.

Unscale C = (DA)_1 c’ (DB)_1

Benjamin Lipshitz IWASEP 9 13

Diagonal Scaling

Outside scaling: DACD®B = (DAA)(BD?)
@ Scale so each row of A and each column of B has unit norm.
o Explicitly:
Let Dff = (J|AGi,:)I)7* and DF = (1B, /)N~
Scale A’ = DAA, and B’ = BDB
Use Strassen for the product C' = A’'B’.
Unscale C = (DA)_1 c’ (DB)_1
Inside scaling: C = (AD)(D~'B)
@ Scale so each column of A has the same norm as the corresponding
row of B.

o Explicitly:
o Let Dji = (|AC,)I/IIBG,)N~
e Scale A = AD, and B’ = D~1B.
o Use Strassen for the product C = A'B’.

Benjamin Lipshitz IWASEP 9 13

|G — Cyjl < O(e)f(n) - ...

Classical:
(1Al1B);j
Qutside-Inside: Inside-Outside:
IAGDINIBCA)IIIDAA]- | BDE|| I(AD)(i)INIDEB))l
Outside: Inside:
IAG)INBEA [I1A[-1Bl]]
No Scaling:
A8l

X — Y means that bound X is stronger than bound Y.

Benjamin Lipshitz IWASEP 9 14

Scaling example: easy case

1 . .

No scaling —*—
0.01 } Outer —=— |

Inner —e—
Outer-Inner ——
Inner-Outer —&—

o
o
S
S
—
T
1

Number of Strassen Steps

Benjamin Lipshitz IWASEP 9 15

Scaling example: needs outer scaling

1 . .

No scaling —*—
0.01 } Outer —=— |

Inner —e—
Outer-Inner ——
Inner-Outer —&—

o
o
S
S
—
T
1

Number of Strassen Steps

Benjamin Lipshitz IWASEP 9 16

Scaling example: needs inner and outer

1 T T T T
No scaling —*—
0.01 } Outer —=— |
Inner —e—
i Outer-Inner —— |
0.0001 Inner-Outer —&—
—|= 1e-06
Ola
(jS 1e-08
X 1e-10
[g°]
e
1e-12
1e-14

1e-16
0 2 4 6 8 10

Number of Strassen Steps

Benjamin Lipshitz IWASEP 9 17

Scaling example: inner-outer better than outer-inner

1 No scaling —*—

0.01 } Outer —=— |
Inner —e—

0.0001 } Outer-lnner —— |

Inner-Outer

|Cii—Gij|
A[-[BI);

<

max;
—
)
4
o

Number of Strassen Steps

Benjamin Lipshitz IWASEP 9 18

Scaling example: outer-inner better than inner-outer

1 No scaling —*—

0.01 } Outer —=— |
Inner —e—

0.0001 } Outer-lnner —— |

Inner-Outer

1e-06

y
[Al-1B1);

1e-08

|Ci— Gyl

<

1e-10

max;; (

1e-12

1e-14

1e-16
0 2 4 6 8 10

Number of Strassen Steps

Benjamin Lipshitz IWASEP 9 19

Scaling example: problems scaling can't fix

1 T T T T
No scaling —*—
0.01 } Outer —=— |
Inner —e—
i Outer-Inner —— |
0.0001 Inner-Outer —&—
_\"3 1e'06 B T
Ola
< 1e-08 | 1
() ()
é‘ 1e-10 } 11 11]
e
1e-12 | .
1e-14 -
n=1024
1e-16 : : : :
0 2 4 6 8 10

Number of Strassen Steps

Benjamin Lipshitz IWASEP 9 20

|G — Cyjl < O(e)f(n) - ...

Classical:
(1Al1B);j
Qutside-Inside: Inside-Outside:
IAGDINIBCA)IIIDAA]- | BDE|| I(AD)(i)INIDEB))l
Outside: Inside:
IAG)INBEA [I1A[-1Bl]]
No Scaling:
A8l

X — Y means that bound X is stronger than bound Y.

Benjamin Lipshitz IWASEP 9 21

Stability summary

@ Scaling improves error bound of Strassen

o To be comparable to many other algorithms

e But still not a good as classical algorithm

Applies to other fast matrix multiplication algorithms

@ Inner-then-outer or outer-then-inner scaling are best

Can choose between them by evaluating their bounds

Open problem: simultaneously attain inner and outer scaling bounds?

Benjamin Lipshitz IWASEP 9 22

Practicality of Large Scale Fast Matrix Multiplication

Grey Ballard, James Demmel, Olga Holtz,
Benjamin Lipshitz and Oded Schwartz

Thank You!

N/
/\m\mmmm

Research supported by Microsoft (Award #024263) and Intel (Award #024894) funding and by matching funding by U.C.
Discovery (Award #DIG07-10227). Additional support comes from Par Lab affiliates National Instruments, NEC, Nokia,
NVIDIA, and Samsung. Research is also supported by DOE grants DE-SC0003959, DE-SC0004938, and DE-AC02-05CH11231
the Sofja Kovalevskaja programme of Alexander von Humboldt Foundation; and by the National Science Foundation under
agreement DMS-0635607.

njamin Lipshitz IWASEP 9

References

ﬁ G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and O. Schwartz.
Communication-optimal parallel algorithm for Strassen’s matrix multiplication.
Technical Report EECS-2012-32, UC Berkeley, March 2012.

To appear in SPAA 2012

ﬁ G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and O. Schwartz.
Strong scaling of matrix multiplication algorithms and memory-independent communication lower bounds.
Technical Report EECS-2012-31, UC Berkeley, March 2012
To appear in SPAA 2012

ﬁ G. Ballard, J. Demmel, O. Holtz, and O. Schwartz.
Graph expansion and communication costs of fast matrix multiplication.

In Proceedings of the 23rd ACM Symposium on Parallelism in Algorithms and Architectures, SPAA '11, pages 1-12, New
York, NY, USA, 2011. ACM.

ﬁ B. Lipshitz, G. Ballard, O. Schwartz, and J. Demmel.

Communication-avoiding parallel Strassen: Implementation and performance.
Technical Report EECS-2012-90, UC Berkeley, May 2012.
Submitted to SC 2012

njamin Lipshitz IWASEP 9

Extra slides

P Proious Parall Strasen
o aIXTD
P Stsssn-Vinograd Aot
0o oo saing
R Time breaiconn
LY Sl probie:

njamin Lipshitz IWASEP 9

Previous parallel Strassen-based algorithms

2D-Strassen: [Luo, Drake 95]
Run classical 2D inter-processors.
e Same communication costs as classical 2D.

Run Strassen locally.
e Can’t use Strassen on the full matrix size. N AN

Benjamin Lipshitz IWASEP 9 26

Previous parallel Strassen-based algorithms

2D-Strassen: [Luo, Drake 95]
Run classical 2D inter-processors.
e Same communication costs as classical 2D.

Run Strassen locally.
e Can’t use Strassen on the full matrix size. N AN

Strassen-2D: [Luo, Drake 95; Grayson, Shah, van de
Geijn 95]
Run Strassen inter-processors
e This part can be done without communication.
Then run classical 2D.

e Communication costs grow exponentially with
the number of Strassen steps.

Benjamin Lipshitz IWASEP 9 26

Previous parallel Strassen-based algorithms

2D-Strassen: [Luo, Drake 95]
Run classical 2D inter-processors.
e Same communication costs as classical 2D.

Run Strassen locally.
e Can’t use Strassen on the full matrix size. N AN

Strassen-2D: [Luo, Drake 95; Grayson, Shah, van de
Geijn 95]
Run Strassen inter-processors
e This part can be done without communication.
Then run classical 2D.

e Communication costs grow exponentially with
the number of Strassen steps.

Neither is communication optimal

Benjamin Lipshitz IWASEP 9 26

1."100/01]02]03 /04|05 |06
SuEH J— 10[11]12]13[14 15|16
20(21(22(2324 2526
.. |30]31[32[33[34[35]36

“140]41(42|43 444546
.. |50]51|52]53]54|55|56
60(61|62|63|64 6566

IWASEP 9

Strassen-Winograd Algorithm

Cu | G2 > < A1 | A > (Au | Ar)
< Co1 | C2 Ao | Az Ao | Az

Qi=S5"T;
So = Ann To=Bn1 U =Qi+ Qs
S = A T1 = B Uy = U+ Qs
S=An+Axn To=Bp+Bi1 Us=U+Q
S$3=5%—-An T3=Bn-T» Ci1=Q+&
S4=An—-An Ta=Bn—Bi Co=Us+
Ss=An+S Ts=bBx» Gr=U— @
Se = A To=T3—Bxn Co=U+@&s

Benjamin Lipshitz

IWASEP 9

Implications for hardware scaling

Requirements so that dense matrix multiplication is computation bound.

Bandwidth Latency
Requirement Requirement
WM 25 M Za
yM=/271 > 8y Mo/ >

Classic
Strassen

Strassen performs fewer flops and less communication, but is more

demanding on the hardware.

Benjamin Lipshitz IWASEP 9

CAPS time breakdown

n = 94080 on Franklin

1000

strong scaling range

—_—

local multiplications
communication
local additions
re-arrangement
other

perfect scaling

Wall time (seconds)
5

0.1
P=49

Benjamin Lipshitz

P=343

IWASEP 9

P=2401

Performance on small problems

n = 3136 on Franklin

—_

e
—

Execution time, seconds

0.01 L L L L
1el 1e2 1e3 1e4

Number of Cores

Benjamin Lipshitz IWASEP 9 31

Sequential recursive Strassen is communication optimal

A

Sequential

@ Run Strassen algorithm recursively.

@ When blocks are small enough, work in localy memory, so no further
bandwidth cost

M)+ O(n?) if 3n> > M
otherwise

W(n, M):{ 70(

@ Solution is

n“o
W(n, M) =0 <Mw0/21>

Benjamin Lipshitz IWASEP 9 32

Extra slides

P Proious Parall Strasen
o aIXTD
P Stsssn-Vinograd Aot
0o oo saing
R Time breaiconn
LY Sl probie:

njamin Lipshitz IWASEP 9 33

