
BERKELEY PAR LAB

1

Lithe: Enabling Efficient Composition
of Parallel Libraries

Heidi Pan, Benjamin Hindman, Krste Asanović

ParLab Boot Camp • August 19, 2009

xoxo@mit.edu • {benh, krste}@eecs.berkeley.edu
Massachusetts Institute of Technology • UC Berkeley

2

Real-World Parallel Composition Example

Sparse QR Factorization
(Tim Davis, Univ of Florida)

OS

MKL

OpenMP

System Stack

Hardware

TBB

SPQR
Frontal Matrix
Factorization

Column
Elimination

Tree

Software Architecture

3

Out-of-the-Box Performance
Ti

m
e

(s
ec

)

Performance of SPQR on 16-core Machine

Out-of-the-Box

Input Matrix

sequential

4

Out-of-the-Box Libraries Oversubscribe the
Resources

OS

TBB OpenMP

Hardware

Core
0

Core
1

Core
2

Core
3

virtualized kernel threads

5

MKL Quick Fix

Using Intel MKL with Threaded Applications
http://www.intel.com/support/performancetools/libraries/mkl/sb/CS-017177.htm

• If more than one thread calls Intel MKL and the
function being called is threaded, it is important
that threading in Intel MKL be turned off.
Set OMP_NUM_THREADS=1 in the environment.

6

Sequential MKL in SPQR

OS

TBB OpenMP

Hardware

Core
0

Core
1

Core
2

Core
3

7

Sequential MKL Performance
Ti

m
e

(s
ec

)

Performance of SPQR on 16-core Machine

Out-of-the-Box Sequential MKL

Input Matrix

8

SPQR Wants to Use Parallel MKL

No task-level parallelism!

Want to exploit
 matrix-level parallelism.

9

Share Resources Cooperatively

OS

TBB OpenMP

Hardware

Tim Davis manually tunes libraries to effectively partition the resources.

Core
0

Core
1

TBB_NUM_THREADS = 2

Core
2

Core
3

OMP_NUM_THREADS = 2

10

Manually Tuned Performance
Ti

m
e

(s
ec

)

Performance of SPQR on 16-core Machine

Out-of-the-Box Sequential MKL Manually Tuned

Input Matrix

11

Manual Tuning Destroys
Black Box Abstractions

Tim Davis

LAPACK
Ax=b
MKL

OpenMP

OMP_NUM_THREADS = 4

12

Manual Tuning Destroys
Code Reuse and Modular Updates

SPQR

MKL
v1

MKL
v2

MKL
v3

App

0 0 1 2 3

13

Virtualized Threads are Bad

OS
Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7

App 1 (TBB) App 1 (OpenMP) App 2

Different codes compete unproductively for resources.

14

Harts: Hardware Thread Contexts

  Represent real hw resources.
  Requested, not created.
  OS doesn’t manage harts for app.

OS
Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7

MKL

OpenMP
TBB

SPQR

Harts

15

Sharing Harts

OS

TBB OpenMP

Hardware

time

Hart 0 Hart 1 Hart 2 Hart 3

Partition

16

Hierarchical Cooperative Scheduling

TBB Sched

Column Elimination Tree

OS (Harts)

Hardware

LAPACK

MKL

OpenMP Sched

Hierarchical,
Cooperative

Direct Control
of Resources

17

Child Scheduler

Parent Scheduler

Standard Lithe ABI

CilkLithe Scheduler

interface for sharing harts

TBBLithe Scheduler

Caller

Callee

return call

return call

interface for exchanging values

  Analogous to function call ABI for enabling interoperable codes.

TBBLithe Scheduler

OpenMPLithe Scheduler

unregister enter yield request register

unregister enter yield request register

  Mechanism for sharing harts, not policy.

18

SPQR with Lithe

time

enter
enter

enter

yield
yield

MKL

OpenMPLithe

TBBLithe

SPQR

yield

 call

 ret

 create req

19

SPQR with Lithe

time

MKL

OpenMPLithe

TBBLithe

SPQR

 req req req req

 call call call call

 ret ret ret ret

20

Performance of SPQR with Lithe
Ti

m
e

(s
ec

)

Out-of-the-Box Lithe

Input Matrix

Manually Tuned

21

Questions?

OS

Hardware

Lithe

TBBLithe

MKL

OMP

SPQR

Lithe: Enabling Efficient Composition of Parallel Libraries

Lithe

22

Acknowledgements

We would like to thank George Necula and the rest of Berkeley
Par Lab for their feedback on this work.

Research supported by Microsoft (Award #024263) and Intel
(Award #024894) funding and by matching funding by U.C.
Discovery (Award #DIG07-10227). This work has also been
in part supported by a National Science Foundation Graduate
Research Fellowship. Any opinions, findings, conclusions, or
recommendations expressed in this publication are those of the
authors and do not necessarily reflect the views of the National
Science Foundation. The authors also acknowledge the support
of the Gigascale Systems Research Focus Center, one of five
research centers funded under the Focus Center Research
Program, a Semiconductor Research Corporation program.

