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Real-World Parallel Composition Example 

Sparse QR Factorization 
(Tim Davis, Univ of Florida) 
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Out-of-the-Box Libraries Oversubscribe the 
Resources 
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MKL Quick Fix 

Using Intel MKL with Threaded Applications 
http://www.intel.com/support/performancetools/libraries/mkl/sb/CS-017177.htm 

• If more than one thread calls Intel MKL and the 
function being called is threaded, it is important 
that threading in Intel MKL be turned off.  
Set OMP_NUM_THREADS=1 in the environment. 



6 

Sequential MKL in SPQR 
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Sequential MKL Performance 
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SPQR Wants to Use Parallel MKL 

No task-level parallelism! 

Want to exploit 
 matrix-level parallelism. 
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Share Resources Cooperatively 
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Tim Davis manually tunes libraries to effectively partition the resources. 
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Manually Tuned Performance 
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Manual Tuning Destroys  
Black Box Abstractions 
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Manual Tuning Destroys  
Code Reuse and Modular Updates 
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Virtualized Threads are Bad 

OS 
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Different codes compete unproductively for resources. 
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Harts: Hardware Thread Contexts 

  Represent real hw resources. 
  Requested, not created. 
  OS doesn’t manage harts for app. 
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Sharing Harts 
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Hierarchical Cooperative Scheduling 
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Child Scheduler 

Parent Scheduler 

Standard Lithe ABI 

CilkLithe Scheduler 

interface for sharing harts 

TBBLithe Scheduler 

Caller 
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return call 

return call 

interface for exchanging values 

  Analogous to function call ABI for enabling interoperable codes. 
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OpenMPLithe Scheduler 

unregister enter yield request register 

unregister enter yield request register 

  Mechanism for sharing harts, not policy. 
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SPQR with Lithe 
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SPQR with Lithe 
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Performance of SPQR with Lithe 
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Questions? 
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