Lithe: Enabling Efficient Composition
of Parallel Libraries

Heidi Pan, Benjamin Hindman, Krste Asanovi¢

xoxo@mit.edu ¢ {benh, krste}@eecs.berkeley.edu
Massachusetts Institute of Technology ¢ UC Berkeley

ParLab Boot Camp ¢ August 19, 2009



Real-World Parallel Composition Example

Sparse QR Factorization
(Tim Davis, Univ of Florida)

Column
Elimination
Tree

Hardware C%

System Stack Software Architecture




Out-of-the-Box Performance

Performance of SPQR on 16-core Machine

Out-of-the-Box

3.5- 25 85 1200 -
311 20111 8041 1000
— %
Q' 2.5 i i 800
L — 1 751
2_/
o 600
E sl i i
= 1 107 70( -
1 4001
0.5_/— 5'/_ 65/_ 200 12
0 ' 0 - 60 ; 0
landmark deltaX ESOC

Input Matrix

Rucci



Out-of-the-Box Libraries Oversubscribe the
Resources

EEEEEEE

virtualized kernel threads

Hardware




MKL Quick Fix

Using Intel MKL with Threaded Applications

http://www.intel.com/support/performancetools/libraries/mkl/sb/CS-017177.htm

Software Products

Intel® Math Kernel Library (Intel® MKL)
Using Intek® MKL with Threaded Applications

Page Contents:

allocated and not released

library with Intel MKL. In this case, the safe approach is to set
OMP_NUM_THREADS=1.

Multiple programs are running on a multiple-CPU system. In cluster
applications, the parallel program can run separate instances of the
program on each processor. However, the threading software will see
multiple processors on the system even though each processor has a
separate process running on it. In this case OMP_NUM_THREADS should be
setto 1.

® If the variable OMP_NUM_THREADS environment variable is not set, then
the default number of threads will be assumed 1.

Setting the Number of Threads for OpenMP* (OMP)

printf(*rowita\tc\n");
for ( =0:i<10:i+
Yod:\t%f

%An", i, a[i*SIZE], cfi*SIZE]):

omp_set_num_threads(1)

for( i=0; i<SIZE: i+
J<SIZE: =)
double)(i+j)
double)(i"j):
c[i*SIZE+]]= (double)0

the Nun;
se Intel M,

Memory Allocation MKI M
some Intel® MKL routjpes
One of the advantagesff us|

occurs once ime
allocation persists uifl the 3|

will allocate a stacl ual to

===p=A that threading in Intel MKL be turned off.

Using Thread'l‘ with BLA]
Intel MKL is threaded in a
Level 3 BLA: FTs, and

We list them here with recon
the problem fhdsts is approp|

* If more than one thread calls Intel MKL and the
====f function being called is threaded, it is important

s Set OMP NUM THREADS=1 in the environment.

If the use;l\reads the prolarr\ using OpenMP directives and uses the Int=l® Compilers to
compile th program, Intel MKL and the user program will both use the same threading library
Intel MKLytrie: stegffine it is in a parallel region in the program, and # it is, it does not
spread ijf operations over muitiple threads. But Intel MKL can be aware that it is in a parallel
region only if the thyffaded program and Intel MKL are using the same threading library. If the
user prffgram is thr€aded by some other means, Intel MKL may operate in muttithreaded
mode 8nd the cophputations may be corrupted. Here are several cases and our
recommendatioffs:

¥ serblreads the p ogram using OS threads (pthreads on Linux*, Win32*
theads on Windows*). If more than one thread calls Intel MKL and the
fffiction being called is threaded, it is important that threading in Intel MKL
be turned off. Set OMP_NUM_THREADS=1 in the environment.

® User threads the program using OpenMP directives and/or pragmas and
compiles the program using a compiler other than a compiler from Intel.
This is more problematic because setting OMP_NUM_THREADS in the
environment affects both the compiler’s threading library and the threading

void main(int args. char *argvll{

double *a, "b, "c:
a = new double [SIZE'SI
b = new double [SIZE™
© = new double [SIZE"

double alpha=1, beta=1
IZE. n=SIZE,
char transa="ri, transb:

IZE, Ida=SIZE, Idb=SIZE, kc=SIZE. i=0, j=0;

for( i=0: i<SIZE: i++){

chlas_dgemm({CblasRowMsajor. CblasNoTrans, CblasNoTrans
m, n, k, alpha, a, Ida, b, kib, beta, c. Idc):

) a[*SIZE],
c[i"SIZE]):

}

Can | use Intel MKL if | thread my application?

The Intel Math Kernel Library is designed and compied for thread safety so it can be called
from programs that are threaded. Calling Intel MKL routines that are threaded from muitiple
application threads can lead to confict (including incorrect answers or program failures), if the
calling library differs from the Intel MKL threading library.




Sequential MKL in SPQR

OpenMP
0S

Hardware




Sequential MKL Performance

Time (sec)

Performance of SPQR on 16-core Machine

Out-of-the-Box

o
o o

= N w
- N W o

landmark

25;

20;

151

10

- Sequential MKL

deltaX

85;

801

75

70;

65;

60-

ESOC

Input Matrix

1200

1000

800

600

400

2001

Rucci




SPQR Wants to Use Parallel MKL

No task-level parallelism!

Want to exploit
matrix-level parallelism.




Share Resources Cooperatively

Core Core Core Core
0 1 2 3

Hardware

Tim Davis manually tunes libraries to effectively partition the resources.




Manually Tuned Performance

Time (sec)

Performance of SPQR on 16-core Machine

ot
o o

= N w
- N W o

landmark

Out-of-the-Box

25;

20;

151

10

- Sequential MKL

deltaX

85;

801

75

70;

65;

60-

ESOC

Input Matrix

1200

1000

800

600

400

2001

0.

. Manually Tuned

Rucci




Manual Tuning Destroys

Black Box Abstractions

. . AN
Tim Davis :0/ OMP_NUM THREADS = 4




Manual Tuning Destroys

Code Reuse and Modular Updates

SPQR




Virtualized Threads are Bad

B App 1 (TBB) [] App 1 (OpenMP) [ App 2

EEE

OS

Core 0 Core1 Core2 Core 3 Core4 Core5 Core6 Core?7

Different codes compete unproductively for resources.




Harts: Hardware Thread Contexts

Harts

<+ Represent real hw resources.
<+ Requested, not created.
<+ OS doesn’t manage harts for app.

Core 0 Core1 Core2 Core 3 Core4 Core5 Core6 Core?7




Sharing Harts

Hart O Hart 1 Hart 2 Hart 3

time

Hardware
Partition




Hierarchical Cooperative Scheduling

Column Elimination Tree

LAPACK
Hierarchical,
Cooperative MKL

TBB Sched OpenMP Sched

Direct Control
OS (Harts) of Resources

Hardware




Standard Lithe ABI

TBB| . Scheduler Caller
register | unregister call \return
interface for sharing harts interface for exchanging values
call return
OpenMP, ;. Scheduler Callee

< Analogous to function call ABI for enabling interoperable codes.

<+ Mechanism for sharing harts, not policy.




SPQR with Lithe

call
req
nter
nter
X nter
1el
< rerd jelq 2yield
<: « \\zi ret
S0 &
/\ / A

time




SPQR with Lithe

call call call call
req req req req
ret ret ret ret




Performance of SPQR with Lithe

.
d

Time (sec)

o = N w
O U A TN WO A

- Out-of-the-Box

landmark

30;

25

20

151

104

deltaX

- Manually Tuned

120,
100-
80-
60-
40
20-
0-

ESOC

Input Matrix

600
500
400
300:
200
100

Lithe

Rucci




Questions?

SPQR
7 P mMKE
TBBLithe N

\ N\

Hardware

Lithe: Enabling Efficient Composition of Parallel Libraries




Acknowledgements

We would like to thank George Necula and the rest of Berkeley
Par Lab for their feedback on this work.

Research supported by Microsoft (Award #024263 ) and Intel
(Award #024894) funding and by matching funding by U.C.
Discovery (Award #DIG07-10227). This work has also been

in part supported by a National Science Foundation Graduate
Research Fellowship. Any opinions, findings, conclusions, or
recommendations expressed in this publication are those of the
authors and do not necessarily reflect the views of the National
Science Foundation. The authors also acknowledge the support
of the Gigascale Systems Research Focus Center, one of five
research centers funded under the Focus Center Research
Program, a Semiconductor Research Corporation program.

Microsoft: (inteD GSRC




