
A JVM for the Barrelfish Operating System
2nd Workshop on Systems for Future Multi-core Architectures

(SFMA’12)

Martin Maas (University of California, Berkeley)
Ross McIlroy (Google Inc.)

10 April 2012, Bern, Switzerland

Introduction

I Future multi-core architectures will presumably...
I ...have a larger numbers of cores
I ...exhibit a higher degree of diversity
I ...be increasingly heterogenous
I ...have no cache-coherence/shared memory

I These changes (arguably) require new approaches for
Operating Systems: e.g. Barrelfish, fos, Tessellation,...

I Barrelfish’s approach: treat the machine’s cores as nodes in a
distributed system, communicating via message-passing.

I But: How to program such a system uniformly?

I How to exploit performance on all configurations?

I How to structure executables for these systems?

Introduction

I Answer: Managed Language Runtime Environments (e.g.
Java Virtual Machine, Common Language Runtime)

I Advantages over a native programming environment:
I Single-system image
I Transparent migration of threads
I Dynamic optimisation and compilation
I Language extensibility

I Investigate challenges of bringing up a JVM on Barrelfish.
I Comparing two different approaches:

I Convential shared-memory approach
I Distributed approach in the style of Barrelfish

Outline

1. The Barrelfish Operating System

2. Implementation Strategy
I Shared-memory approach
I Distributed approach

3. Performance Evaluation

4. Discussion & Conclusions

5. Future Work

The Barrelfish Operating System

I Barrelfish is based on the Multikernel Model: Treats
multi-core machine as a distributed system.

I Communication through a lightweight message-passing library.

I Global state is replicated rather than shared.
2.2. THE BARRELFISH OPERATING SYSTEM 25

Hardware

Software

User Mode

Kernel Mode

CPU

CPU Driver

Monitor

Dispatcher

CPU

CPU Driver

Monitor

Disp Disp

CPU

CPU Driver

Monitor

Dispatcher

App App
Domain

Figure 2.3: Interactions between Barrelfish’s core components

from the rest of the system. This allows Barrelfish to support heterogeneous
systems, since the CPU driver exposes an ABI that is (mostly) independent
from the underlying architecture of the core.

Monitor: The monitor runs in user-mode and together, the monitors across
all cores coordinate to provide most traditional OS functionality, such as
memory management, spanning domains between cores and managing timers.
Monitors communicate with each other via inter-core communication. Global
OS state (such as memory mappings) is replicated between the monitors and
kept consistent using agreement protocols.

Dispatchers: Each core runs one or more dispatchers. These are user-
level thread schedulers that are up-called by the CPU driver to perform the
scheduling for one particular process. Since processes in Barrelfish can span
multiple cores, they may have multiple dispatchers associated with them, one
per core on which the process is running. Together, these dispatchers form the
“process domain”. Dispatchers are responsible for spawning threads on the
di↵erent cores of a domain, performing user-level scheduling and managing

Implementation

I Running real-world Java applications would require bringing
up a full JVM (e.g. the Jikes RVM) on Barrelfish.

I Stresses the memory system (virtual memory is fully managed
by the JVM), Barrelfish lacked necessary features (e.g. page
fault handling, file system).

I Would have distracted from understanding the core challenges.

I Approach: Implementation of a rudimentary Java Bytecode
interpreter that provides just enough functionality to run
standard Java benchmarks (Java Grande Benchmark Suite).

I Supports 198 out of 201 Bytecode instructions (except wide,
goto w and jsr w), Inheritance, Strings, Arrays, Threads,...

I No Garbage Collection, JIT, Exception Handling, Dynamic
Linking or Class Loading, Reflection,...

Shared memory vs. Distributed approach

Shared memory

JVM
run func on

obj A obj B obj C obj DHeap

Domain

Distributed Approach

JVM0 JVM1

JVM2 JVM3

move object

move object ack

invokereturn

putfield

putfield ack

obj A obj B obj C obj D

The distributed approach

jvm-node0 jvm-node1 jvm-node2 jvm-node3

×obj request

obj request

×obj request

obj request response

invoke virtual

getfield

getfield response

invoke return

O
b
je
ct

lo
o
k
u
p

M
et
h
o
d
ca
ll

blocks

Performance Evaluation

I Performance evaluation using the sequential and parallel Java
Grande Benchmarks (mostly Section 2 - compute kernels).

I Performed on a 48-core AMD Magny- Cours (Opteron 6168).

I Four 2x6-core processors, 8 NUMA nodes (8GB RAM each).

I Evaluation of the shared-memory version on Linux (using
numactl to pin cores) and Barrelfish.

I Evaluation of the distributed version only on Barrelfish.

I Compared performance to industry-standard JVM (OpenJDK
1.6.0) with and without JIT compilation.

Single-core (sequential) performance

I Consistently within a factor of 2-3 of OpenJDK without JIT.
4.5. MULTI-CORE PERFORMANCE 71

0 10 20 30 40 50 60 70

Crypt

FFT

HeapSort

LUFact

Series

SOR

SparseMatmult

8.75

67.29

16.34

9.85

21.08

40.47

14.42

8.55

54.89

16.19

9.74

18.22

43.02

12.85

4.83

27

5.43

3.45

17.89

20.01

6.24

0.28

4.4

0.39

0.13

11.78

1.02

0.77

Execution time in s

OpenJDK (JIT)

OpenJDK (No JIT)

JVM (Linux)

JVM (Barrelfish)

Figure 4.9: Application-benchmarks on a single core (SizeA)

While these results do not represent new findings, they are important for
evaluating the success of the project. They show that the developed JVM
provides the performance necessary to run real-world software, both on Linux
and Barrelfish.

4.5 Multi-core performance

Performance on multiple cores was evaluated using the parallel SparseMatmult
benchmark from the JGF benchmark suite. The benchmark was chosen since
it stresses inter-core communication and does not use Math.sqrt(), which
exhibits di↵erent performance on Barrelfish and Linux (Figure 4.8).

Performance of the shared-memory approach

I Using the parallel sparse matrix multiplication Java Grande
benchmark JGFSparseMatmultBenchSizeB.

I Scales to 48 cores as expected (relative to OpenJDK).

 0.1

 1

 10

 100

 0 5 10 15 20 25 30 35 40 45 50

E
x
e
c
u
ti
o
n
 t
im

e
 i
n
 s

 (
lo

g
 s

c
a
le

)

Number of cores

JGFSparseMatmultBenchSizeB

Barrelfish JVM (Barrelfish, Shared Memory)
Barrelfish JVM (Linux)

OpenJDK (No JIT)
OpenJDK

Performance of the shared-memory approach

I Quasi-linear speed-up implies large interpreter overhead.

I Barrelfish overhead presumably from agreement protocols.4.5. MULTI-CORE PERFORMANCE 75

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 5 10 15 20 25 30 35 40 45 50

S
p
e
e
d
-u

p

Number of cores

JGFSparseMatmultBenchSizeB

Linux
Barrelfish (Shared)

Figure 4.13: Average speed-up of the shared-memory approach

run-time of the experiments (which would have been up to 25h otherwise).
Since the benchmark only measures the execution of the kernel, this gives a
very close approximation for the run-time of JGFSparseMatmultBenchSizeA,
divided by 10. I call this benchmark JGFSparseMatmultBenchSizeA*.

Cores Run-time in s � (Standard deviation)4

1 2.701 0.0017
2 457.893 7.8906
3 395.681 3.5453
4 402.342 7.6161
5 444.382 2.1277
6 514.251 36.769
7 1764.32 247.74
8 2631.27 335.90
16 9333.87 (only executed once)

Table 4.1: Results of JGFSparseMatmultBenchSizeA*

4Since some executions exhibited a high variance, � is given for this experiment.

Performance of the distributed approach

I Distributed approach is orders of magnitude slower than
shared-memory approach.

I Sparse Matrix Multiplication is a difficult benchmark for this
implementation: 7 pairs of messages for each iteration of the
kernel (almost no communication for shared-memory).

I Overhead arguably caused by inter-core communication
(150-600 cycles) and message handling in Barrelfish.

Cores Run-time in s σ (Standard deviation)
1 2.70 0.002
2 458 7.891
3 396 3.545
4 402 7.616
5 444 2.128
6 514 36.77
7 1764 247.7
8 2631 335.9
16 9334 (only executed once)

Performance of the distributed approach

I Measuring completion time of threads on different cores shows
performance limitation due to inter-core communication.

I All data ”lives” on the same home node (Core #0).

I Cores 0-5 within a single processor, 6 & 7 is off-chip.

76 CHAPTER 4. EVALUATION

The results show that without optimisation, the distributed approach is too
slow to be feasible, at least for this benchmark. Measuring the run-time of
each individual thread gives evidence that this is caused by the overhead of
message passing: While a thread running on the home node of the working
set (jvm-node0) completes very quickly, threads on other cores take orders of
magnitude longer (Figure 4.14). The diagram also confirms that communi-
cation with cores on other chips (#6 and #7) is significantly more expensive
than on-chip communication (Figure 4.3).

400 800 1,200 1,600 2,000 2,400 2,800

#0

#1

#2

#3

#4

#5

#6

#7

0.36

453.24

452.06

453.52

452.58

470.05

2,386.94

2,478.17

Execution time in s

T
h
re

ad
(r

u
n
n
in

g
on

j
v
m
-
n
o
d
e
*
)

Figure 4.14: Run-times of individual threads

For this particular benchmark, the distributed JVM has to exchange 7 pairs
of messages for each iteration of the loop in Listing 4.1 (1 getfield, 1 astore,
5 aload), while the shared-memory approach requires almost no inter-core
communication (all arrays reside in the local cache most of the time and
there is little contention, since di↵erent threads write to di↵erent parts of
the output array). There are two basic aspects that add to the overhead of
the message passing:

• Inter-core communication: Each message transfer has to invoke
the cache coherence protocol, causing a delay of up to 150-600 cycles,
depending on the architecture and the number of hops [12].

• Message handling: The client has to yield the interpreter thread,
poll for messages, execute the message handler code and unblock the
interpreter thread. This involves two context switches and a time in-

Discussion & Future Work

I Preliminary results show that future work should focus on
reducing message-passing overhead and number of messages.

I How can these overheads be alleviated?
I Reduce inter-core communication: Caching of objects and

arrays, like a directory-based MSI cache-coherence protocol.
I Reduce message-passing latency: Hardware support for

message-passing (e.g. running on the Intel SCC).

I Additional areas of interest:
I Garbage Collection on such a system.
I Relocation of objects at run-time.
I Logical partitioning of objects.

I Future work should investigate bringing up the Jikes RVM on
Barrelfish, focussing on these aspects.

Questions?

