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TOPS500

- Listing of the 500 most powerful
Computers in the World
- Yardstick: R4, from Linpack

- Updated twice a year: & /

Size

ISC*xy In Germany, June xy
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- All data available from www.top500.0rqg
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Performance Development Development
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Concurrency Has Increased Dramatically

Sum of the # of cores in top 15 systems (from top500.0rQ)
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Exponential wave of increasing concurrency for forseeable future!
1M cores sooner than you think!
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Programming With MPI

 MPI Is a library
 All operations are performed with routine calls

 Basic definitions In
« mpi.hforC
 mpif.h for Fortran 77 and 90
 MPI module for Fortran 90 (optional)

e First Program:
e Create 4 processes in a simple MPI job
* Write out process number

* Write out some variables (illustrate separate name
space)

Slide source: Bill GropFE), ANL
r
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Finding Out About the Environment

e Two Important questions that arise early in a
parallel program are:

 HOw many processes are participating in this
computation?

 \Which one am 1?

 MPI provides functions to answer these
guestions:
MPI_Comm_size reports the number of processes.

MP1_Comm_rank reports the rank, a number between
0 and size-1, identifying the calling process

Slide source: Bill Gro%m ANL
r
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Hello (C)

#include "mpir.h"
#include <stdio.h>

int main( Int argc, char *argv[] )

{
Int rank, size;
MP1_Init( &argc, &argv );
MP1_Comm_rank( MP1_COMM_WORLD, &rank );
MPI1_Comm_size( MPI_COMM_WORLD, &size );
printf( "I am %d of %d\n', rank, size );
MP1_Finalize();
return O;

}

Slide source: Bill Gropp, ANL
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Hello (Fortran)

program main
include "mpif.h"
integer 1err, rank, size

call MPI_INIT( 1err )

call MP1_COMM_RANK(C MPI_COMM_WORLD, rank, merr )
call MPI_COMM_SIZE( MP1_COMM_WORLD, size, 1err )
print *, "I am ", rank, " of ", size

call MP1_FINALIZE( 1err )

end

Slide source: Bill Gropp, ANL
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Hello (C++)

#include "mpi.h"
#i1nclude <rostream>

int main( Int argc, char *argv|] )

{
INt rank, size;
MPI::Init(argc, argv);
rank = MPI::COMM_WORLD.Get rank();
size = MPI1::COMM_WORLD.Get _size();
std::cout << "l am " << rank << " of " << si1ze <<
"\n"";
MPI::Finalize();
return O;
+

Slide source: Bill Gropp, ANL
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Notes on Hello World

 All MPI programs begin with MPI_Init and end with
MPI_Finalize

* MPI_ COMM_WORLD is defined by mpi.h (in C) or
mpif.h (in Fortran) and designates all processes in the
MPI “job”

e Each statement executes independently in each process

e including the printf/print statements
* |/O not part of MPI-1but is in MPI-2

 print and write to standard output or error not part of either
MPI-1 or MPI-2

 output order is undefined (may be interleaved by character, line,
or blocks of characters),

 The MPI-1 Standard does not specify how to run an MPI
program, but many implementations provide
mpirun —np 4 a.out

Slide source: Bill Gropp, ANL
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MPI| Basic Send/Receive

 We need to fill in the detalils in

Process 0 Process 1

Send(data) ——
(data) —{_

Receive(data)

e Things that need specifying:
 How will “data” be described?
 How will processes be identified?
 How will the receiver recognize/screen messages?
* What will it mean for these operations to complete?

Slide source: Bill Gropp, ANL
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Some Basic Concepts

* Processes can be collected into groups

e Each message Is sent in a context, and must be
received in the same context

* Provides necessary support for libraries

« A group and context together form a
communicator

« A process is identified by its rank in the group
assoclated with a communicator

* There Is a default communicator whose group
contains all initial processes, called
MP1_COMM_WORLD

Slide source: Bill Gropp, ANL
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MPI| Datatypes

* The data in a message to send or receive Is

described by a triple (address, count, datatype),
where

 An MPI datatype is recursively defined as:
 predefined, corresponding to a data type from the
language (e.g., MPI_INT, MPI_DOUBLE)
e a contiguous array of MPI datatypes
 a strided block of datatypes
e an indexed array of blocks of datatypes
e an arbitrary structure of datatypes

e There are MPI functions to construct custom
datatypes, in particular ones for subarrays

Slide source: Bill Gr(l):Pp, ANL
r
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MPI| Tags

 Messages are sent with an accompanying user-
defined integer tag, to assist the receiving
process In identifying the message

* Messages can be screened at the receiving end
by specifying a specific tag, or not screened by
specifying MPl_ANY_TAG as the tag in a
receive

 Some non-MP| message-passing systems have

called tags “message types”. MPI calls them
tags to avoid confusion with datatypes

Slide source: Bill Gr(I):Pp, ANL
r
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MPI Basic (Blocking) Send
Ao > _BR0) |

MP'_Send(A, 10, MP'_DOUBLE, 1, ) MP'_RECV( B, 20, MP'_DOUBLE, 0, ... )

MPI_SEND(start, count, datatype, dest, tag, comm)
 The message buffer is described by (start, count, datatype).
* The target process is specified by dest (rank within comm)

* When this function returns, the buffer (A) can be reused, but the message may not have
been received by the target process.

MPI_RECV(start, count, datatype, source, tag, comm, status)

» Waits until a matching (source and tag) message is received

e source is rank in communicator specified by comm, or MP1_ANY_SOURCE
= tag is atag to be matched on or MP1 _ANY_ TAG

» Receiving fewer than count is OK, but receiving more is an error

= status contains further information (e.g. size of message)

Slide source: Bill Gropp, ANL
08/26/2008 rogramming Models 18



A Simple MPI Program

#include “mpi.h”
#include <stdio.h>
int main( int argc, char *argv[])
{
int rank, buf;
MPI_ Status status;
MPI_ Init(&argv, &argc);
MP1_Comm_rank( MPI_COMM_WORLD, é&rank );

/* Process 0O sends and Process 1 receives */
iIT (rank == 0) {
buf = 123456;
MP1_Send( &buf, 1, MPI_INT, 1, O, MP1_COMM_WORLD);

}
else 1T (rank == 1) {
MP1_Recv( &buf, 1, MPI_INT, O, O, MPI_COMM_WORLD,
&status );
printf( “Received %d\n”’, buf );

} .

Note: Fortran and C++ versions
MPI_Finalize(); are in online lecture notes
return O;

Slide source: Bill Gropp, ANL
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A Simple MPI Program (Fortran)

program main
include “mpif.h’
integer rank, buf, i1err, status(MPl_STATUS SIZE)

call MPI1_Init(ierr)
call MPI_Comm_rank( MPI_COMM_WORLD, rank, ierr )
C Process 0 sends and Process 1 receives
iIT (rank .eqg. 0) then
buf = 123456
call MPI_Send( buf, 1, MPI1_INTEGER, 1, O,
* MPI1_COMM_WORLD, 1err )

else 1f (rank .eq. 1) then
call MPI_Recv( buf, 1, MPI_INTEGER, O, O
* MPI_COMM_WORLD, status, i

print *, “Received ““, buf
endif

call MPI_Finalize(ierr)
end

Slide source: Bill Gropp, ANL
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A Simple MPI Program (C++)

#include “mpi.h”
#include <iostream>
int main( int argc, char *argv[])

{
int rank, buf;
MPI::Init(argv, argc);
rank = MPI1::COMM_WORLD.Get_rank();
// Process 0 sends and Process 1 receives
iIT (rank == 0) {
buf = 123456;
MPI: :COMM_WORLD.Send( &buf, 1, MPI::INT, 1, O );
+
else 1T (rank == 1) {
MPI: :COMM_WORLD.Recv( &buf, 1, MPI::INT, O, O );
std: :cout << “Receilved “ << buf << “\n”’;
}
MPI::Finalize();
return O;
s

Slide source: Bill Gropp, ANL
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Retrieving Further Information

e Status is a data structure allocated in the user’s program.
e In C:

int recvd _tag, recvd from, recvd count;

MP1_Status status;

MPI _Recv(..., MPI_ANY_SOURCE, MPI_ANY_TAG, ..., &status )
recvd tag = status.MPl_TAG;

recvd from = status.MPl_SOURCE;

MP1_Get _count( &status, datatype, &recvd count );

e In Fortran:
integer recvd _tag, recvd from, recvd count
integer status(MPI_STATUS SIZE)
call MPI_RECV(..., MPI_ANY SOURCE, MPI_ANY TAG, .. status, ierr)
tag_recvd = status(MPl_TAG)
recvd from = status(MP1_SOURCE)
call MP1_GET _COUNT(status, datatype, recvd count, ierr)

Slide source: Bill Gropp, ANL
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Retrieving Further Information

e Status is a data structure allocated in the user’s program.

e In C++:
int recvd _tag, recvd from, recvd count;
MPI: -Status status;
Comm.Recv(..., MPI::ANY_SOURCE, MPI::ANY_TAG,

status )
recvd tag = status.Get _tag();
recvd _from = status.Get_source();

recvd count = status.Get count( datatype );

Slide source: Bill Gropp, ANL
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Collective Operations in MPI

 Collective operations are called by all processes in a
communicator

«MP1_BCAST distributes data from one process (the root) to
all others in a communicator

<MP1_REDUCE combines data from all processes in

communicator and returns it to one process
e Operators include: MPI_MAX, MPI_MIN, MPI_PROD, MPI_SUM, ...

 In many numerical algorithms, SEND/RECEIVE can be
replaced by BCAST/REDUCE, improving both simplicity
and efficiency

« Can use a more efficient algorithm than you might choose for
simplicity (e.g., P-1 send/receive pairs for broadcast or reduce)

 May use special hardware support on some systems

Slide source: Bill Gropp, ANL
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Example: Plin C -1

#include "mpi._h"
#include <math.h>
#include <stdio.h>
int main(int argc, char *argvl])
{
int done = 0, n, myid, numprocs, i1, rc;
double PI25DT = 3.141592653589793238462643;
double mypi, pi, h, sum, X, a;
MP1_ Init(&argc,&argv);
MP1_Comm_size(MPI_COMM_WORLD,&numprocs);
MP1_Comm_rank(MPI_COMM_WORLD,&myid);
while (ldone) {
1T (nwyid == 0) {
printf(""Enter the # of iIntervals: (0 quits) ");
scant("'%d",&n) ;
by
MP1 Bcast(&n, 1, MPI1 _INT, O, MPI_COMM_WORLD);
i1IT (n == 0) break;

Slide source: Bill Gropp, ANL
08/26/2008 rogramming Models 25



Example: Plin C -2

h = 1.0 / (double) n;
sum = 0.0;
for (1 = myid + 1; 1 <= n; 1 += numprocs) {

X = h * ((double)ir - 0.5);
sum += 4.0 / (1.0 + X*X);
}
mypi = h * sum;
MPI1_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, O,
MP1_COMM_WORLD) ;
1T (myid == 0)
printf("'pi1 1s approximately %.16f, Error i1s .16f\n",
pi, Fabs(pi - PI25DT));

MPI_Finalize();
return O;
Slide source: Bill Gr(I):Pp, ANL
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Example: Plin Fortran -1

program main

include “mpif.h’

integer done, n, myid, numprocs, 1, rc
double pi125dt, mypi, pi, h, sum, X, z
data done/.false./

data PI125DT/3.141592653589793238462643/

call MPI_Intt(ierr)
call MPI_Comm_size(MP1_COMM_WORLD,numprocs, ierr )
call MPI_Comm_rank(MPI_COMM_WORLD,myid, |err)

do while (.not. done)
iIT (mwyid .eq. 0) then
print *,”Enter the number of intervals: (0 quits)*

read *, n
endif
call MPI Bcast(n, 1, MPI_ INTEGER, O,
* MP1_COMM_WORLD, ierr )

if (n .eq. 0) goto 10

Slide source: Bill Gr(I):Pp ANL
r
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Example: Plin Fortran - 2

h =1.0/ n
sum = 0.0
do 1=myid+1,n,numprocs
X =h* (1 - 0.5)
sum += 4.0 / (1.0 + X*X)
enddo

mypit = h * sum
call MPI_Reduce(mypi, pi, 1, MPI_DOUBLE PRECISION,
* MPI_SUM, O, MPI_COMM_WORLD, 1err )
iIf (mwyid .eqg. 0) then
print *, "pi1 i1s approximately “, pi,
* “, Error is *“, abs(pit - PI125DT)

enddo

10 continue
call MP1_Finalize( 1err )

end

Slide source: Bill Gropp, ANL
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Example: Plin C++-1

#include "mpi.h"
#include <math.h>
#include <iostream>

int main(int argc, char *argv|[])

{
int done = 0, n, myid, numprocs, i, rc;
double PI125DT = 3.141592653589793238462643;
double mypit, pi, h, sum, X, a;
MPI::Init(argc, argv);
numprocs = MPI::COMM_WORLD.Get _size();
myid = MPI::COMM_WORLD.Get_rank();
while (!'done) {
It (myid == 0) {
std::cout << "Enter the # of iIntervals: (0 quits) ';
std::cin >> n;;
+
MPI::COMM_WORLD.Bcast(&n, 1, MPI::ZINT, O );
iIf (n == 0) break;
Slide source: Bill Gr(I):Pp, ANL
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Example: Plin C++ -2

h = 1.0 / (double) n;
sum = 0.0;
fo (i = myid + 1; 1 <= n; 1 += numprocs) {

= h * ((double)r - 0.5);

sum += 4.0 /7 (1.0 + xX*X);
+
mypi = h * sum;
MP1::COMM_WORLD.Reduce(&mypi, &pi, 1, MPI::DOUBLE,

MPI::SUM, 0);

1T (myid == 0)

std::cout << "'pi1 1s approximately “ << pi1 <<

“, Error i1s “ << fabs(pi - PI125DT) << “\n”’;

¥
MPI::Finalize();
return O;

}

Slide source: Bill Gropp, ANL
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MPI Collective Routines

« Many Routines: Allgather, Allgatherv,
Allreduce, Alltoall, Alltoallv, Bcast,
Gather, Gatherv, Reduce, Reduce scatter,
Scan, Scatter, Scatterv

<All versions deliver results to all participating
processes.

e VV versions allow the hunks to have different sizes.

<Al lreduce, Reduce, Reduce scatter, and Scan
take both built-in and user-defined combiner functions.

e MPI-2 adds Al ltoal lw, Exscan, intercommunicator
versions of most routines
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Buffers

« Message passing has a small set of primitives, but there are subtleties

« Buffering and deadlock
» Deterministic execution
 Performance

 When you send data, where does it go? One possibility is:

Process 0 Process 1

E Local buffer

the network

Local Vbuffer ‘

Derived from: Bill Gropp, ANL
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Avoiding Bufferin

e It IS better to avoid copies:
Process 0 Process 1

‘ the network ‘

This requires that MP1_Send wait on delivery, or
that MP1_Send return before transfer is complete,
and we wait later.

Slide source: Bill Gropp, ANL
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Sources of Deadlocks

* Send a large message from process 0 to process 1

o If there is insufficient storage at the destination, the send must
wait for the user to provide the memory space (through a
receive)

« What happens with this code?

Process O Process 1
Send(1) Send(0)
Recv(1l) Recv(0)

e This is called “unsafe” because it depends on
the availability of system buffers in which to
store the data sent until it can be received

Slide source: Bill Gropp, ANL
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Some Solutions to the “unsafe” Problem

» Order the operations more carefully:

Process O Process 1
Send(1) Recv(0)
Recv(1l) Send(0)

e Supply receive buffer at same time as send:

Process 0 Process 1

Sendrecv(l) Sendrecv(0)

Slide source: Bill Gropp, ANL
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More Solutions to the “unsafe” Problem

» Supply own space as buffer for send

Process 0 Process 1
Bsend(1) Bsend(0O)
Recv(1) Recv(0)

e Use non-blocking operations:

Process O Process 1
Isend(1l) Isend(0)
Irecv(l) Irecv(0)
Wartall Wartall

Slide source: Bill Gr(I):Pp, ANL
r
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MPI'’s Non-blocking Operations

* Non-blocking operations return (immediately) “request
handles” that can be tested and waited on:

MP1_ Request request;
MPI_ Status status;

MP1_ Isend(start, count, datatype,
dest, tag, comm, &request);
MP1_ lrecv(start, count, datatype,
dest, tag, comm, &request);

MP1_Wairt(&request, &status);
(each request must be Waited on)

e One can also test without waiting:
MP1_ Test(&request, &flag, &status);

Slide source: Bill Gr(I):Pp, ANL
r
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MPI's Non-blocking Operations (Fortran)

* Non-blocking operations return (immediately) “request
handles” that can be tested and waited on:

integer request
integer status(MP1_STATUS SIZE)

call MPI _Isend(start, count, datatype,
dest, tag, comm, request,ierr)

call MPI_Ilrecv(start, count, datatype,
dest, tag, comm, reqguest, 1err)

call MPI _Wart(request, status, 1err)
(Each request must be waited on)

* One can also test without waiting:
call MPI_Test(request, flag, status, 1err)

Slide source: Bill Gropp, ANL
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MPI’s Non-blocking Operations (C++)

* Non-blocking operations return (immediately) “request
handles” that can be tested and waited on:

MPI1 : :Request request;
MPI::Status status;

request = comm.lsend(start, count,
datatype, dest, tag);

request = comm.lrecv(start, count,
datatype, dest, tag);

request.Wairt(status);
(each request must be Waited on)

» One can also test without waiting:
flag = request.Test( status );

Slide source: Bill Gr(l):Pp, ANL
r
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Other MPI Point-to-Point Features

e It Is sometimes desirable to wait on multiple requests:

MP1 Wartall(count, array of requests,
array_ of statuses)

 Also MPI Wartany, MPI_Wartsome, and test versions

 MPI provides multiple modes for sending messages:

e Synchronous mode (MP1_Ssend): the send does not complete
until a matching receive has begun. (Unsafe programs deadlock.)

« Buffered mode (MP1_Bsend): user supplies a buffer to the system
for its use. (User allocates enough memory to avoid deadlock.)

« Ready mode (MP1_Rsend): user guarantees that a matching
receive has been posted. (Allows access to fast protocols;
undefined behavior if matching receive not posted.)
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Synchronization

* Global synchronization is available in MPI
« C. MPI_Barrier( comm )
e Fortran: MPI1_Barrier( comm, i1err )
« C++: comm.Barrier();

 Blocks until all processes in the group of the
communicator comm call it.

e Almost never required to make a message passing
program correct
« Useful in measuring performance and load balancing
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MPI| — The de facto standard

MPI| has become the de facto standard for parallel
computing using message passing
Pros and Cons of standards

 MPI created finally a standard for applications
development in the HPC community — portability

e The MPI standard is a least common denominator
building on mid-80s technology, so may discourage
iInnovation

Programming Model reflects hardware!

“I am not sure how | will program a Petaflops computer,
but | am sure that | will need MPI somewhere” — HDS 2001
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MPI| References

e The Standard itself:

e at http://www.mpi-forum.org
o All MPI official releases, in both postscript and HTML

e Other information on Web:
e at http://www.mcs.anl.gov/mpi

e pointers to lots of stuff, including other talks and
tutorials, a FAQ, other MPI pages

Slide source: Bill Gropp, ANL
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Books on MPI

Using MPI: Portable Parallel Programming » s
with the Message-Passing Interface (2" edition), e
by Gropp, Lusk, and Skjellum, MIT Press,

1999.

Using MPI-2: Portable Parallel Programming
with the Message-Passing Interface, by Gropp,
Lusk, and Thakur, MIT Press, 1999.

MPI: The Complete Reference - Vol 1 The MPI Core, by
Snir, Otto, Huss-Lederman, Walker, and Dongarra, MIT
Press, 1998.

MPI: The Complete Reference - Vol 2 The MPI Extensions,
by Gropp, Huss-Lederman, Lumsdaine, Lusk, Nitzberg,
Saphir, and Snir, MIT Press, 1998.

r——
-
v

Designing and Building Parallel Programs, by lan Foster, i N!__P, ',
Addison-Wesley, 1995. e 3
Parallel Programming with MPI, by Peter Pacheco, Morgan- o

Kaufmann, 1997. -
Slide source: Bill Gropp, ANL
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Partitioned Global Address Space Languages

One-Sided Communication
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What's Wrong with MPI Everywhere

 We can run 1 MPI process per core
* This works now (for CMPs) and will work for a while

« How long will it continue working?
e 4 -8 cores? Probably. 128 - 1024 cores? Probably not.

* Depends on performance expectations -- more on this later

* What is the problem?
« Latency: some copying required by semantics
« Memory utilization: partitioning data for separate address space

requires some replication
* How big is your per core subgrid? At 10x10x10, over 1/2 of the points

are surface points, probably replicated
 Memory bandwidth: extra state means extra bandwidth
« Weak scaling: success model for the “cluster era;” will not be for
the many core era -- not enough memory per core
« Heterogeneity: MPI per CUDA thread-block?

o Advantage: no new apps work; modest infrastructure work
(multicore-optimized MPI)



Current Implementations of PGAS Languages

o A successful language/library must run everywhere
« UPC

« Commercial compilers available on Cray, SGI, HP machines
 Open source compiler from LBNL/UCB (source-to-source)
« Open source gcc-based compiler from Intrepid

« CAF

« Commercial compiler available on Cray machines
« Open source compiler available from Rice

o Titanium

« Open source compiler from UCB runs on most machines
« DARPA HPCS Languages

 Cray Chapel, IBM X10, Sun Fortress

« Use PGAS memory abstraction, but have dynamic threading

 Recent additions to parallel language landscape = no mature compilers
for clusters yet
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Unified Parallel C (UPC)

Overview and Design Philosophy
« Unified Parallel C (UPC) is:

* An explicit parallel extension of ANSI C
* A partitioned global address space language
« Sometimes called a GAS language

« Similar to the C language philosophy

 Programmers are clever and careful, and may need to get
close to hardware

» to get performance, but
e can get in trouble

» Concise and efficient syntax

« Common and familiar syntax and semantics for
parallel C with simple extensions to ANSI C

 Based on ideas in Split-C, AC, and PCP
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UPC Execution Model

* Threads working independently in a SPMD fashion

 Number of threads specified at compile-time or run-time;
available as program variable THREADS

e MYTHREAD specifies thread index (0. . THREADS-1)
e upc_barrier is a global synchronization: all wait
e There is a form of parallel loop that we will see later

 There are two compilation modes

e Static Threads mode:
« THREADS is specified at compile time by the user
* The program may use THREADS as a compile-time constant

 Dynamic threads mode:
 Compiled code may be run with varying numbers of threads

08/26/2008 Programming Models 50



Hello World in UPC

 Any legal C program is also a legal UPC program

o If you compile and run it as UPC with P threads, it will
run P copies of the program.

» Using this fact, plus the identifiers from the previous
slides, we can parallel hello world:

#include <upc.h> /* needed for UPC extensions */
#include <stdio.h>

main() {
printf("'Thread %d of %d: hello UPC world\n",

MYTHREAD, THREADS);
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Example: Monte Carlo Pi Calculation

o Estimate Pi by throwing darts at a unit square
« Calculate percentage that fall in the unit circle
* Area of square =r2=1
« Area of circle quadrant = %4 * &t r° = nt/4
 Randomly throw darts at x,y positions
o If X? + y2 < 1, then point is inside circle

e Compute ratio:
e # points inside / # points total
e 1= 4*ratio

r=1
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Pi in UPC

* Independent estimates of pi:

main(int argc, char **argv)
int 1, hits, trials = 0O; Each thread gets its own
double pi; copy of these variables

if (argc 1= 2)trials = 1000000; Eachthﬂﬁuicanuse
else trials = atoi(argv[i]): INput arguments

Initialize random In

srand(MYTHREAD*17); math library

for (1=0; 1 < trials; 1++) hits += hit();
pi = 4.0*hits/trials;
printf(""Pl estimated to %f.', pi);

Each thread calls “hit” separately
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Helper Code for Piin UPC

e Required includes:
#include <stdio.h>
#include <math.h>
#include <upc.h>

 Function to throw dart and calculate where it hits:
int hit(){
Int const rand max = OXFFFFFF;
double x = ((double) rand()) /7 RAND_ MAX;
double y = ((double) rand()) /7 RAND_MAX;
It (O*x + y*y) <= 1.0) {
return(l);
} else {
return(0);
by
by

08/26/2008 Programming Models 54



04/16/2007

Shared vs. Private
Variables

55



Private vs. Shared Variables in UPC

 Normal C variables and objects are allocated in the private

memory space for each thread.

» Shared variables are allocated only once, with thread 0

shared

INt ours;
IinNt mine;

// use sparingly: performance

» Shared variables may not have dynamic lifetime: may not
occur in a in a function definition, except as static. Why?

Thread,

ours:

Thread, Thread,

mine:

mine:

Global address
space

mine;

08/26/2008

Shared

Private
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e Parallel computing of pi, but with a bug
shared int hits; shared variable to

record hits

main(int argc, char **argv) {
int 1, my trials = 0O;

Iint trials = atoi(argv[l]); dividework up evenly
my trials = (trials + THREADS - 1)/THREADS;
srand(MYTHREAD*17) ;

for (1=0; 1 < my trials; 1++)

e s IRl accumulate hits
upc_barrier;

if (MYTHREAD == 0) {

printf(""P1 estimated to %f.', 4.0*hits/trials);

+
} What is the problem with this program?
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Shared Arrays Are Cyclic By Default

» Shared scalars always live in thread O
« Shared arrays are spread over the threads

e Shared array elements are spread across the threads
shared 1nt X[THREADS] [* 1 element per thread */
shared 1nt y[3][THREADS] /* 3 elements per thread */
shared 1nt z[3][3] [* 2 or 3 elements per thread */

e In the pictures below, assume THREADS =4
* Red elts have affinity to thread O

Think of linearized

C array, then map
X : )
. in round-robin

* As a 2D array, y Is
y . . . logically blocked
by columns
y4 .‘—‘
. . Z is not
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_Piin UPC: Shared Array Version

e Alternative fix to the race condition

 Have each thread update a separate counter:
e But do it in a shared array

e Have one thread compute sum all hits is
shared int all_hits [THREADS]; shared by all
main(int argc, char **argv) { Processors,

... declarations an initialization code omitted just as hits was
for (i=0; i < my trials; i++)
all _hits[MYTHREAD] += hit(); update element

upc_barrier; with local affinity
ir (MYTHREAD == 0) {
for (1=0; 1 < THREADS; 1++) hits += all hits[ilﬂ

printf(""Pl estimated to %f.", 4_.0*hits/trials);

}
}

08/26/2008 Programming Models 59



04/16/2007

UPC
Synchronization

60



UPC Global Synchronization

e UPC has two basic forms of barriers:

o Barrier: block until all other threads arrive
upc_barrier
o Split-phase barriers
upc_notify; thisthread is ready for barrier
do computation unrelated to barrier
upc_walt;  waitfor others to be ready

« Optional labels allow for debugging
#define MERGE_BARRIER 12
it (MYTHREAD%2 == 0) {

upc_barrier MERGE BARRIER;
} else {

upc_barrier MERGE_BARRIER;
+
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Synchronization - Locks

« UPC Locks are an opaque type:
upc_lock t
Locks must be allocated before use:
upc_lock t *upc _all lock alloc(void);
allocates 1 lock, pointer to all threads
upc_lock t *upc global lock alloc(void);
allocates 1 lock, pointer to one thread
To use a lock:
void upc_lock(upc _lock t *I1)
void upc_unlock(upc lock t *I)
use at start and end of critical region

Locks can be freed when not In use
void upc lock free(upc lock t *ptr);
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Pi in UPC: Shared Memory Style

 Parallel computing of pi, without the bug

shared Int hits;

main(int argc, char **argv) {
int i, my hits, my trials = 0; create a lock
upc_lock t *hit _lock = upc_all _lock alloc();
int trials = ator(argvl1l]);
my trials = (trials + THREADS - 1)/THREADS;

srand(MYTHREAD*17):

for (i=0: i < my trials; i++) accumulate hits
my hits += hitQ); locally

upc_lock(hit_lock);

hits += my_hits; accumulate

upc_unlock(hit_lock); across threads

upc_barrier;
iIT (MYTHREAD == 0)
printf("Pl: %f'', 4.0*hits/trials);
¥
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Recap: Private vs. Shared Variables in UPC

 We saw several kinds of variables in the pi example
* Private scalars (my_hits)
e Shared scalars (hi1ts)

e Shared arrays (all_hits)
e Shared locks (hit_lock)

Global address

08/26/2008

space

Thread,

Thread, Thread,

hits:

hit lock:

all_hits[0]:

|all_hits[1]:

all_hits|n]:

my hits:

my hits:

my hits:

where:
n=Threads-1

Shared

Private
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UPC Co
« UPC col

lectives In General

ectives interface Is in the language spec:

o http://upc.lbl.gov/docs/user/upc_spec 1.2.pdf

e [t contains typical functions:
e Data movement: broadcast, scatter, gather, ...
« Computational: reduce, prefix, ...

e General interface has synchronization modes:
* Avoid over-synchronizing (barrier before/after)

« Data being collected may be read/written by any
thread simultaneously

e Simple interface for scalar values (int, double,...)
* Berkeley UPC value-based collectives
« Works with any compiler
e http://upc.Ibl.gov/docs/user/README-collectivev.ixt

08/26/2008
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 The previous version of Pi works, but is not scalable:
 On alarge # of threads, the locked region will be a bottleneck

 Use areduction for better scalability

#include <bupc_collectivev_h> Berkeley collectives

// no shared variables
main(int argc, char **argv) {

for (1=0; 1 < my trials; 1++)
my hits += hit();

my hits = // type, i1nput, thread, op
bupc _allv_reduce(int, my hits, 0, UPC ADD);

barrier implied by collective

//
it (MYTHREAD == 0)
printf(""PI: %f', 4.0*my_hits/trials);

}
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Example: Vector Addition

- Questions about parallel vector additions:
- How to layout data (here it is cyclic)
- Which processor does what (here it is “owner computes”)

/* vadd.c */
#include <upc_relaxed.h>
#define N 100*THREADS

cyclic layout

shared int vi[N], v2[N]T’§GaEN];
void main() {

int 1; owner computes
For(i=0; i<N; i++) ,//”’///

if (MYTHREAD == i
%THREADS)
sum[i]=vi[i]+v2[i];

}
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upc
_for

all()

 The idiom in the previous slide is very common
* Loop over all; work on those owned by this proc
« UPC adds a special type of loop
upc_Torall(init; test; loop; affinity)
statement;
 Programmer indicates the iterations are independent
 Undefined if there are dependencies across threads
« Affinity expression indicates which iterations to run on each thread.
It may have one of two types:
e Integer: afFInity%THREADS is MYTHREAD
o Pointer: upc_threadof(affinity) is MYTHREAD
e Syntactic sugar for loop on previous slide
« Some compilers may do better than this, e.g.,
for(i=MYTHREAD; i<N; i+=THREADS)
« Rather than having all threads iterate N times:
for(1=0; 1<N; 1++) 1f (MYTHREAD == 1%THREADS)
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Vector Addition with upc_forall

 The vadd example can be rewritten as follows
e Equivalent code could use “&sum[ 1]” for affinity

* The code would be correct but slow if the affinity
expression were 1+1 rather than 1.
#define N 100*THREADS

) The cyclic data
shared int v1[N], VvZ[N], sum[N]1; distribution may
perform poorly on

void main() { some machines

int i1;
upc_forall(1=0; 1I<N; 1++;

)

sum[i]=v1i[i]+Vv2[i];

}
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Blocked Layouts in UPC

* If this code were doing nearest neighbor averaging (3pt stencil) the
cyclic layout would be the worst possible layout.

 Instead, want a blocked layout

» Vector addition example can be rewritten as follows using a blocked
layout

#define N 100*THREADS
shared int|[*]| vi[N]., vZ2[N]., sum[Nl:; plocked layout

void main() {

int 1;

upc_forall (i1=0; 1<N; 1++;
&sumf[i])

sum[i]=vi[i]+v2[i];
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Layouts in General

 All non-array objects have affinity with thread zero.

 Array layouts are controlled by layout specifiers:
 Empty (cyclic layout)

* [*] (blocked layout)

o [0] or [] (indefinite layout, all on 1 thread)

e [b] or [b1][b2]...[bn] = [b1*b2*...bn] (fixed block size)

e The affinity of an array element is defined in terms of:
 block size, a compile-time constant
» and THREADS.

* Element i has affinity with thread
(1 / block size) % THREADS

 In 2D and higher, linearize the elementsasina C
representation, and then use above mapping
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Pointers to Shared vs. Arrays

- In the C tradition, arrays can be access through pointers
 Here is the vector addition example using pointers

#define N 100*THREADS
shared int vi[N], Vv2[N], sum[N];
void main() {

int i; L] [ | [ ]
shared Int *pl, *p2; vl \\i;;/’
pl\/

pl=vl; p2=v2;
for (1=0; I<N; 1++, pl++, p2++ )
iIT (1 %YTHREADS= = MYTHREAD)
sum[1]= *pl + *p2;

08/26/2008 Programming Models 75



UPC Pointers

Thread, Thread, Thread,
|
= p3:1  |p3 p3:
= % p4: /4:’ p4: — " p4: Shared
3 ¢
5 8
O S pl. J/ pl:’/ eo0o pl:’/
@ 2./ - - Private
int *pl; /* private pointer to local memory */
P P P Yy

shared Int *p2; /* private pointer to shared space */
int *shared p3; /* shared pointer to local memory */
shared Int *shared p4; /* shared pointer to

shared space */

Pointers to shared often require more storage and are more costly to
dereference; they may refer to local or remote memory.
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Dynamic Memory Allocation in UPC

 Dynamic memory allocation of shared memory is available
In UPC

* Non-collective (called independently)
shared void *upc _global _alloc(size_t nblocks,
size_t nbytes);
nblocks : number of blocks
nbytes : block size
 Collective (called together; all threads get same pointer)
shared void *upc_all _alloc(size_t nblocks,
size_t nbytes);
* Freeing dynamically allocated memory in shared space
voild upc_free(shared void *ptr);
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PGAS Lanquages have Performance Advantages

Strategy for acceptance of a new language
« Make it run faster than anything else

Keys to high performance

 Parallelism:
« Scaling the number of processors

 Maximize single node performance

» Generate friendly code or use tuned libraries (BLAS, FFTW,
etc.)

» Avoid (unnecessary) communication cost
 Latency, bandwidth, overhead

» Berkeley UPC and Titanium use GASNet communication
layer

e Avoid unnecessary delays due to dependencies
» Load balance; Pipeline algorithmic dependencies

08/26/2008 Programming Models 79



One-Sided vs Two-Sided

one-sided put message

address

data payload

two-sided message

network
Interface

host
CPU

message id

data payload

memory

* A one-sided put/get message can be handled directly by a network

interface with RDMA support

» Avoid interrupting the CPU or storing data from CPU (preposts)
» A two-sided messages needs to be matched with a receive to

iIdentify memory address to put data
e Offloaded to Network Interface in networks like Quadrics

* Need to download match tables to interface (from host)
» Ordering requirements on messages can also hinder bandwidth

08/26/2008
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One-Sided vs. Two-Sided: Practice

900 -
800 —e— GASNet put (nonblock)"
—m— MPI Flood ‘/./C’/r;.;.:.i
700 ’/ /
. = 600 NERSC Jacquard
s = machine with
o g d00 Relatlve BWGASNet/MPl) |~ Opteron
” -g 400 /.’  processors
Q T 2
= % 300 / 20 \,'/\\ -
m o .
200 AN E—
// ié ‘\‘/
100 10 1000 100000 10000000——
Size (bytes)
0 JE.Elﬁr/r | | | |
10 100 1,000 10,000 100,000 1,000,000

Size (bytes)

* InfiniBand: GASNet vapi-conduit and OSU MVAPICH 0.9.5
» Half power point (N %2 ) differs by one order of magnitude

e This is not a criticism of the implementation!
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GASNet: Portability and High-Performance

8-byte Roundtrip Latency

24.2
25

B MPIping-pong
m GASNet put+sync

20

=
(&)]

(down is good)

Roundtrip Latency (usec)

Elan3/Alpha Elan4/1A64 Myrinet/x86 B/G5 IB/Opteron SP/Fed

GASNet better for latency across machines

Programming Models 82
08/26/2%)l§t work with UPC Group; GASNet design by Dan Bonachea ogra g Models 8



GASNet: Portability and High-Performance

Flood Bandwidth for 2MB messages
100%

857 858

205 228 295 299 1504 1490

90% -

80% -

70% -

60% -

50% -

(up is good)
Percent HW peak (BW in MB)
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30% -

20% -

10% -

m MPI m GASNet

0% -

Elan3/Alpha Han4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

GASNet at least as high (comparable) for large messages
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GASNet: Portability and High-Performance

Flood Bandwidth for 4KB messages
100%

223
90% - 763 m MPI

714 m GASNet

80% -

X 70% -
@©
)
Q. 60% -
=
L 50% -
5
_ o 40% -
o] -
S Q 30%
(@)}
S
~ 10% -
0% -
Han3/Alpha Han4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed
GASNet excels at mid-range sizes: important for overlap
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Case Study: NAS FT in UPC

e Perform FFT on a 3D Grid

* 1D FFTs in each dimension, 3 phases
* Transpose after first 2 for locality

e Bisection bandwidth-limited
 Problem as #procs grows

e Three approaches:

« Exchange:
« wait for 2 dim FFTs to finish, send 1

NN

message per processor pair

e Slab:
» wait for chunk of rows destined for 1

Slab

proc, send when ready

* Pencil:
» send each row as it completes

Thread 0's planes

08/26/28)8t work with Chris Bell, Rajesh Nishtala, Dan Bonachea

d

Thread 1's planes
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NAS FT Variants Performance Summary

1

1

MFlops per Thread
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Beyond the SPMD Model: Dynamic Threads

« UPC uses a static threads (SPMD) programming model

* No dynamic load balancing built-in, although some examples
(Delaunay mesh generation) of building it on top

* Berkeley UPC model extends basic memory semantics (remote
read/write) with active messages

 AM have limited functionality (no messages except acks) to
avoid deadlock in the network

« A more dynamic runtime would have many uses
e Application load imbalance, OS noise, fault tolerance

* Two extremes are well-studied
 Dynamic load balancing (e.g., random stealing) without locality
o Static parallelism (with threads = processors) with locality

e Can we combine both in a general-purpose way?

Joint work with Parry Husbands



The Parallel Case

Blocks 2D
block-cyclic

Completed part of U distributed

|

Panel factorizations

involve communication. NI S

for pivoting Matrix-
matrix

multiplication

/ used here.
Can be coalesced

Trailing matrix
to be updated
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Panel being factored



Parallel Tasks in LU

L L L L S

ol mlllg | &,
U P em ] S
(e

some edges omitted
' |

* Implementation uses 3 levels of threading:
 UPC threads (SPMD), user-level non-preemptive threads, BLAS threads

* Theoretical and practical problem: Memory deadlock

* Not enough memory for all tasks at once. (Each update needs two
temporary blocks, a green and blue, to run.)

o If updates are scheduled too soon, you will run out of memory
o |If updates are scheduled too late, critical path will be delayed.




UPC HP Linpack Performance

GFlops

UPC vs. Opteron Altix UPC. X1 UPC vs. MPI/HPL
ScaLAPACK cluster Vs.
UPC vs. MPI/HPL o VPITPL
80 B ScalLAPACK MPI/HPL 160 1200 mUPC
1l mUPC 1401 1000
200 A 120 A
60 - 0o % 800
10 %- g 80 - % 600
& 100 © 60 {mmpIHPL] 400 .
20 . 10 JmUPC
50 - o0 | 200 -
0 - 0 4 0 - 0 -
2udprocgrid axdprocrid Opt/64 Al/32 60 X1/64 X1128

eFaster than ScaLAPACK due to less synchronization

sComparable to MPI HPL (numbers from HPCC database)

eLarge scaling of UPC code on Itanium/Quadrics (Thunder)
«2.2 TFlops on 512p and 4.4 TFlops on 1024p

Joint work with Parry Husbands



Utilization Comparison

Processor

Il I NN BN NN BN NN EEEN i
HE BN EREE R RRARm
HEEE RN RRRERRRTnmm
NN N EENERERRINGOHm o °
A NN EIERRIRRRILT
HE BN REEN ERRRARETnm

o HHEE NN NN EERErnnm

ol N N N [N N N N [ NI WRmEWEG

Time (sec)

| | I || m 1] mi

NI Im i
1 N m i
N I |
I N I b H 1]
I = W I
(IR TR TETRR LITHIRTEITO

Time (sec)

Synchronous (above)

vs. asynchronous (below)
schedule

SGI Altix Itanium 2 1.4GHz,
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block size = 400

Grey blocks = matrix
multiplication
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Summary and Discussion

 Message Passing

 MPI is the de facto programming model for large-scale machines

* Was developed as a standardization of “known” ideas (but not without
controversy)

 MPI 3.0 standards effort is underway now: you can join!
* Looking at one-sided communication again
» Race conditions are relatively rare

 Partitioned Global Address Space Language

« Offer a compromise on performance and ease of programming
Match both shared and distributed memory
Demonstrated scalability (like MPI), portability (through GASNet + C)
UPC is an example, others include Co-Array Fortran, Titanium (Java)
The DARPA HPCS languages: X10, Chapel, Fortress

* Productivity
 In the eye of the programmer
» Trade-off: races vs packing/unpacking code
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UPC Group (Past and Present)

 Filip Blagojevic
Dan Bonachea

Paul Hargrove (Runtime
Lead)

Steve Hofmeyer
Costin lancu (Compiler Lead)

» Seung-Jai Min http://upc.lbl.qov

* Rajesh Nishtala

« Kathy Yelick (Project Lead) Compiler, runtime,

« Yili Zheng GASNet available here.

Former:

o Christian Bell
 Michael Welcome
 Parry Husbands
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