
04/16/2007 1

MPI and UPC
Programming Distributed

Memory Machines and Clusters
Kathy Yelick

yelick@cs.berkeley.edu

http://www.cs.berkeley.edu/~yelick/
http://upc.lbl.gov

http://titanium.cs.berkeley.edu

08/26/2008 Programming Models 2

 - Listing of the 500 most powerful

 Computers in the World

 - Yardstick: Rmax from Linpack

 Ax=b, dense problem

 - Updated twice a year:

 ISC‘xy in Germany, June xy

 SC‘xy in USA, November xy

 - All data available from www.top500.org

Size

R
a
te

TPP performance

TOP500

33rd List: The TOP10

Rank Site Manufacturer Computer Country Cores
Rmax

[Tflops]

Power

[MW]

1 DOE/NNSA/LANL IBM
Roadrunner

BladeCenter QS22/LS21
USA 129,600 1,105.0 2.48

2
Oak Ridge National

Laboratory
Cray Inc.

Jaguar

Cray XT5 QC 2.3 GHz
USA 150,152 1,059.0 6.95

3
Forschungszentrum

Juelich (FZJ)
IBM

Jugene

Blue Gene/P Solution
Germany 294,912 825.50 2.26

4

NASA/Ames

Research Center/

NAS

SGI
Pleiades

SGI Altix ICE 8200EX
USA 51,200 487.0 2.09

5 DOE/NNSA/LLNL IBM
BlueGene/L

eServer Blue Gene Solution
USA 212,992 478.2 2.32

6
University of

Tennessee
Cray

Kraken

Cray XT5 QC 2.3 GHz
USA 66,000 463.30

7
Argonne National

Laboratory
IBM

Intrepid

Blue Gene/P Solution
USA 163,840 458.61 1.26

8 TACC/U. of Texas Sun
Ranger

SunBlade x6420
USA 62,976 433.2 2.0

9 DOE/NNSA/LLNL IBM
Dawn

Blue Gene/P Solution
USA 147,456 415.70 1.13

10
Forschungszentrum

Juelich (FZJ)
Sun/Bull SA

JUROPA

NovaScale /Sun Blade
Germany 26,304 274.80 1.54

Performance Development

0.1

1

10

100

1000

10000

100000

1000000

10000000

100000000

 1 Gflop/s

 1 Tflop/s

 100 Mflop/s

100 Gflop/s

100 Tflop/s

 10 Gflop/s

 10 Tflop/s

 1 Pflop/s

100 Pflop/s

 10 Pflop/s

6-8 years

Performance Development Development

0.1

1

10

100

1000

10000

100000

000000

0000000

0000000

1E+09

1E+10

1E+11
1
9
9
4

1
9
9
6

1
9
9
8

2
0
0
0

2
0
0
2

2
0
0
4

2
0
0
6

2
0
0
8

2
0
1
0

2
0
1
2

2
0
1
4

2
0
1
6

2
0
1
8

2
0
2
0

1 Eflop/s

 1 Gflop/s

 1 Tflop/s

 100 Mflop/s

100 Gflop/s

100 Tflop/s

 10 Gflop/s

 10 Tflop/s

 1 Pflop/s

100 Pflop/s

 10 Pflop/s

Concurrency Has Increased Dramatically

Exponential wave of increasing concurrency for forseeable future!

1M cores sooner than you think!

6

Sum of the # of cores in top 15 systems (from top500.org)

08/26/2008 Programming Models 7

100

1000

10000

100000

1E+06

1E+07

1E+08

1E+09

1E+10

1E+11

1E+12

1993 1996 1999 2002 2005 2008 2011 2014

SUM

#1

#500

Petaflop with ~1M Cores By 2008

1Eflop/s

100 Pflop/s

10 Pflop/s

1 Pflop/s

100 Tflop/s

10 Tflops/s

1 Tflop/s

100 Gflop/s

10 Gflop/s

1 Gflop/s

10 MFlop/s

1 PFlop system in 2008

Slide source Horst Simon, LBNL

Data from top500.org

6-8 years

Common by 2015?

08/26/2008 Programming Models 8

Programming With MPI

• MPI is a library
• All operations are performed with routine calls

• Basic definitions in
• mpi.h for C

• mpif.h for Fortran 77 and 90

• MPI module for Fortran 90 (optional)

• First Program:
• Create 4 processes in a simple MPI job

• Write out process number

• Write out some variables (illustrate separate name
space)

Slide source: Bill Gropp, ANL

08/26/2008 Programming Models 9

Finding Out About the Environment

• Two important questions that arise early in a
parallel program are:

• How many processes are participating in this
computation?

• Which one am I?

• MPI provides functions to answer these
questions:

•MPI_Comm_size reports the number of processes.

•MPI_Comm_rank reports the rank, a number between
0 and size-1, identifying the calling process

Slide source: Bill Gropp, ANL

08/26/2008 Programming Models 10

Hello (C)

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])
{
 int rank, size;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 printf("I am %d of %d\n", rank, size);
 MPI_Finalize();
 return 0;
}

Slide source: Bill Gropp, ANL

08/26/2008 Programming Models 11

Hello (Fortran)

program main

include 'mpif.h'

integer ierr, rank, size

call MPI_INIT(ierr)

call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)

call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)

print *, 'I am ', rank, ' of ', size

call MPI_FINALIZE(ierr)

end

Slide source: Bill Gropp, ANL

08/26/2008 Programming Models 12

Hello (C++)

#include "mpi.h"

#include <iostream>

int main(int argc, char *argv[])
{
 int rank, size;

 MPI::Init(argc, argv);
 rank = MPI::COMM_WORLD.Get_rank();
 size = MPI::COMM_WORLD.Get_size();
 std::cout << "I am " << rank << " of " << size <<
 "\n";

 MPI::Finalize();
 return 0;
}

Slide source: Bill Gropp, ANL

08/26/2008 Programming Models 13

Notes on Hello World

• All MPI programs begin with MPI_Init and end with
MPI_Finalize

• MPI_COMM_WORLD is defined by mpi.h (in C) or
mpif.h (in Fortran) and designates all processes in the
MPI “job”

• Each statement executes independently in each process
• including the printf/print statements

• I/O not part of MPI-1but is in MPI-2
• print and write to standard output or error not part of either

MPI-1 or MPI-2

• output order is undefined (may be interleaved by character, line,
or blocks of characters),

• The MPI-1 Standard does not specify how to run an MPI

program, but many implementations provide

mpirun –np 4 a.out
Slide source: Bill Gropp, ANL

08/26/2008 Programming Models 14

MPI Basic Send/Receive

• We need to fill in the details in

• Things that need specifying:
• How will “data” be described?

• How will processes be identified?

• How will the receiver recognize/screen messages?

• What will it mean for these operations to complete?

Process 0 Process 1

Send(data)

Receive(data)

Slide source: Bill Gropp, ANL

08/26/2008 Programming Models 15

Some Basic Concepts

• Processes can be collected into groups

• Each message is sent in a context, and must be

received in the same context

• Provides necessary support for libraries

• A group and context together form a

communicator

• A process is identified by its rank in the group

associated with a communicator

• There is a default communicator whose group

contains all initial processes, called

MPI_COMM_WORLD

Slide source: Bill Gropp, ANL

08/26/2008 Programming Models 16

MPI Datatypes

• The data in a message to send or receive is

described by a triple (address, count, datatype),

where

• An MPI datatype is recursively defined as:

• predefined, corresponding to a data type from the

language (e.g., MPI_INT, MPI_DOUBLE)

• a contiguous array of MPI datatypes

• a strided block of datatypes

• an indexed array of blocks of datatypes

• an arbitrary structure of datatypes

• There are MPI functions to construct custom

datatypes, in particular ones for subarrays

Slide source: Bill Gropp, ANL

08/26/2008 Programming Models 17

MPI Tags

• Messages are sent with an accompanying user-

defined integer tag, to assist the receiving

process in identifying the message

• Messages can be screened at the receiving end

by specifying a specific tag, or not screened by

specifying MPI_ANY_TAG as the tag in a

receive

• Some non-MPI message-passing systems have

called tags “message types”. MPI calls them

tags to avoid confusion with datatypes

Slide source: Bill Gropp, ANL

08/26/2008 Programming Models 18

MPI Basic (Blocking) Send

MPI_SEND(start, count, datatype, dest, tag, comm)
• The message buffer is described by (start, count, datatype).

• The target process is specified by dest (rank within comm)

• When this function returns, the buffer (A) can be reused, but the message may not have
been received by the target process.

MPI_RECV(start, count, datatype, source, tag, comm, status)
• Waits until a matching (source and tag) message is received

• source is rank in communicator specified by comm, or MPI_ANY_SOURCE
• tag is a tag to be matched on or MPI_ANY_TAG

• Receiving fewer than count is OK, but receiving more is an error

• status contains further information (e.g. size of message)

Slide source: Bill Gropp, ANL

A(10)
B(20)

MPI_Send(A, 10, MPI_DOUBLE, 1, …) MPI_Recv(B, 20, MPI_DOUBLE, 0, …)

08/26/2008 Programming Models 19

A Simple MPI Program

#include “mpi.h”
#include <stdio.h>
int main(int argc, char *argv[])
{
 int rank, buf;
 MPI_Status status;
 MPI_Init(&argv, &argc);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 /* Process 0 sends and Process 1 receives */
 if (rank == 0) {
 buf = 123456;
 MPI_Send(&buf, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);
 }
 else if (rank == 1) {
 MPI_Recv(&buf, 1, MPI_INT, 0, 0, MPI_COMM_WORLD,
 &status);
 printf(“Received %d\n”, buf);
 }

 MPI_Finalize();
 return 0;
} Slide source: Bill Gropp, ANL

Note: Fortran and C++ versions

are in online lecture notes

08/26/2008 Programming Models 20

A Simple MPI Program (Fortran)

 program main
 include ‘mpif.h’
 integer rank, buf, ierr, status(MPI_STATUS_SIZE)

 call MPI_Init(ierr)
 call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
C Process 0 sends and Process 1 receives
 if (rank .eq. 0) then
 buf = 123456
 call MPI_Send(buf, 1, MPI_INTEGER, 1, 0,
 * MPI_COMM_WORLD, ierr)

 else if (rank .eq. 1) then
 call MPI_Recv(buf, 1, MPI_INTEGER, 0, 0,
 * MPI_COMM_WORLD, status, ierr)
 print *, “Received “, buf
 endif

 call MPI_Finalize(ierr)
 end

Slide source: Bill Gropp, ANL

08/26/2008 Programming Models 21

A Simple MPI Program (C++)

#include “mpi.h”
#include <iostream>
int main(int argc, char *argv[])
{
 int rank, buf;
 MPI::Init(argv, argc);
 rank = MPI::COMM_WORLD.Get_rank();

 // Process 0 sends and Process 1 receives
 if (rank == 0) {
 buf = 123456;
 MPI::COMM_WORLD.Send(&buf, 1, MPI::INT, 1, 0);
 }
 else if (rank == 1) {
 MPI::COMM_WORLD.Recv(&buf, 1, MPI::INT, 0, 0);
 std::cout << “Received “ << buf << “\n”;
 }

 MPI::Finalize();
 return 0;
}

Slide source: Bill Gropp, ANL

08/26/2008 Programming Models 22

Retrieving Further Information

• Status is a data structure allocated in the user’s program.

• In C:
int recvd_tag, recvd_from, recvd_count;

MPI_Status status;

MPI_Recv(..., MPI_ANY_SOURCE, MPI_ANY_TAG, ..., &status)

recvd_tag = status.MPI_TAG;

recvd_from = status.MPI_SOURCE;

MPI_Get_count(&status, datatype, &recvd_count);

• In Fortran:
integer recvd_tag, recvd_from, recvd_count

integer status(MPI_STATUS_SIZE)

call MPI_RECV(..., MPI_ANY_SOURCE, MPI_ANY_TAG, .. status, ierr)

tag_recvd = status(MPI_TAG)

recvd_from = status(MPI_SOURCE)

call MPI_GET_COUNT(status, datatype, recvd_count, ierr)

Slide source: Bill Gropp, ANL

08/26/2008 Programming Models 23

Retrieving Further Information

•Status is a data structure allocated in the user’s program.

• In C++:
int recvd_tag, recvd_from, recvd_count;

MPI::Status status;

Comm.Recv(..., MPI::ANY_SOURCE, MPI::ANY_TAG, ...,
 status)

recvd_tag = status.Get_tag();

recvd_from = status.Get_source();

recvd_count = status.Get_count(datatype);

Slide source: Bill Gropp, ANL

08/26/2008 Programming Models 24

Collective Operations in MPI

• Collective operations are called by all processes in a

communicator

•MPI_BCAST distributes data from one process (the root) to

all others in a communicator

•MPI_REDUCE combines data from all processes in

communicator and returns it to one process
• Operators include: MPI_MAX, MPI_MIN, MPI_PROD, MPI_SUM,…

• In many numerical algorithms, SEND/RECEIVE can be

replaced by BCAST/REDUCE, improving both simplicity

and efficiency

• Can use a more efficient algorithm than you might choose for
simplicity (e.g., P-1 send/receive pairs for broadcast or reduce)

• May use special hardware support on some systems

Slide source: Bill Gropp, ANL

08/26/2008 Programming Models 25

Example: PI in C - 1

#include "mpi.h"
#include <math.h>

#include <stdio.h>
int main(int argc, char *argv[])
{

int done = 0, n, myid, numprocs, i, rc;
double PI25DT = 3.141592653589793238462643;
double mypi, pi, h, sum, x, a;
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);
while (!done) {
 if (myid == 0) {
 printf("Enter the # of intervals: (0 quits) ");
 scanf("%d",&n);
 }
 MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
 if (n == 0) break;

Slide source: Bill Gropp, ANL

08/26/2008 Programming Models 26

Example: PI in C - 2

 h = 1.0 / (double) n;
 sum = 0.0;
 for (i = myid + 1; i <= n; i += numprocs) {
 x = h * ((double)i - 0.5);
 sum += 4.0 / (1.0 + x*x);
 }
 mypi = h * sum;
 MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,
 MPI_COMM_WORLD);
 if (myid == 0)
 printf("pi is approximately %.16f, Error is .16f\n",
 pi, fabs(pi - PI25DT));
}
MPI_Finalize();

 return 0;

}

Slide source: Bill Gropp, ANL

08/26/2008 Programming Models 27

Example: PI in Fortran - 1

 program main
 include ‘mpif.h’
 integer done, n, myid, numprocs, i, rc
 double pi25dt, mypi, pi, h, sum, x, z
 data done/.false./
 data PI25DT/3.141592653589793238462643/
 call MPI_Init(ierr)
 call MPI_Comm_size(MPI_COMM_WORLD,numprocs, ierr)
 call MPI_Comm_rank(MPI_COMM_WORLD,myid, ierr)
 do while (.not. done)
 if (myid .eq. 0) then
 print *,”Enter the number of intervals: (0 quits)“
 read *, n
 endif
 call MPI_Bcast(n, 1, MPI_INTEGER, 0,
 * MPI_COMM_WORLD, ierr)
 if (n .eq. 0) goto 10

Slide source: Bill Gropp, ANL

08/26/2008 Programming Models 28

Example: PI in Fortran - 2

 h = 1.0 / n
 sum = 0.0

 do i=myid+1,n,numprocs

 x = h * (i - 0.5)
 sum += 4.0 / (1.0 + x*x)
 enddo
 mypi = h * sum
 call MPI_Reduce(mypi, pi, 1, MPI_DOUBLE_PRECISION,
 * MPI_SUM, 0, MPI_COMM_WORLD, ierr)
 if (myid .eq. 0) then
 print *, "pi is approximately “, pi,
 * “, Error is “, abs(pi - PI25DT)

 enddo

10 continue
 call MPI_Finalize(ierr)

 end

Slide source: Bill Gropp, ANL

08/26/2008 Programming Models 29

Example: PI in C++ - 1

#include "mpi.h"
#include <math.h>
#include <iostream>
int main(int argc, char *argv[])

{
 int done = 0, n, myid, numprocs, i, rc;
 double PI25DT = 3.141592653589793238462643;
 double mypi, pi, h, sum, x, a;
 MPI::Init(argc, argv);
 numprocs = MPI::COMM_WORLD.Get_size();
 myid = MPI::COMM_WORLD.Get_rank();
 while (!done) {
 if (myid == 0) {
 std::cout << "Enter the # of intervals: (0 quits) ";
 std::cin >> n;;
 }
 MPI::COMM_WORLD.Bcast(&n, 1, MPI::INT, 0);
 if (n == 0) break;

Slide source: Bill Gropp, ANL

08/26/2008 Programming Models 30

Example: PI in C++ - 2

 h = 1.0 / (double) n;
 sum = 0.0;
 for (i = myid + 1; i <= n; i += numprocs) {
 x = h * ((double)i - 0.5);
 sum += 4.0 / (1.0 + x*x);
 }
 mypi = h * sum;
 MPI::COMM_WORLD.Reduce(&mypi, &pi, 1, MPI::DOUBLE,
 MPI::SUM, 0);
 if (myid == 0)
 std::cout << "pi is approximately “ << pi <<
 “, Error is “ << fabs(pi - PI25DT) << “\n”;
}
MPI::Finalize();

 return 0;

}

Slide source: Bill Gropp, ANL

08/26/2008 Programming Models 31

MPI Collective Routines

• Many Routines: Allgather, Allgatherv,

Allreduce, Alltoall, Alltoallv, Bcast,

Gather, Gatherv, Reduce, Reduce_scatter,

Scan, Scatter, Scatterv

•All versions deliver results to all participating

processes.

• V versions allow the hunks to have different sizes.

•Allreduce, Reduce, Reduce_scatter, and Scan

take both built-in and user-defined combiner functions.

• MPI-2 adds Alltoallw, Exscan, intercommunicator

versions of most routines

08/26/2008 Programming Models 32

Buffers
• Message passing has a small set of primitives, but there are subtleties

• Buffering and deadlock

• Deterministic execution

• Performance

• When you send data, where does it go? One possibility is:

Process 0 Process 1

User data

Local buffer

the network

User data

Local buffer

Derived from: Bill Gropp, ANL

08/26/2008 Programming Models 33

Avoiding Buffering

• It is better to avoid copies:

This requires that MPI_Send wait on delivery, or
that MPI_Send return before transfer is complete,
and we wait later.

Process 0 Process 1

User data

User data

the network

Slide source: Bill Gropp, ANL

08/26/2008 Programming Models 34

• Send a large message from process 0 to process 1
• If there is insufficient storage at the destination, the send must

wait for the user to provide the memory space (through a
receive)

• What happens with this code?

Sources of Deadlocks

Process 0

Send(1)
Recv(1)

Process 1

Send(0)
Recv(0)

• This is called “unsafe” because it depends on
the availability of system buffers in which to
store the data sent until it can be received

Slide source: Bill Gropp, ANL

08/26/2008 Programming Models 35

Some Solutions to the “unsafe” Problem

• Order the operations more carefully:

• Supply receive buffer at same time as send:

Process 0

Send(1)
Recv(1)

Process 1

Recv(0)
Send(0)

Process 0

Sendrecv(1)

Process 1

Sendrecv(0)

Slide source: Bill Gropp, ANL

08/26/2008 Programming Models 36

More Solutions to the “unsafe” Problem

• Supply own space as buffer for send

• Use non-blocking operations:

Process 0

Bsend(1)
Recv(1)

Process 1

Bsend(0)
Recv(0)

Process 0

Isend(1)
Irecv(1)
Waitall

Process 1

Isend(0)
Irecv(0)
Waitall

Slide source: Bill Gropp, ANL

08/26/2008 Programming Models 37

MPI’s Non-blocking Operations

• Non-blocking operations return (immediately) “request
handles” that can be tested and waited on:

 MPI_Request request;
 MPI_Status status;

 MPI_Isend(start, count, datatype,
 dest, tag, comm, &request);

 MPI_Irecv(start, count, datatype,
 dest, tag, comm, &request);

 MPI_Wait(&request, &status);
(each request must be Waited on)

• One can also test without waiting:
 MPI_Test(&request, &flag, &status);

Slide source: Bill Gropp, ANL

08/26/2008 Programming Models 38

MPI’s Non-blocking Operations (Fortran)

• Non-blocking operations return (immediately) “request
handles” that can be tested and waited on:

 integer request
 integer status(MPI_STATUS_SIZE)
 call MPI_Isend(start, count, datatype,
 dest, tag, comm, request,ierr)

 call MPI_Irecv(start, count, datatype,
 dest, tag, comm, request, ierr)

 call MPI_Wait(request, status, ierr)
(Each request must be waited on)

• One can also test without waiting:

 call MPI_Test(request, flag, status, ierr)

Slide source: Bill Gropp, ANL

08/26/2008 Programming Models 39

MPI’s Non-blocking Operations (C++)

• Non-blocking operations return (immediately) “request
handles” that can be tested and waited on:

MPI::Request request;
MPI::Status status;

 request = comm.Isend(start, count,
 datatype, dest, tag);

 request = comm.Irecv(start, count,
 datatype, dest, tag);

 request.Wait(status);
(each request must be Waited on)

• One can also test without waiting:
 flag = request.Test(status);

Slide source: Bill Gropp, ANL

08/26/2008 Programming Models 40

Other MPI Point-to-Point Features

• It is sometimes desirable to wait on multiple requests:

 MPI_Waitall(count, array_of_requests,

 array_of_statuses)

• Also MPI_Waitany, MPI_Waitsome, and test versions

• MPI provides multiple modes for sending messages:

• Synchronous mode (MPI_Ssend): the send does not complete

until a matching receive has begun. (Unsafe programs deadlock.)

• Buffered mode (MPI_Bsend): user supplies a buffer to the system

for its use. (User allocates enough memory to avoid deadlock.)

• Ready mode (MPI_Rsend): user guarantees that a matching
receive has been posted. (Allows access to fast protocols;

undefined behavior if matching receive not posted.)

08/26/2008 Programming Models 41

Synchronization

• Global synchronization is available in MPI
• C: MPI_Barrier(comm)
• Fortran: MPI_Barrier(comm, ierr)
• C++: comm.Barrier();

• Blocks until all processes in the group of the

communicator comm call it.

• Almost never required to make a message passing

program correct

• Useful in measuring performance and load balancing

08/26/2008 Programming Models 42

MPI has become the de facto standard for parallel

computing using message passing

Pros and Cons of standards

• MPI created finally a standard for applications

development in the HPC community portability

• The MPI standard is a least common denominator

building on mid-80s technology, so may discourage

innovation

Programming Model reflects hardware!

“I am not sure how I will program a Petaflops computer,

but I am sure that I will need MPI somewhere” – HDS 2001

MPI – The de facto standard

08/26/2008 Programming Models 43

MPI References

• The Standard itself:

• at http://www.mpi-forum.org

• All MPI official releases, in both postscript and HTML

• Other information on Web:

• at http://www.mcs.anl.gov/mpi

• pointers to lots of stuff, including other talks and

tutorials, a FAQ, other MPI pages

Slide source: Bill Gropp, ANL

08/26/2008 Programming Models 44

Books on MPI

• Using MPI: Portable Parallel Programming

with the Message-Passing Interface (2nd edition),
by Gropp, Lusk, and Skjellum, MIT Press,

1999.

• Using MPI-2: Portable Parallel Programming

with the Message-Passing Interface, by Gropp,

Lusk, and Thakur, MIT Press, 1999.

• MPI: The Complete Reference - Vol 1 The MPI Core, by

Snir, Otto, Huss-Lederman, Walker, and Dongarra, MIT

Press, 1998.

• MPI: The Complete Reference - Vol 2 The MPI Extensions,

by Gropp, Huss-Lederman, Lumsdaine, Lusk, Nitzberg,

Saphir, and Snir, MIT Press, 1998.

• Designing and Building Parallel Programs, by Ian Foster,
Addison-Wesley, 1995.

• Parallel Programming with MPI, by Peter Pacheco, Morgan-

Kaufmann, 1997.

Slide source: Bill Gropp, ANL

08/26/2008 Programming Models 45

Partitioned Global Address Space Languages

 One-Sided Communication

What’s Wrong with MPI Everywhere

• We can run 1 MPI process per core
• This works now (for CMPs) and will work for a while

• How long will it continue working?
• 4 - 8 cores? Probably. 128 - 1024 cores? Probably not.

• Depends on performance expectations -- more on this later

• What is the problem?
• Latency: some copying required by semantics

• Memory utilization: partitioning data for separate address space
requires some replication
• How big is your per core subgrid? At 10x10x10, over 1/2 of the points

are surface points, probably replicated

• Memory bandwidth: extra state means extra bandwidth

• Weak scaling: success model for the “cluster era;” will not be for
the many core era -- not enough memory per core

• Heterogeneity: MPI per CUDA thread-block?

• Advantage: no new apps work; modest infrastructure work
(multicore-optimized MPI)

08/26/2008 Programming Models 47

Current Implementations of PGAS Languages

• A successful language/library must run everywhere

• UPC
• Commercial compilers available on Cray, SGI, HP machines

• Open source compiler from LBNL/UCB (source-to-source)

• Open source gcc-based compiler from Intrepid

• CAF
• Commercial compiler available on Cray machines

• Open source compiler available from Rice

• Titanium
• Open source compiler from UCB runs on most machines

• DARPA HPCS Languages

• Cray Chapel, IBM X10, Sun Fortress

• Use PGAS memory abstraction, but have dynamic threading

• Recent additions to parallel language landscape no mature compilers

for clusters yet

08/26/2008 Programming Models 48

Unified Parallel C (UPC)

Overview and Design Philosophy

• Unified Parallel C (UPC) is:

• An explicit parallel extension of ANSI C

• A partitioned global address space language

• Sometimes called a GAS language

• Similar to the C language philosophy

• Programmers are clever and careful, and may need to get
close to hardware

• to get performance, but

• can get in trouble

• Concise and efficient syntax

• Common and familiar syntax and semantics for

parallel C with simple extensions to ANSI C

• Based on ideas in Split-C, AC, and PCP

04/16/2007 49

UPC Execution
Model

08/26/2008 Programming Models 50

UPC Execution Model

• Threads working independently in a SPMD fashion

• Number of threads specified at compile-time or run-time;

available as program variable THREADS

• MYTHREAD specifies thread index (0..THREADS-1)

• upc_barrier is a global synchronization: all wait

• There is a form of parallel loop that we will see later

• There are two compilation modes

• Static Threads mode:

• THREADS is specified at compile time by the user

• The program may use THREADS as a compile-time constant

• Dynamic threads mode:

• Compiled code may be run with varying numbers of threads

08/26/2008 Programming Models 51

Hello World in UPC

• Any legal C program is also a legal UPC program

• If you compile and run it as UPC with P threads, it will

run P copies of the program.

• Using this fact, plus the identifiers from the previous

slides, we can parallel hello world:

#include <upc.h> /* needed for UPC extensions */

#include <stdio.h>

main() {

 printf("Thread %d of %d: hello UPC world\n",

 MYTHREAD, THREADS);

}

08/26/2008 Programming Models 52

Example: Monte Carlo Pi Calculation

• Estimate Pi by throwing darts at a unit square

• Calculate percentage that fall in the unit circle

• Area of square = r2 = 1

• Area of circle quadrant = * r2 = /4

• Randomly throw darts at x,y positions

• If x2 + y2 < 1, then point is inside circle

• Compute ratio:

• # points inside / # points total

• = 4*ratio

r =1

08/26/2008 Programming Models 53

Each thread calls “hit” separately

Initialize random in

math library

Each thread can use

input arguments

Each thread gets its own

copy of these variables

Pi in UPC

• Independent estimates of pi:
 main(int argc, char **argv) {

 int i, hits, trials = 0;

 double pi;

 if (argc != 2)trials = 1000000;

 else trials = atoi(argv[1]);

 srand(MYTHREAD*17);

 for (i=0; i < trials; i++) hits += hit();

 pi = 4.0*hits/trials;

 printf("PI estimated to %f.", pi);

 }

08/26/2008 Programming Models 54

Helper Code for Pi in UPC

• Required includes:
 #include <stdio.h>
 #include <math.h>

 #include <upc.h>

• Function to throw dart and calculate where it hits:
 int hit(){

 int const rand_max = 0xFFFFFF;
 double x = ((double) rand()) / RAND_MAX;
 double y = ((double) rand()) / RAND_MAX;
 if ((x*x + y*y) <= 1.0) {
 return(1);

 } else {
 return(0);
 }
 }

04/16/2007 55

Shared vs. Private
Variables

08/26/2008 Programming Models 56

Private vs. Shared Variables in UPC

• Normal C variables and objects are allocated in the private

memory space for each thread.

• Shared variables are allocated only once, with thread 0

 shared int ours; // use sparingly: performance

 int mine;

• Shared variables may not have dynamic lifetime: may not

occur in a in a function definition, except as static. Why?

Shared

G
lo

b
a
l

a
d

d
re

s
s

s
p

a
c
e

Private

mine: mine: mine:

Thread0 Thread1 Threadn

ours:

08/26/2008 Programming Models 57

Pi in UPC: Shared Memory Style

• Parallel computing of pi, but with a bug

 shared int hits;

 main(int argc, char **argv) {

 int i, my_trials = 0;

 int trials = atoi(argv[1]);

 my_trials = (trials + THREADS - 1)/THREADS;

 srand(MYTHREAD*17);

 for (i=0; i < my_trials; i++)

 hits += hit();

 upc_barrier;

 if (MYTHREAD == 0) {

 printf("PI estimated to %f.", 4.0*hits/trials);

 }

 }

shared variable to

record hits

divide work up evenly

accumulate hits

What is the problem with this program?

08/26/2008 Programming Models 58

Shared Arrays Are Cyclic By Default

• Shared scalars always live in thread 0

• Shared arrays are spread over the threads

• Shared array elements are spread across the threads
shared int x[THREADS] /* 1 element per thread */

shared int y[3][THREADS] /* 3 elements per thread */

shared int z[3][3] /* 2 or 3 elements per thread */

• In the pictures below, assume THREADS = 4

• Red elts have affinity to thread 0

x

y

z

As a 2D array, y is

logically blocked
by columns

Think of linearized

C array, then map
in round-robin

z is not

08/26/2008 Programming Models 59

Pi in UPC: Shared Array Version

• Alternative fix to the race condition

• Have each thread update a separate counter:

• But do it in a shared array

• Have one thread compute sum

shared int all_hits [THREADS];

main(int argc, char **argv) {

 … declarations an initialization code omitted

 for (i=0; i < my_trials; i++)

 all_hits[MYTHREAD] += hit();

 upc_barrier;

 if (MYTHREAD == 0) {

 for (i=0; i < THREADS; i++) hits += all_hits[i];

 printf("PI estimated to %f.", 4.0*hits/trials);

 }

}

all_hits is

shared by all

processors,

just as hits was

update element

with local affinity

04/16/2007 60

UPC
Synchronization

08/26/2008 Programming Models 61

UPC Global Synchronization

• UPC has two basic forms of barriers:
• Barrier: block until all other threads arrive

 upc_barrier

• Split-phase barriers
 upc_notify; this thread is ready for barrier

 do computation unrelated to barrier

 upc_wait; wait for others to be ready

• Optional labels allow for debugging
#define MERGE_BARRIER 12
if (MYTHREAD%2 == 0) {

 ...
 upc_barrier MERGE_BARRIER;
} else {
 ...
 upc_barrier MERGE_BARRIER;

}

08/26/2008 Programming Models 62

Synchronization - Locks

• UPC Locks are an opaque type:
upc_lock_t

• Locks must be allocated before use:
upc_lock_t *upc_all_lock_alloc(void);

 allocates 1 lock, pointer to all threads

upc_lock_t *upc_global_lock_alloc(void);

 allocates 1 lock, pointer to one thread

• To use a lock:
void upc_lock(upc_lock_t *l)

void upc_unlock(upc_lock_t *l)

 use at start and end of critical region

• Locks can be freed when not in use
void upc_lock_free(upc_lock_t *ptr);

08/26/2008 Programming Models 63

Pi in UPC: Shared Memory Style

• Parallel computing of pi, without the bug
 shared int hits;
 main(int argc, char **argv) {
 int i, my_hits, my_trials = 0;

 upc_lock_t *hit_lock = upc_all_lock_alloc();
 int trials = atoi(argv[1]);
 my_trials = (trials + THREADS - 1)/THREADS;
 srand(MYTHREAD*17);
 for (i=0; i < my_trials; i++)

 my_hits += hit();
 upc_lock(hit_lock);
 hits += my_hits;
 upc_unlock(hit_lock);
 upc_barrier;

 if (MYTHREAD == 0)
 printf("PI: %f", 4.0*hits/trials);
 }

create a lock

accumulate hits

locally

accumulate

across threads

08/26/2008 Programming Models 64

Recap: Private vs. Shared Variables in UPC

• We saw several kinds of variables in the pi example

• Private scalars (my_hits)

• Shared scalars (hits)

• Shared arrays (all_hits)

• Shared locks (hit_lock)

Shared

G
lo

b
a
l

a
d

d
re

s
s

s
p

a
c
e

Private

my_hits: my_hits: my_hits:

Thread0 Thread1 Threadn

all_hits[0]:

hits:

all_hits[n]: all_hits[1]:

hit_lock:

where:

n=Threads-1

04/16/2007 65

UPC Collectives

08/26/2008 Programming Models 66

UPC Collectives in General

• UPC collectives interface is in the language spec:
• http://upc.lbl.gov/docs/user/upc_spec_1.2.pdf

• It contains typical functions:
• Data movement: broadcast, scatter, gather, …

• Computational: reduce, prefix, …

• General interface has synchronization modes:
• Avoid over-synchronizing (barrier before/after)

• Data being collected may be read/written by any
thread simultaneously

• Simple interface for scalar values (int, double,…)
• Berkeley UPC value-based collectives

• Works with any compiler

• http://upc.lbl.gov/docs/user/README-collectivev.txt

08/26/2008 Programming Models 67

Pi in UPC: Data Parallel Style

• The previous version of Pi works, but is not scalable:
• On a large # of threads, the locked region will be a bottleneck

• Use a reduction for better scalability

 #include <bupc_collectivev.h>

 // shared int hits;

 main(int argc, char **argv) {

 ...

 for (i=0; i < my_trials; i++)

 my_hits += hit();

 my_hits = // type, input, thread, op

 bupc_allv_reduce(int, my_hits, 0, UPC_ADD);

 // upc_barrier;

 if (MYTHREAD == 0)

 printf("PI: %f", 4.0*my_hits/trials);

 }

 Berkeley collectives

no shared variables

barrier implied by collective

04/16/2007 68

Work Distribution
Using upc_forall

08/26/2008 Programming Models 69

Example: Vector Addition

 /* vadd.c */

 #include <upc_relaxed.h>
#define N 100*THREADS

shared int v1[N], v2[N], sum[N];
void main() {

 int i;
 for(i=0; i<N; i++)

 if (MYTHREAD == i
%THREADS)

 sum[i]=v1[i]+v2[i];
}

• Questions about parallel vector additions:

• How to layout data (here it is cyclic)

• Which processor does what (here it is “owner computes”)

cyclic layout

owner computes

08/26/2008 Programming Models 70

• The idiom in the previous slide is very common

• Loop over all; work on those owned by this proc

• UPC adds a special type of loop
 upc_forall(init; test; loop; affinity)

 statement;

• Programmer indicates the iterations are independent

• Undefined if there are dependencies across threads

• Affinity expression indicates which iterations to run on each thread.

It may have one of two types:

• Integer: affinity%THREADS is MYTHREAD
• Pointer: upc_threadof(affinity) is MYTHREAD

• Syntactic sugar for loop on previous slide

• Some compilers may do better than this, e.g.,

 for(i=MYTHREAD; i<N; i+=THREADS)

• Rather than having all threads iterate N times:

 for(i=0; i<N; i++) if (MYTHREAD == i%THREADS)

upc
_for
all()

08/26/2008 Programming Models 71

Vector Addition with upc_forall

#define N 100*THREADS

shared int v1[N], v2[N], sum[N];

void main() {
 int i;
 upc_forall(i=0; i<N; i++;

i)

 sum[i]=v1[i]+v2[i];
}

• The vadd example can be rewritten as follows

• Equivalent code could use “&sum[i]” for affinity

• The code would be correct but slow if the affinity

expression were i+1 rather than i.

The cyclic data

distribution may

perform poorly on

some machines

04/16/2007 72

Distributed Arrays
in UPC

08/26/2008 Programming Models 73

Blocked Layouts in UPC

#define N 100*THREADS
shared int [*] v1[N], v2[N], sum[N];

void main() {
 int i;
 upc_forall(i=0; i<N; i++;

&sum[i])

 sum[i]=v1[i]+v2[i];
}

• If this code were doing nearest neighbor averaging (3pt stencil) the

cyclic layout would be the worst possible layout.

• Instead, want a blocked layout

• Vector addition example can be rewritten as follows using a blocked

layout

blocked layout

08/26/2008 Programming Models 74

Layouts in General

• All non-array objects have affinity with thread zero.

• Array layouts are controlled by layout specifiers:

• Empty (cyclic layout)

• [*] (blocked layout)

• [0] or [] (indefinite layout, all on 1 thread)

• [b] or [b1][b2]…[bn] = [b1*b2*…bn] (fixed block size)

• The affinity of an array element is defined in terms of:

• block size, a compile-time constant

• and THREADS.

• Element i has affinity with thread

 (i / block_size) % THREADS

• In 2D and higher, linearize the elements as in a C

representation, and then use above mapping

08/26/2008 Programming Models 75

Pointers to Shared vs. Arrays

#define N 100*THREADS

shared int v1[N], v2[N], sum[N];

void main() {
int i;
shared int *p1, *p2;

p1=v1; p2=v2;
for (i=0; i<N; i++, p1++, p2++)

 if (i %THREADS= = MYTHREAD)
 sum[i]= *p1 + *p2;

}

• In the C tradition, arrays can be access through pointers

• Here is the vector addition example using pointers

v1

p1

08/26/2008 Programming Models 76

UPC Pointers

int *p1; /* private pointer to local memory */

shared int *p2; /* private pointer to shared space */

int *shared p3; /* shared pointer to local memory */

shared int *shared p4; /* shared pointer to

 shared space */

Shared

G
lo

b
a

l

a
d

d
re

s
s
 s

p
a
c
e

Private

p1:

Thread0 Thread1 Threadn

p2:

p1:

p2:

p1:

p2:

p3:

p4:

p3:

p4:

p3:

p4:

Pointers to shared often require more storage and are more costly to

dereference; they may refer to local or remote memory.

08/26/2008 Programming Models 77

Dynamic Memory Allocation in UPC

• Dynamic memory allocation of shared memory is available

in UPC

• Non-collective (called independently)

 shared void *upc_global_alloc(size_t nblocks,

 size_t nbytes);

 nblocks : number of blocks

 nbytes : block size

• Collective (called together; all threads get same pointer)

 shared void *upc_all_alloc(size_t nblocks,

 size_t nbytes);

• Freeing dynamically allocated memory in shared space

 void upc_free(shared void *ptr);

04/16/2007 78

Performance of
UPC

08/26/2008 Programming Models 79

PGAS Languages have Performance Advantages

Strategy for acceptance of a new language

• Make it run faster than anything else

Keys to high performance

• Parallelism:
• Scaling the number of processors

• Maximize single node performance
• Generate friendly code or use tuned libraries (BLAS, FFTW,

etc.)

• Avoid (unnecessary) communication cost
• Latency, bandwidth, overhead

• Berkeley UPC and Titanium use GASNet communication
layer

• Avoid unnecessary delays due to dependencies
• Load balance; Pipeline algorithmic dependencies

08/26/2008 Programming Models 80

One-Sided vs Two-Sided

• A one-sided put/get message can be handled directly by a network

interface with RDMA support

• Avoid interrupting the CPU or storing data from CPU (preposts)

• A two-sided messages needs to be matched with a receive to

identify memory address to put data

• Offloaded to Network Interface in networks like Quadrics

• Need to download match tables to interface (from host)

• Ordering requirements on messages can also hinder bandwidth

address

message id

data payload

data payload

one-sided put message

two-sided message

network

 interface

memory

host

CPU

08/26/2008 Programming Models 81

One-Sided vs. Two-Sided: Practice

0

100

200

300

400

500

600

700

800

900

10 100 1,000 10,000 100,000 1,000,000

Size (bytes)

B
a
n

d
w

id
th

 (
M

B
/s

)

GASNet put (nonblock)"

MPI Flood

Relative BW (GASNet/MPI)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

10 1000 100000 10000000

Size (bytes)

• InfiniBand: GASNet vapi-conduit and OSU MVAPICH 0.9.5

• Half power point (N) differs by one order of magnitude

• This is not a criticism of the implementation!

Joint work with Paul Hargrove and Dan Bonachea

(u
p

 i
s

 g
o

o
d

) NERSC Jacquard
machine with

Opteron
processors

08/26/2008 Programming Models 82

GASNet: Portability and High-Performance
(d

o
w

n
 i

s
 g

o
o

d
)

GASNet better for latency across machines

8-byte Roundtrip Latency

14.6

6.6

22.1

9.6

6.6

4.5

9.5

18.5

24.2

13.5

17.8

8.3

0

5

10

15

20

25

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

R
o

u
n

d
tr

ip
 L

a
te

n
c
y
 (

u
s
e
c
)

MPI ping-pong

GASNet put+sync

Joint work with UPC Group; GASNet design by Dan Bonachea

08/26/2008 Programming Models 83

(u
p

 i
s

 g
o

o
d

)

GASNet at least as high (comparable) for large messages

Flood Bandwidth for 2MB messages

1504

630

244

857
225

610

1490799
255

858
228

795

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

P
e
rc

e
n

t
H

W
 p

e
a
k
 (

B
W

 i
n

 M
B

)

MPI GASNet

GASNet: Portability and High-Performance

Joint work with UPC Group; GASNet design by Dan Bonachea

08/26/2008 Programming Models 84

(u
p

 i
s

 g
o

o
d

)

GASNet excels at mid-range sizes: important for overlap

GASNet: Portability and High-Performance

Flood Bandwidth for 4KB messages

547

420

190

702

152

252

750

714
231

763

223

679

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

P
e

rc
e

n
t

H
W

 p
e

a
k

MPI

GASNet

Joint work with UPC Group; GASNet design by Dan Bonachea

08/26/2008 Programming Models 85

Case Study: NAS FT in UPC

• Perform FFT on a 3D Grid

• 1D FFTs in each dimension, 3 phases

• Transpose after first 2 for locality

• Bisection bandwidth-limited

• Problem as #procs grows

• Three approaches:

• Exchange:

• wait for 2nd dim FFTs to finish, send 1

message per processor pair

• Slab:

• wait for chunk of rows destined for 1

proc, send when ready

• Pencil:

• send each row as it completes

Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea

08/26/2008 Programming Models 86

NAS FT Variants Performance Summary

• Slab is always best for MPI; small message cost too high

• Pencil is always best for UPC; more overlap

0

200

400

600

800

1000

Myrinet 64

InfiniBand 256
Elan3 256

Elan3 512
Elan4 256

Elan4 512

M
F
l
o
p
s

p
e
r

T
h
r
e
a
d Best MFlop rates for all NAS FT Benchmark versions

Best NAS Fortran/MPI
Best MPI
Best UPC

0

100

200

300

400

500

600

700

800

900

1000

1100

Myrinet 64

InfiniBand 256
Elan3 256

Elan3 512
Elan4 256

Elan4 512

M
Fl

op
s

pe
r T

hr
ea

d

Best NAS Fortran/MPI

Best MPI (always Slabs)

Best UPC (always Pencils)

Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea

.5 Tflops

Beyond the SPMD Model: Dynamic Threads

• UPC uses a static threads (SPMD) programming model

• No dynamic load balancing built-in, although some examples
(Delaunay mesh generation) of building it on top

• Berkeley UPC model extends basic memory semantics (remote

read/write) with active messages

• AM have limited functionality (no messages except acks) to

avoid deadlock in the network

• A more dynamic runtime would have many uses

• Application load imbalance, OS noise, fault tolerance

• Two extremes are well-studied

• Dynamic load balancing (e.g., random stealing) without locality

• Static parallelism (with threads = processors) with locality

• Can we combine both in a general-purpose way?

Joint work with Parry Husbands

The Parallel Case

Blocks 2D
block-cyclic
distributed

Panel factorizations
involve communication
for pivoting Matrix-

matrix
multiplication
used here.
Can be coalesced

C
o

m
p

le
te

d
 p

a
rt o

f L

A(i,j) A(i,k)

A(j,i) A(j,k)

Trailing matrix

to be updated

Panel being factored

Completed part of U

Parallel Tasks in LU

some edges omitted

• Implementation uses 3 levels of threading:

• UPC threads (SPMD), user-level non-preemptive threads, BLAS threads

• Theoretical and practical problem: Memory deadlock

• Not enough memory for all tasks at once. (Each update needs two
temporary blocks, a green and blue, to run.)

• If updates are scheduled too soon, you will run out of memory

• If updates are scheduled too late, critical path will be delayed.

UPC HP Linpack Performance

•Faster than ScaLAPACK due to less synchronization

•Comparable to MPI HPL (numbers from HPCC database)

•Large scaling of UPC code on Itanium/Quadrics (Thunder)

• 2.2 TFlops on 512p and 4.4 TFlops on 1024p

Joint work with Parry Husbands

Utilization Comparison

• Synchronous (above)
vs. asynchronous (below)
schedule

• SGI Altix Itanium 2 1.4GHz,
n=12,800, process grid = 2x4,
block size = 400

• Grey blocks = matrix
multiplication

• Black blocks = panel
factorization

08/26/2008 Programming Models 92

Summary and Discussion

• Message Passing
• MPI is the de facto programming model for large-scale machines

• Was developed as a standardization of “known” ideas (but not without
controversy)

• MPI 3.0 standards effort is underway now: you can join!

• Looking at one-sided communication again

• Race conditions are relatively rare

• Partitioned Global Address Space Language
• Offer a compromise on performance and ease of programming

• Match both shared and distributed memory

• Demonstrated scalability (like MPI), portability (through GASNet + C)

• UPC is an example, others include Co-Array Fortran, Titanium (Java)

• The DARPA HPCS languages: X10, Chapel, Fortress

• Productivity
• In the eye of the programmer

• Trade-off: races vs packing/unpacking code

08/26/2008 Programming Models 93

UPC Group (Past and Present)

• Filip Blagojevic

• Dan Bonachea

• Paul Hargrove (Runtime
Lead)

• Steve Hofmeyer

• Costin Iancu (Compiler Lead)

• Seung-Jai Min

• Rajesh Nishtala

• Kathy Yelick (Project Lead)

• Yili Zheng

Former:

• Christian Bell

• Michael Welcome

• Parry Husbands

http://upc.lbl.gov

Compiler, runtime,

GASNet available here.

