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   - Listing of the 500 most powerful 

     Computers in the World 

   - Yardstick: Rmax from Linpack 

  Ax=b, dense problem 

   - Updated twice a year: 

 ISC‘xy in Germany, June xy 

 SC‘xy in USA, November xy   

   - All data available from www.top500.org 
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33rd List: The TOP10 

Rank Site Manufacturer Computer Country Cores 
Rmax 

[Tflops] 

Power 

[MW] 

1 DOE/NNSA/LANL IBM 
Roadrunner  

BladeCenter QS22/LS21 
USA 129,600 1,105.0 2.48

2 
Oak Ridge National 

Laboratory 
Cray Inc. 

Jaguar  

Cray XT5 QC 2.3 GHz 
USA 150,152 1,059.0 6.95

3 
Forschungszentrum 

Juelich (FZJ) 
IBM 

Jugene 

Blue Gene/P Solution 
Germany 294,912 825.50 2.26

4 

NASA/Ames 

Research Center/

NAS 

SGI 
Pleiades 

SGI Altix ICE 8200EX 
USA 51,200 487.0 2.09

5 DOE/NNSA/LLNL IBM 
BlueGene/L 

eServer Blue Gene Solution 
USA 212,992 478.2 2.32

6 
University of 

Tennessee 
Cray 

Kraken  

Cray XT5 QC 2.3 GHz 
USA 66,000 463.30

7 
Argonne National 

Laboratory 
IBM 

Intrepid 

Blue Gene/P Solution 
USA 163,840 458.61 1.26

8 TACC/U. of Texas Sun 
Ranger  

SunBlade x6420 
USA 62,976 433.2 2.0

9 DOE/NNSA/LLNL IBM 
Dawn 

Blue Gene/P Solution 
USA 147,456 415.70 1.13

10 
Forschungszentrum 

Juelich (FZJ) 
Sun/Bull SA 

JUROPA  

NovaScale /Sun Blade 
Germany 26,304 274.80 1.54
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Concurrency Has Increased Dramatically 

Exponential wave of increasing concurrency for forseeable future! 

1M cores sooner than you think! 

6 

Sum of the # of cores in top 15 systems (from top500.org) 
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Common by 2015? 
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Programming With MPI 

• MPI is a library 
• All operations are performed with routine calls 

• Basic definitions in  
• mpi.h for C 

• mpif.h for Fortran 77 and 90 

• MPI module for Fortran 90 (optional) 

• First Program: 
• Create 4 processes in a simple MPI job 

• Write out process number  

• Write out some variables (illustrate separate name 
space) 

Slide source: Bill Gropp, ANL 
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Finding Out About the Environment 

• Two important questions that arise early in a 
parallel program are: 

• How many processes are participating in this 
computation? 

• Which one am I? 

• MPI provides functions to answer these 
questions: 

•MPI_Comm_size reports the number of processes. 

•MPI_Comm_rank reports the rank, a number between 
0 and size-1, identifying the calling process 

Slide source: Bill Gropp, ANL 
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Hello (C) 

#include "mpi.h" 
#include <stdio.h> 

int main( int argc, char *argv[] ) 
{ 
    int rank, size; 
    MPI_Init( &argc, &argv ); 
    MPI_Comm_rank( MPI_COMM_WORLD, &rank ); 
    MPI_Comm_size( MPI_COMM_WORLD, &size ); 
    printf( "I am %d of %d\n", rank, size ); 
    MPI_Finalize(); 
    return 0; 
} 

Slide source: Bill Gropp, ANL 
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Hello (Fortran) 

program main 

include 'mpif.h' 

integer ierr, rank, size 

call MPI_INIT( ierr ) 

call MPI_COMM_RANK( MPI_COMM_WORLD, rank, ierr ) 

call MPI_COMM_SIZE( MPI_COMM_WORLD, size, ierr ) 

print *, 'I am ', rank, ' of ', size 

call MPI_FINALIZE( ierr ) 

end 

Slide source: Bill Gropp, ANL 
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Hello (C++) 

#include "mpi.h" 

#include <iostream> 

int main( int argc, char *argv[] ) 
{ 
    int rank, size; 

    MPI::Init(argc, argv); 
    rank = MPI::COMM_WORLD.Get_rank(); 
    size = MPI::COMM_WORLD.Get_size(); 
    std::cout << "I am " << rank << " of " << size << 
   "\n"; 

    MPI::Finalize(); 
    return 0; 
} 

Slide source: Bill Gropp, ANL 
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Notes on Hello World 

• All MPI programs begin with MPI_Init and end with 
MPI_Finalize 

• MPI_COMM_WORLD is defined by mpi.h (in C) or 
mpif.h (in Fortran) and designates all processes in the 
MPI “job” 

• Each statement executes independently in each process 
• including the printf/print statements 

• I/O not part of MPI-1but is in MPI-2 
• print and write to standard output or error not part of either 

MPI-1 or MPI-2 

• output order is undefined (may be interleaved by character, line, 
or blocks of characters), 

• The MPI-1 Standard does not specify how to run an MPI 

program, but many implementations provide  

mpirun –np 4 a.out 
Slide source: Bill Gropp, ANL 
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MPI Basic Send/Receive 

• We need to fill in the details in 

• Things that need specifying: 
• How will “data” be described? 

• How will processes be identified? 

• How will the receiver recognize/screen messages? 

• What will it mean for these operations to complete? 

Process 0 Process 1 

Send(data) 

Receive(data) 

Slide source: Bill Gropp, ANL 
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Some Basic Concepts 

• Processes can be collected into groups 

• Each message is sent in a context, and must be 

received in the same context 

• Provides necessary support for libraries 

• A group and context together form a 

communicator 

• A process is identified by its rank in the group 

associated with a communicator 

• There is a default communicator whose group 

contains all initial processes, called 

MPI_COMM_WORLD 

Slide source: Bill Gropp, ANL 
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MPI Datatypes 

• The data in a message to send or receive is 

described by a triple (address, count, datatype), 

where 

• An MPI datatype is recursively defined as: 

• predefined, corresponding to a data type from the 

language (e.g., MPI_INT, MPI_DOUBLE) 

• a contiguous array of MPI datatypes 

• a strided block of datatypes 

• an indexed array of blocks of datatypes 

• an arbitrary structure of datatypes 

• There are MPI functions to construct custom 

datatypes, in particular ones for subarrays 

Slide source: Bill Gropp, ANL 
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MPI Tags 

• Messages are sent with an accompanying user-

defined integer tag, to assist the receiving 

process in identifying the message 

• Messages can be screened at the receiving end 

by specifying a specific tag, or not screened by 

specifying MPI_ANY_TAG as the tag in a 

receive 

• Some non-MPI message-passing systems have 

called tags “message types”.  MPI calls them 

tags to avoid confusion with datatypes 

Slide source: Bill Gropp, ANL 
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MPI Basic (Blocking) Send 

MPI_SEND(start, count, datatype, dest, tag, comm) 
• The message buffer is described by (start, count, datatype). 

• The target process is specified by dest (rank within comm) 

• When this function returns, the buffer (A) can be reused, but the message may not have 
been received by the target process. 

MPI_RECV(start, count, datatype, source, tag, comm, status) 
• Waits until a matching (source and tag) message is received 

• source is rank in communicator specified by comm, or MPI_ANY_SOURCE 
• tag is a tag to be matched on or MPI_ANY_TAG 

• Receiving fewer than count is OK, but receiving more is an error 

• status contains further information (e.g. size of message) 

Slide source: Bill Gropp, ANL 

A(10) 
B(20) 

MPI_Send( A, 10, MPI_DOUBLE, 1, …) MPI_Recv( B, 20, MPI_DOUBLE, 0, … ) 
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A Simple MPI Program 

#include “mpi.h” 
#include <stdio.h> 
int main( int argc, char *argv[]) 
{ 
  int rank, buf; 
  MPI_Status status; 
  MPI_Init(&argv, &argc);    
  MPI_Comm_rank( MPI_COMM_WORLD, &rank ); 

  /* Process 0 sends and Process 1 receives */ 
  if (rank == 0) { 
    buf = 123456; 
    MPI_Send( &buf, 1, MPI_INT, 1, 0, MPI_COMM_WORLD); 
  } 
  else if (rank == 1) { 
    MPI_Recv( &buf, 1, MPI_INT, 0, 0, MPI_COMM_WORLD,  
              &status ); 
    printf( “Received %d\n”, buf ); 
  } 

  MPI_Finalize(); 
  return 0; 
} Slide source: Bill Gropp, ANL 

Note: Fortran and C++ versions  

are in online lecture notes 
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A Simple MPI Program (Fortran) 

     program main 
     include ‘mpif.h’ 
     integer rank, buf, ierr, status(MPI_STATUS_SIZE) 

     call MPI_Init(ierr)  
     call MPI_Comm_rank( MPI_COMM_WORLD, rank, ierr ) 
C Process 0 sends and Process 1 receives  
     if (rank .eq. 0) then 
        buf = 123456 
        call MPI_Send( buf, 1, MPI_INTEGER, 1, 0,  
    *                  MPI_COMM_WORLD, ierr ) 

     else if (rank .eq. 1) then 
        call MPI_Recv( buf, 1, MPI_INTEGER, 0, 0, 
    *                  MPI_COMM_WORLD, status, ierr ) 
        print *, “Received “, buf 
     endif 

     call MPI_Finalize(ierr) 
     end 

Slide source: Bill Gropp, ANL 
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A Simple MPI Program (C++) 

#include “mpi.h” 
#include <iostream> 
int main( int argc, char *argv[]) 
{ 
  int rank, buf; 
  MPI::Init(argv, argc); 
  rank = MPI::COMM_WORLD.Get_rank(); 

  // Process 0 sends and Process 1 receives  
  if (rank == 0) { 
    buf = 123456; 
    MPI::COMM_WORLD.Send( &buf, 1, MPI::INT, 1, 0 ); 
  } 
  else if (rank == 1) { 
    MPI::COMM_WORLD.Recv( &buf, 1, MPI::INT, 0, 0 ); 
    std::cout << “Received “ << buf << “\n”; 
  } 

  MPI::Finalize(); 
  return 0; 
} 

Slide source: Bill Gropp, ANL 
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Retrieving Further Information 

• Status is a data structure allocated in the user’s program. 

• In C: 
int recvd_tag, recvd_from, recvd_count; 

MPI_Status status; 

MPI_Recv(..., MPI_ANY_SOURCE, MPI_ANY_TAG, ..., &status ) 

recvd_tag  = status.MPI_TAG; 

recvd_from = status.MPI_SOURCE; 

MPI_Get_count( &status, datatype, &recvd_count ); 

• In Fortran: 
integer recvd_tag, recvd_from, recvd_count 

integer status(MPI_STATUS_SIZE) 

call MPI_RECV(..., MPI_ANY_SOURCE, MPI_ANY_TAG, .. status, ierr) 

tag_recvd  = status(MPI_TAG) 

recvd_from = status(MPI_SOURCE) 

call MPI_GET_COUNT(status, datatype, recvd_count, ierr) 

Slide source: Bill Gropp, ANL 
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Retrieving Further Information 

•Status is a data structure allocated in the user’s program. 

• In C++: 
int recvd_tag, recvd_from, recvd_count; 

MPI::Status status; 

Comm.Recv(..., MPI::ANY_SOURCE, MPI::ANY_TAG, ...,  
        status ) 

recvd_tag   = status.Get_tag(); 

recvd_from  = status.Get_source(); 

recvd_count = status.Get_count( datatype ); 

Slide source: Bill Gropp, ANL 
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Collective Operations in MPI 

• Collective operations are called by all processes in a 

communicator 

•MPI_BCAST distributes data from one process (the root) to 

all others in a communicator 

•MPI_REDUCE combines data from all processes in 

communicator and returns it to one process 
• Operators include: MPI_MAX, MPI_MIN, MPI_PROD, MPI_SUM,… 

• In many numerical algorithms, SEND/RECEIVE can be 

replaced by BCAST/REDUCE, improving both simplicity 

and efficiency 

• Can use a more efficient algorithm than you might choose for 
simplicity (e.g., P-1 send/receive pairs for broadcast or reduce) 

• May use special hardware support on some systems 

Slide source: Bill Gropp, ANL 
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Example:  PI in C - 1 

#include "mpi.h" 
#include <math.h> 

#include <stdio.h> 
int main(int argc, char *argv[]) 
{ 

int done = 0, n, myid, numprocs, i, rc; 
double PI25DT = 3.141592653589793238462643; 
double mypi, pi, h, sum, x, a; 
MPI_Init(&argc,&argv); 
MPI_Comm_size(MPI_COMM_WORLD,&numprocs); 
MPI_Comm_rank(MPI_COMM_WORLD,&myid); 
while (!done)  { 
  if (myid == 0) { 
    printf("Enter the # of intervals: (0 quits) "); 
    scanf("%d",&n); 
  } 
  MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD); 
  if (n == 0) break; 

Slide source: Bill Gropp, ANL 
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Example:  PI in C - 2 

    h   = 1.0 / (double) n; 
  sum = 0.0; 
  for (i = myid + 1; i <= n; i += numprocs) { 
    x = h * ((double)i - 0.5); 
    sum += 4.0 / (1.0 + x*x); 
  } 
  mypi = h * sum; 
  MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, 
             MPI_COMM_WORLD); 
  if (myid == 0) 
    printf("pi is approximately %.16f, Error is .16f\n", 
            pi, fabs(pi - PI25DT)); 
} 
MPI_Finalize(); 

 return 0; 

} 

Slide source: Bill Gropp, ANL 
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Example:  PI in Fortran - 1 

     program main 
     include ‘mpif.h’  
     integer done, n, myid, numprocs, i, rc 
     double pi25dt, mypi, pi, h, sum, x, z 
     data done/.false./ 
     data PI25DT/3.141592653589793238462643/ 
     call MPI_Init(ierr) 
     call MPI_Comm_size(MPI_COMM_WORLD,numprocs, ierr ) 
     call MPI_Comm_rank(MPI_COMM_WORLD,myid, ierr) 
     do while (.not. done) 
       if (myid .eq. 0) then 
        print *,”Enter the number of intervals: (0 quits)“ 
        read *, n 
       endif 
       call MPI_Bcast(n, 1, MPI_INTEGER, 0, 
   *                   MPI_COMM_WORLD, ierr ) 
       if (n .eq. 0) goto 10 

Slide source: Bill Gropp, ANL 
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Example:  PI in Fortran - 2 

        h   = 1.0 / n 
    sum = 0.0 

        do i=myid+1,n,numprocs 

          x = h * (i - 0.5) 
      sum += 4.0 / (1.0 + x*x) 
    enddo 
    mypi = h * sum 
    call MPI_Reduce(mypi, pi, 1, MPI_DOUBLE_PRECISION, 
   *                MPI_SUM, 0, MPI_COMM_WORLD, ierr ) 
    if (myid .eq. 0) then 
        print *, "pi is approximately “, pi,  
   *      “, Error is “, abs(pi - PI25DT) 

    enddo 

10 continue 
    call MPI_Finalize( ierr ) 

    end 

Slide source: Bill Gropp, ANL 
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Example:  PI in C++ - 1 

#include "mpi.h" 
#include <math.h> 
#include <iostream> 
int main(int argc, char *argv[]) 

{ 
  int done = 0, n, myid, numprocs, i, rc; 
  double PI25DT = 3.141592653589793238462643; 
  double mypi, pi, h, sum, x, a; 
  MPI::Init(argc, argv); 
  numprocs = MPI::COMM_WORLD.Get_size(); 
  myid     = MPI::COMM_WORLD.Get_rank(); 
  while (!done)  { 
    if (myid == 0) { 
      std::cout << "Enter the # of intervals: (0 quits) "; 
      std::cin >> n;; 
    } 
    MPI::COMM_WORLD.Bcast(&n, 1, MPI::INT, 0 ); 
    if (n == 0) break; 

Slide source: Bill Gropp, ANL 
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Example:  PI in C++ - 2 

   h   = 1.0 / (double) n; 
  sum = 0.0; 
  for (i = myid + 1; i <= n; i += numprocs) { 
    x = h * ((double)i - 0.5); 
    sum += 4.0 / (1.0 + x*x); 
  } 
  mypi = h * sum; 
  MPI::COMM_WORLD.Reduce(&mypi, &pi, 1, MPI::DOUBLE,  
                        MPI::SUM, 0); 
  if (myid == 0) 
    std::cout << "pi is approximately “ << pi <<  
          “, Error is “ << fabs(pi - PI25DT) << “\n”; 
} 
MPI::Finalize(); 

 return 0; 

} 

Slide source: Bill Gropp, ANL 
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MPI Collective Routines 

• Many Routines:  Allgather, Allgatherv, 

Allreduce, Alltoall, Alltoallv, Bcast, 

Gather, Gatherv, Reduce, Reduce_scatter, 

Scan, Scatter, Scatterv 

•All versions deliver results to all participating 

processes. 

• V versions allow the hunks to have different sizes. 

•Allreduce, Reduce, Reduce_scatter, and Scan 

take both built-in and user-defined combiner functions. 

• MPI-2 adds Alltoallw, Exscan, intercommunicator 

versions of most routines 
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Buffers 
• Message passing has a small set of primitives, but there are subtleties 

• Buffering and deadlock 

• Deterministic execution 

• Performance  

• When you send data, where does it go?  One possibility is: 

Process 0 Process 1 

User data 

Local buffer 

the network 

User data 

Local buffer 

Derived from: Bill Gropp, ANL 
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Avoiding Buffering 

• It is better to avoid copies: 

This requires that MPI_Send wait on delivery, or 
that MPI_Send return before transfer is complete, 
and we wait later. 

Process 0 Process 1 

User data 

User data 

the network 

Slide source: Bill Gropp, ANL 
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• Send a large message from process 0 to process 1 
• If there is insufficient storage at the destination, the send must 

wait for the user to provide the memory space (through a 
receive) 

• What happens with this code? 

Sources of Deadlocks 

Process 0 

Send(1) 
Recv(1) 

Process 1 

Send(0) 
Recv(0) 

• This is called “unsafe” because it depends on 
the availability of system buffers in which to 
store the data sent until it can be received  

Slide source: Bill Gropp, ANL 
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Some Solutions to the “unsafe” Problem 

• Order the operations more carefully: 

• Supply receive buffer at same time as send: 

Process 0 

Send(1) 
Recv(1) 

Process 1 

Recv(0) 
Send(0) 

Process 0 

Sendrecv(1) 

Process 1 

Sendrecv(0) 

Slide source: Bill Gropp, ANL 
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More Solutions to the “unsafe” Problem 

• Supply own space as buffer for send 

• Use non-blocking operations: 

Process 0 

Bsend(1) 
Recv(1) 

Process 1 

Bsend(0) 
Recv(0) 

Process 0 

Isend(1) 
Irecv(1) 
Waitall 

Process 1 

Isend(0) 
Irecv(0) 
Waitall 

Slide source: Bill Gropp, ANL 
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MPI’s Non-blocking Operations 

• Non-blocking operations return (immediately) “request 
handles” that can be tested and waited on: 

  MPI_Request request; 
  MPI_Status status; 

  MPI_Isend(start, count, datatype, 
    dest, tag, comm, &request); 

  MPI_Irecv(start, count, datatype, 
    dest, tag, comm, &request); 

  MPI_Wait(&request, &status); 
(each request must be Waited on) 

• One can also test without waiting: 
  MPI_Test(&request, &flag, &status); 

Slide source: Bill Gropp, ANL 
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MPI’s Non-blocking Operations (Fortran) 

• Non-blocking operations return (immediately) “request 
handles” that can be tested and waited on: 

  integer request 
  integer status(MPI_STATUS_SIZE) 
  call MPI_Isend(start, count, datatype, 
    dest, tag, comm, request,ierr) 

  call MPI_Irecv(start, count, datatype, 
    dest, tag, comm, request, ierr) 

  call MPI_Wait(request, status, ierr) 
(Each request must be waited on) 

• One can also test without waiting: 

  call MPI_Test(request, flag, status, ierr) 

Slide source: Bill Gropp, ANL 
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MPI’s Non-blocking Operations (C++) 

• Non-blocking operations return (immediately) “request 
handles” that can be tested and waited on: 

MPI::Request request; 
MPI::Status  status; 

  request = comm.Isend(start, count, 
                  datatype, dest, tag); 

  request = comm.Irecv(start, count, 
                  datatype, dest, tag); 

  request.Wait(status); 
(each request must be Waited on) 

• One can also test without waiting: 
  flag = request.Test( status ); 

Slide source: Bill Gropp, ANL 
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Other MPI Point-to-Point Features 

• It is sometimes desirable to wait on multiple requests: 

 MPI_Waitall(count, array_of_requests, 

 array_of_statuses) 

• Also MPI_Waitany, MPI_Waitsome, and test versions 

• MPI provides multiple modes for sending messages: 

• Synchronous mode (MPI_Ssend):  the send does not complete 

until a matching receive has begun.  (Unsafe programs deadlock.) 

• Buffered mode (MPI_Bsend):  user supplies a buffer to the system 

for its use.  (User allocates enough memory to avoid deadlock.) 

• Ready mode (MPI_Rsend):  user guarantees that a matching 
receive has been posted. (Allows access to fast protocols; 

undefined behavior if matching receive not posted.) 
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Synchronization 

• Global synchronization is available in MPI 
• C: MPI_Barrier( comm ) 
• Fortran: MPI_Barrier( comm, ierr ) 
• C++: comm.Barrier(); 

• Blocks until all processes in the group of the 

communicator comm call it. 

• Almost never required to make a message passing 

program correct 

• Useful in measuring performance and load balancing 
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MPI has become the de facto standard for parallel 

computing using message passing 

Pros and Cons of standards 

• MPI created finally a standard for applications 

development in the HPC community  portability 

• The MPI standard is a least common denominator 

building on mid-80s technology, so may discourage 

innovation 

Programming Model reflects hardware!  

“I am not sure how I will program a Petaflops computer, 

but I am sure that I will need MPI somewhere” – HDS 2001 

MPI – The de facto standard 
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MPI References 

• The Standard itself: 

• at http://www.mpi-forum.org 

• All MPI official releases, in both postscript and HTML 

• Other information on Web: 

• at http://www.mcs.anl.gov/mpi 

• pointers to lots of stuff, including other talks and 

tutorials, a FAQ, other MPI pages 

Slide source: Bill Gropp, ANL 
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Books on MPI 

• Using MPI:  Portable Parallel Programming  

with the Message-Passing Interface (2nd edition),  
by Gropp, Lusk, and Skjellum, MIT Press,  

1999. 

• Using MPI-2:  Portable Parallel Programming  

with the Message-Passing Interface, by Gropp,  

Lusk, and Thakur, MIT Press, 1999. 

• MPI:  The Complete Reference - Vol 1 The MPI Core, by 

Snir, Otto, Huss-Lederman, Walker, and Dongarra, MIT 

Press, 1998. 

• MPI: The Complete Reference - Vol 2 The MPI Extensions, 

by Gropp, Huss-Lederman, Lumsdaine, Lusk, Nitzberg, 

Saphir, and Snir, MIT Press, 1998. 

• Designing and Building Parallel Programs, by Ian Foster, 
Addison-Wesley, 1995. 

• Parallel Programming with MPI, by Peter Pacheco, Morgan-

Kaufmann, 1997. 

Slide source: Bill Gropp, ANL 
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Partitioned Global Address Space Languages 

            One-Sided Communication 



What’s Wrong with MPI Everywhere 

• We can run 1 MPI process per core 
• This works now (for CMPs) and will work for a while 

• How long will it continue working?  
• 4 - 8 cores? Probably.  128 - 1024 cores? Probably not. 

• Depends on performance expectations -- more on this later 

• What is the problem? 
• Latency: some copying required by semantics 

• Memory utilization: partitioning data for separate address space 
requires some replication 
• How big is your per core subgrid?  At 10x10x10, over 1/2 of the points 

are surface points, probably replicated 

• Memory bandwidth: extra state means extra bandwidth 

• Weak scaling: success model for the “cluster era;” will not be for 
the many core era -- not enough memory per core 

• Heterogeneity: MPI per CUDA thread-block? 

• Advantage: no new apps work; modest infrastructure work 
(multicore-optimized MPI) 
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Current Implementations of PGAS Languages 

• A successful language/library must run everywhere 

• UPC 
• Commercial compilers available on Cray, SGI, HP machines 

• Open source compiler from LBNL/UCB (source-to-source) 

• Open source gcc-based compiler from Intrepid 

• CAF 
• Commercial compiler available on Cray machines 

• Open source compiler available from Rice 

• Titanium  
• Open source compiler from UCB runs on most machines 

• DARPA HPCS Languages 

• Cray Chapel, IBM X10, Sun Fortress 

• Use PGAS memory abstraction, but have dynamic threading 

• Recent additions to parallel language landscape  no mature compilers 

for clusters yet 
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Unified Parallel C (UPC) 

Overview and Design Philosophy  

• Unified Parallel C (UPC) is: 

• An explicit parallel extension of ANSI C  

• A partitioned global address space language 

• Sometimes called a GAS language 

• Similar to the C language philosophy 

• Programmers are clever and careful, and may need to get 
close to hardware 

• to get performance, but 

• can get in trouble 

• Concise and efficient syntax 

• Common and familiar syntax and semantics for 

parallel C with simple extensions to ANSI C 

• Based on ideas in Split-C, AC, and PCP 
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UPC Execution 
Model



08/26/2008 Programming Models 50

UPC Execution Model 

• Threads working independently in a SPMD fashion 

• Number of threads specified at compile-time or run-time; 

available as program variable THREADS 

• MYTHREAD specifies thread index (0..THREADS-1) 

• upc_barrier is a global synchronization: all wait 

• There is a form of parallel loop that we will see later 

• There are two compilation modes 

• Static Threads mode: 

• THREADS is specified at compile time by the user 

• The program may use THREADS as a compile-time constant 

• Dynamic threads mode: 

• Compiled code may be run with varying numbers of threads 
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Hello World in UPC 

• Any legal C program is also a legal UPC program 

• If you compile and run it as UPC with P threads, it will 

run P copies of the program. 

• Using this fact, plus the identifiers from the previous 

slides, we can parallel hello world: 

#include <upc.h>  /* needed for UPC extensions */ 

#include <stdio.h> 

main() { 

  printf("Thread %d of %d: hello UPC world\n",  

         MYTHREAD, THREADS); 

} 
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Example: Monte Carlo Pi Calculation 

• Estimate Pi by throwing darts at a unit square 

• Calculate percentage that fall in the unit circle 

• Area of square = r2 = 1 

• Area of circle quadrant =  *  r2 = /4  

• Randomly throw darts at x,y positions 

• If x2 + y2 < 1, then point is inside circle 

• Compute ratio: 

• # points inside / # points total 

•   = 4*ratio  

r =1 
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Each thread calls “hit” separately 

Initialize random in 

math library 

Each thread can use 

input arguments 

Each thread gets its own 

copy of these variables 

Pi in UPC  

• Independent estimates of pi: 
  main(int argc, char **argv) { 

    int i, hits, trials = 0; 

    double pi; 

    if (argc != 2)trials = 1000000; 

    else trials = atoi(argv[1]); 

    srand(MYTHREAD*17); 

    for (i=0; i < trials; i++) hits += hit(); 

    pi = 4.0*hits/trials; 

    printf("PI estimated to %f.", pi); 

  } 
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Helper Code for Pi in UPC 

• Required includes: 
    #include <stdio.h> 
    #include <math.h>  

    #include <upc.h>  

• Function to throw dart and calculate where it hits: 
  int hit(){ 

    int const rand_max = 0xFFFFFF; 
    double x = ((double) rand()) / RAND_MAX; 
    double y = ((double) rand()) / RAND_MAX; 
    if ((x*x + y*y) <= 1.0) { 
         return(1); 

    } else { 
         return(0); 
    } 
  } 
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Shared vs. Private 
Variables
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Private vs. Shared Variables in UPC 

• Normal C variables and objects are allocated in the private 

memory space for each thread. 

• Shared variables are allocated only once, with thread 0 

     shared int ours;  // use sparingly: performance 

     int mine; 

• Shared variables may not have dynamic lifetime:  may not 

occur in a in a function definition, except as static.  Why? 

Shared 
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Private 

mine:  mine:  mine:  

Thread0   Thread1                                       Threadn 

ours:  
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Pi in UPC: Shared Memory Style 

• Parallel computing of pi, but with a bug 

  shared int hits; 

  main(int argc, char **argv) { 

      int i, my_trials = 0; 

      int trials = atoi(argv[1]); 

      my_trials = (trials + THREADS - 1)/THREADS; 

      srand(MYTHREAD*17); 

      for (i=0; i < my_trials; i++)    

        hits += hit(); 

      upc_barrier; 

      if (MYTHREAD == 0) { 

        printf("PI estimated to %f.", 4.0*hits/trials); 

      } 

   } 

shared variable to 

record hits 

divide work up evenly 

accumulate hits 

What is the problem with this program? 
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Shared Arrays Are Cyclic By Default 

• Shared scalars always live in thread 0 

• Shared arrays are spread over the threads 

• Shared array elements are spread across the threads 
shared int x[THREADS]        /* 1 element per thread */ 

shared int y[3][THREADS] /* 3 elements per thread */ 

shared int z[3][3]               /* 2 or 3 elements per thread */ 

• In the pictures below, assume THREADS = 4 

• Red elts have affinity to thread 0 

x 

y 

z 

As a 2D array, y is 

logically blocked 
by columns 

Think of linearized 

C array, then map 
in round-robin 

z is not 
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Pi in UPC: Shared Array Version 

• Alternative fix to the race condition  

• Have each thread update a separate counter: 

• But do it in a shared array 

• Have one thread compute sum 

shared int all_hits [THREADS]; 

main(int argc, char **argv) { 

  … declarations an initialization code omitted 

  for (i=0; i < my_trials; i++)  

    all_hits[MYTHREAD] += hit(); 

  upc_barrier; 

  if (MYTHREAD == 0) { 

    for (i=0; i < THREADS; i++) hits += all_hits[i]; 

    printf("PI estimated to %f.", 4.0*hits/trials); 

  } 

} 

all_hits is 

shared by all 

processors, 

just as hits was 

update element 

with local affinity 
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UPC 
Synchronization
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UPC Global Synchronization 

• UPC has two basic forms of barriers: 
• Barrier: block until all other threads arrive  

 upc_barrier 

• Split-phase barriers 
   upc_notify;  this thread is ready for barrier 

      do computation unrelated to barrier 

   upc_wait;      wait for others to be ready 

• Optional labels allow for debugging 
#define MERGE_BARRIER 12 
if (MYTHREAD%2 == 0) { 

     ... 
     upc_barrier MERGE_BARRIER;   
} else { 
     ... 
     upc_barrier MERGE_BARRIER; 

} 
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Synchronization - Locks 

• UPC Locks are an opaque type: 
upc_lock_t 

• Locks must be allocated before use: 
upc_lock_t *upc_all_lock_alloc(void); 

   allocates 1 lock, pointer to all threads 

upc_lock_t *upc_global_lock_alloc(void); 

     allocates 1 lock, pointer to one thread 

• To use a lock: 
void upc_lock(upc_lock_t *l) 

void upc_unlock(upc_lock_t *l) 

  use at start and end of critical region 

• Locks can be freed when not in use 
void upc_lock_free(upc_lock_t *ptr); 
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Pi in UPC: Shared Memory Style 

• Parallel computing of pi, without the bug 
  shared int hits; 
  main(int argc, char **argv) { 
      int i, my_hits, my_trials = 0; 

  upc_lock_t *hit_lock = upc_all_lock_alloc(); 
      int trials = atoi(argv[1]); 
      my_trials = (trials + THREADS - 1)/THREADS; 
      srand(MYTHREAD*17); 
      for (i=0; i < my_trials; i++)  

         my_hits += hit(); 
      upc_lock(hit_lock); 
      hits += my_hits; 
      upc_unlock(hit_lock); 
      upc_barrier; 

      if (MYTHREAD == 0)  
        printf("PI: %f", 4.0*hits/trials); 
   } 

create a lock 

accumulate hits 

locally 

accumulate 

across threads 
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Recap: Private vs. Shared Variables in UPC 

• We saw several kinds of variables in the pi example 

• Private scalars (my_hits) 

• Shared scalars (hits) 

• Shared arrays (all_hits) 

• Shared locks (hit_lock) 

Shared 
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Private 

my_hits:  my_hits:  my_hits:  

Thread0   Thread1                                       Threadn 

all_hits[0]: 

hits:  

all_hits[n]: all_hits[1]: 

hit_lock:  

where: 

n=Threads-1 
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UPC Collectives



08/26/2008 Programming Models 66

UPC Collectives in General 

• UPC collectives interface is in the language spec: 
• http://upc.lbl.gov/docs/user/upc_spec_1.2.pdf 

• It contains typical functions: 
• Data movement: broadcast, scatter, gather, … 

• Computational: reduce, prefix, … 

• General interface has synchronization modes: 
• Avoid over-synchronizing (barrier before/after) 

• Data being collected may be read/written by any 
thread simultaneously 

• Simple interface for scalar values (int, double,…) 
• Berkeley UPC value-based collectives  

• Works with any compiler 

• http://upc.lbl.gov/docs/user/README-collectivev.txt 



08/26/2008 Programming Models 67

Pi in UPC: Data Parallel Style 

• The previous version of Pi works, but is not scalable: 
• On a large # of threads, the locked region will be a bottleneck 

• Use a reduction for better scalability 

  #include <bupc_collectivev.h> 

  // shared int hits; 

  main(int argc, char **argv) { 

      ... 

      for (i=0; i < my_trials; i++)  

         my_hits += hit(); 

      my_hits =         // type, input, thread, op 

         bupc_allv_reduce(int, my_hits, 0, UPC_ADD);  

      // upc_barrier; 

      if (MYTHREAD == 0)  

        printf("PI: %f", 4.0*my_hits/trials); 

   } 

 Berkeley collectives 

no shared variables 

barrier implied by collective 
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Work Distribution 
Using upc_forall 
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Example: Vector Addition 

 /* vadd.c */ 

 #include <upc_relaxed.h> 
#define N 100*THREADS 

shared int v1[N], v2[N], sum[N]; 
void main() { 

 int i; 
 for(i=0; i<N; i++) 

   if (MYTHREAD == i
%THREADS)     

 sum[i]=v1[i]+v2[i]; 
} 

• Questions about parallel vector additions: 

• How to layout data (here it is cyclic)

• Which processor does what (here it is “owner computes”)

cyclic layout 

owner computes 
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• The idiom in the previous slide is very common 

• Loop over all; work on those owned by this proc 

• UPC adds a special type of loop 
    upc_forall(init; test; loop; affinity) 

      statement; 

• Programmer indicates the iterations are independent 

• Undefined if there are dependencies across threads 

• Affinity expression indicates which iterations to run on each thread.  

It may have one of two types: 

• Integer: affinity%THREADS is MYTHREAD 
• Pointer: upc_threadof(affinity) is MYTHREAD 

• Syntactic sugar for loop on previous slide 

• Some compilers may do better than this, e.g.,  

   for(i=MYTHREAD; i<N; i+=THREADS) 

• Rather than having all threads iterate N times: 

      for(i=0; i<N; i++) if (MYTHREAD == i%THREADS) 

upc
_for
all() 
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Vector Addition with upc_forall 

#define N 100*THREADS 

shared int v1[N], v2[N], sum[N]; 

void main() { 
 int i; 
 upc_forall(i=0; i<N; i++; 

i)        

                 sum[i]=v1[i]+v2[i]; 
} 

• The vadd example can be rewritten as follows 

• Equivalent code could use “&sum[i]” for affinity 

• The code would be correct but slow if the affinity 

expression were i+1 rather than i. 

The cyclic data 

distribution may 

perform poorly on 

some machines
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Distributed Arrays 
in UPC
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Blocked Layouts in UPC 

#define N 100*THREADS 
shared int [*] v1[N], v2[N], sum[N]; 

void main() { 
 int i; 
 upc_forall(i=0; i<N; i++; 

&sum[i])        

                 sum[i]=v1[i]+v2[i]; 
} 

• If this code were doing nearest neighbor averaging (3pt stencil) the 

cyclic layout would be the worst possible layout. 

• Instead, want a blocked layout 

• Vector addition example can be rewritten as follows using a blocked 

layout 

blocked layout 
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Layouts in General 

• All non-array objects have affinity with thread zero. 

• Array layouts are controlled by layout specifiers: 

• Empty (cyclic layout) 

• [*] (blocked layout) 

• [0] or [] (indefinite layout, all on 1 thread) 

• [b] or [b1][b2]…[bn] = [b1*b2*…bn] (fixed block size) 

• The affinity of an array element is defined in terms of: 

• block size, a compile-time constant 

• and THREADS.   

• Element i has affinity with thread  

        (i / block_size) % THREADS 

• In 2D and higher, linearize the elements as in a C 

representation, and then use above mapping 
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Pointers to Shared vs. Arrays 

#define N 100*THREADS 

shared int v1[N], v2[N], sum[N]; 

void main() { 
int i; 
shared int *p1, *p2; 

p1=v1; p2=v2; 
for (i=0; i<N; i++, p1++, p2++ )  

     if (i %THREADS= = MYTHREAD) 
  sum[i]= *p1 + *p2; 

} 

• In the C tradition, arrays can be access through pointers

• Here is the vector addition example using pointers

v1 

p1 
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UPC Pointers  

int *p1;        /* private pointer to local memory */ 

shared int *p2; /* private pointer to shared space */ 

int *shared p3; /* shared pointer to local memory */ 

shared int  *shared p4; /* shared pointer to   

                           shared space */ 

Shared 
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Private 

p1:  

Thread0   Thread1                                       Threadn 

p2:  

p1:  

p2:  

p1:  

p2:  

p3:  

p4:  

p3:  

p4:  

p3:  

p4:  

Pointers to shared often require more storage and are more costly to 

dereference; they may refer to local or remote memory. 
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Dynamic Memory Allocation in UPC 

• Dynamic memory allocation of shared memory is available 

in UPC 

• Non-collective (called independently) 

  shared void *upc_global_alloc(size_t nblocks,                    

                                size_t nbytes); 

   nblocks : number of blocks 

      nbytes : block size 

• Collective (called together; all threads get same pointer) 

  shared void *upc_all_alloc(size_t nblocks,  

                             size_t nbytes); 

• Freeing dynamically allocated memory in shared space 

  void upc_free(shared void *ptr); 
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Performance of 
UPC
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PGAS Languages have Performance Advantages 

Strategy for acceptance of a new language 

• Make it run faster than anything else 

Keys to high performance 

• Parallelism: 
• Scaling the number of processors 

• Maximize single node performance 
• Generate friendly code or use tuned libraries (BLAS, FFTW, 

etc.) 

• Avoid (unnecessary) communication cost 
• Latency, bandwidth, overhead 

• Berkeley UPC and Titanium use GASNet communication 
layer 

• Avoid unnecessary delays due to dependencies 
• Load balance; Pipeline algorithmic dependencies 
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One-Sided vs Two-Sided 

• A one-sided put/get message can be handled directly by a network 

interface with RDMA support 

• Avoid interrupting the CPU or storing data from CPU (preposts) 

• A two-sided messages needs to be matched with a receive to 

identify memory address to put data 

• Offloaded to Network Interface in networks like Quadrics 

• Need to download match tables to interface (from host) 

• Ordering requirements on messages can also hinder bandwidth 

address 

message id 

data payload 

data payload 

one-sided put message 

two-sided message 

network 

 interface 

memory 

host 

CPU 
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One-Sided vs. Two-Sided: Practice 
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• InfiniBand: GASNet vapi-conduit and OSU MVAPICH 0.9.5 

• Half power point (N  ) differs by one order of magnitude 

• This is not a criticism of the implementation! 

Joint work with Paul Hargrove and Dan Bonachea
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GASNet: Portability and High-Performance 
(d

o
w

n
 i

s
 g

o
o

d
) 

GASNet better for latency across machines 
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GASNet at least as high (comparable) for large messages 

Flood Bandwidth for 2MB messages

1504

630

244

857
225

610

1490799
255

858
228

795

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

P
e
rc

e
n

t 
H

W
 p

e
a
k
 (

B
W

 i
n

 M
B

)

MPI GASNet

GASNet: Portability and High-Performance 

Joint work with UPC Group; GASNet design by Dan Bonachea
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GASNet excels at mid-range sizes: important for overlap 

GASNet: Portability and High-Performance 
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Joint work with UPC Group; GASNet design by Dan Bonachea
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Case Study: NAS FT in UPC 

• Perform FFT on a 3D Grid 

• 1D FFTs in each dimension, 3 phases 

• Transpose after first 2 for locality 

• Bisection bandwidth-limited 

• Problem as #procs grows 

• Three approaches: 

• Exchange:  

• wait for 2nd dim FFTs to finish, send 1 

message per processor pair 

• Slab:  

• wait for chunk of rows destined for 1 

proc, send when ready 

• Pencil:  

• send each row as it completes 

Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea
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NAS FT Variants Performance Summary 

• Slab is always best for MPI; small message cost too high 

• Pencil is always best for UPC; more overlap 
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Beyond the SPMD Model: Dynamic Threads 

• UPC uses a static threads (SPMD) programming model 

• No dynamic load balancing built-in, although some examples 
(Delaunay mesh generation) of building it on top 

• Berkeley UPC model extends basic memory semantics (remote 

read/write) with active messages 

• AM have limited functionality (no messages except acks) to 

avoid deadlock in the network 

• A more dynamic runtime would have many uses 

• Application load imbalance, OS noise, fault tolerance 

• Two extremes are well-studied 

• Dynamic load balancing (e.g., random stealing) without locality 

• Static parallelism (with threads = processors) with locality 

• Can we combine both in a general-purpose way? 

Joint work with Parry Husbands



The Parallel Case 

Blocks 2D 
block-cyclic 
distributed 

Panel factorizations 
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Parallel Tasks in LU 

some edges omitted 

• Implementation uses 3 levels of threading: 

• UPC threads (SPMD), user-level non-preemptive threads, BLAS threads 

• Theoretical and practical problem: Memory deadlock 

• Not enough memory for all tasks at once.  (Each update needs two 
temporary blocks, a green and blue, to run.) 

• If updates are scheduled too soon, you will run out of memory 

• If updates are scheduled too late, critical path will be delayed. 



UPC HP Linpack Performance 

•Faster than ScaLAPACK due to less synchronization 

•Comparable to MPI HPL (numbers from HPCC database) 

•Large scaling of UPC code on Itanium/Quadrics (Thunder)  

• 2.2 TFlops on 512p  and 4.4 TFlops on 1024p 

Joint work with Parry Husbands



Utilization Comparison 

• Synchronous (above) 
vs. asynchronous (below) 
schedule 

• SGI Altix Itanium 2 1.4GHz, 
n=12,800, process grid = 2x4, 
block size = 400   

• Grey blocks = matrix 
multiplication 

• Black blocks = panel 
factorization 
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Summary and Discussion 

• Message Passing  
• MPI is the de facto programming model for large-scale machines 

• Was developed as a standardization of “known” ideas (but not without 
controversy) 

• MPI 3.0 standards effort is underway now: you can join! 

• Looking at one-sided communication again 

• Race conditions are relatively rare 

• Partitioned Global Address Space Language 
• Offer a compromise on performance and ease of programming 

• Match both shared and distributed memory 

• Demonstrated scalability (like MPI), portability (through GASNet + C) 

• UPC is an example, others include Co-Array Fortran, Titanium (Java) 

• The DARPA HPCS languages: X10, Chapel, Fortress 

• Productivity 
• In the eye of the programmer 

• Trade-off: races vs packing/unpacking code 
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UPC Group (Past and Present) 

• Filip Blagojevic 

• Dan Bonachea 

• Paul Hargrove (Runtime 
Lead) 

• Steve Hofmeyer 

• Costin Iancu (Compiler Lead) 

• Seung-Jai Min 

• Rajesh Nishtala 

• Kathy Yelick (Project Lead) 

• Yili Zheng 

Former:  

• Christian Bell 

• Michael Welcome 

• Parry Husbands 

http://upc.lbl.gov 

Compiler, runtime, 

GASNet available here. 


