PARLab Parallel Boot Camp
N/

Architecting Parallel Software
with
Patterns

Kurt Keutzer
Electrical Engineering and Computer Sciences
University of California, Berkeley

||II Assumption #1: ZIF X
How not to develop parallel code = °

Initial Code

Profiler

Not fast

Performance
nough

profile

Fast enough

Lots of failures

Ship it N PE’s slower than 1

| ||'$1remer' Tree Construction Time By /

Routing Each Net in Parallel

Benchmark Serial 2 Threads 3 Threads 4 Threads S Threads 6 Threads
adaptecl 1.68 1.68 1.70 1.69 1.69 1.69
newbluel 1.80 1.80 1.81 1.81 1.81 1.82
newblue2 2.60 2.60 2.62 2.62 2.62 2.61
adaptec?2 1.87 1.86 1.87 1.88 1.88 1.88
adaptec3 3.32 3.33 3.34 3.34 3.34 3.34
adaptec4 3.20 3.20 3.21 3.21 3.21 3.21
adaptecS 4.91 4.90 4.92 4.92 4.92 4.92
newblue3 2.54 2.55 2.55 2.55 2.55 2.55
average 1.00 1.0011 1.0044 1.0049 1.0046 1.0046

| ||I Assumption #2: This
either

Code in new
ool language

Profiler

Performance nouah

profile

Fast enough

Ship it

Not fast

won't help

After 200 parallel
languages where’s the
light at the end of the
tunnel?

in the 90's

Tancwre

8/19/2009

Talias
Fimnem

FLASH
The FORCE
Touk
Forwem N1

LU e
&UARD Lapen
Haal Sl Crace
Mariel CLde e
HFCow pY FEN
IAV AR Crau?um
HOoxTS Lleage
HFC <
DPACT 005X
b= 5= 3 Moozin P
JATV AR AleSuin-2*
o= Slazges
‘e RO Pt
e A2DC—
‘e wisace e ew
= e
2vce Nesr
aaves et s er—
awma Nexas
KOAXN Teomens Nemeod
Laos 2O
Lime Obsectirve Linda
P Cidama
fADA Omap
AR Wsds Oped
ISETL Leda Oxce
Parlis OOFS
Tilem D—
P lmca PiL
Glecin Lol
L Pevin
Ovserore-Lindn FADE
FADS=
Locar Fwroce
Lpass Tag e
Lend AT 77
Tlecrse P w—
Adasrols Tauaiip=

Kurt Keutzer

2wl ctad tmalals

Ve
Vianfeld VIS
s
Talltees
TP
T

Architecting Software 5

| lII Assumption #3: Nor this

Initial Code
Super-compiler $

Not fast

Peﬁorm enough
proM

Fast enough

30 years of HPC
Ship it research don’t offer
much hope 6

| lII Automatic parallelization?

@ Basic speculative multithreading . Ag ressive Techniques
m Software value prediction sUch as speculaTive
O Enabling optimizations mul’ri‘rhr'eading help,
30 but they are not
- enough.

2 - * Ave SPECint speedup
© 20 of 8% ... will climb to
S] ave. of 15% once their
= - N system is fully
® enabled.

2 | *+ Thereare no
I indications auto par.
5 i will radically improve
nﬂ any time soon.
O m T |I_. T T T T = T T] . l;elnce']:Ad1o- no1" .“
S R EC L S D S elieve AUuTo-par wi
RN A & S @Q,@q solve our problems.

Results for a simulated dual core platform configured as a main core and a core for
speculative execution.

I III Outline

—> B Intro to Kurt
B General approach to applying the pattern language
B Detail on Structural Patterns
B High-level examples of composing patterns

|

Key Elements of Kurt's SW Education

B ATA&T Bell Laboratories: CAD researcher and programmer
- Algorithms: D. Johnson, R. Tarjan
- Programming Pearls: S C Johnson, K. Thompson, (Jon Bentley)
- Developed useful software tools:

» Plaid: programmable logic aid: used for developing 100's of FPGA-
based HVg systems

» CONES/DAGON: used for designing >30 application-specific
integrated circuits

| S;n%osys: researcher - CTO (25 products, ~15 million lines of code,
$750M annual revenue, top 20 SW companies)

- Super programming: J-C Madre, Richard Rudell, Steve Tjiang

- Software architecture: Randy Allen, Albert Wang

- High-level Invariants: Randy Allen, Albert Wang

B Berkeley: teaching software engineering and Par Lab

- Took the time to reflect on what I had learned:

- Architectural styles: Garlan and Shaw
» Design patterns: Gamma et al (aka Gang of Four), Mattson's PLPP
» A Pattern Language: Alexander, Mattson
» Dwarfs: Par Lab Team

| # What I learned (the hard way)

Software must be architected to achieve productivity, efficiency, and
correctness

SW architecture >> programming environments
- >> programming languages
- >> compilers and debuggers
- (>>hardware architecture)
Discussions with superprogrammers taught me:
- Give me the right program structure/architecture I can use any
programming language
- Give me the wrong architecture and T'll never get there
What I've learned when I had to teach this stuff at Berkeley:

B Key to architecture (software or otherwise) is design patterns and a
pattern language

Resulting software design then uses a hierarchy of software frameworks
for implementation

- Application frameworks for application (e.g. CAD) developers

- Programming frameworks for those who build the application
frameworks

I III Outline

B Intro to Kurt

—> M General approach to applying the pattern language
B Detail on Structural Patterns
B High-level examples of composing patterns

a pattern language

A Pattern Language

Towss - Beikings - Constroction

‘@

Christopber Alexander
Sara hbikawa - Marray Silversten
Max Jacobrscn bagrid Fiksdabl King
Shioao Anpd

SOFTWARE
ARCHITECTURE

PERSPECTIVES ON AN EMERGING DISCIPLINE
MARY SHAW DAVID GARLAN

-
L

PATTERNS
FOR PARALLEL
PROGRAMMING

i Arky e Tk Ok
| 9 ("
Event Based Data Paralelivn
Forkidoin Distributed Array Shared Quese Mutecorker
ese Shared D Shared Hush Table Loop Parslleism
> lding
Thread Cresionlestroction \fussage pasing Speclation Barviers Semaphores

12

| lII Alexander’'s Pattern Language

Christopher Alexander's approach to
(civil) architecture:

- "Each pattern describes a problem
T BORTS G over'pagain in A Pattern Language
our environment, and then describes Towns -Buildings - Construction
the core of the solution to that
problem, in such a wa?/ that you can
use this solution a million times over,
without ever doing it the same way
twice." Page x, A Pattern Language,
Christopher Alexander

Alexander’s 253 (civil) architectural
patterns range from the creation of

CITICS (2 diStl"il’?UﬂOl’\ of TOWHS) to Christopher Alexander
par")rlcular' buuldmg pr'oblems (232 roof Sara Ishikawa - Murray Silverstein
cap |

Max Jacobson - Ingrid Fiksdahl-King

A pattern language is an or?anized way
of tackling an architectural problem
using patterns

Main limitation:

- It's about civil not software
architecturelll

Shlomo Angel

| '# Alexander's Pattern Language
(95-103)

+ Layout the overall arrangement of a group of
buildings: the height and number of these
buildings, the entrances to the site, main parking
areas, and lines of movement through the complex.

95. Building Complex

96. Number of Stories
97. Shielded Parking

98. Circulation Realms

99. Main Building

100. Pedestrian Street
101. Building Thoroughfare
102. Family of Entrances
103. Small Parking Lots

| IIl Family of Entrances (102)

* May be part of Circulation Realms (98).
+ Conflict:

+ When a person arrives in a complex of offices or
services or workshops, or in a group of related
houses, there is a good chance he will experience
confusion unless the whole collection is laid ~n+
before him, so that he can see the entrar
place where he is goingacoution:

Lay out the entrances to form a family. This ricais.

00 1) They form a group, are visible together, and each is visible
from all the others.

0 2) They are all broadly similar, for instance all porches, or all
gates in a wall, or all marked by a similar kind of doorway.

0 May contain Main Entrance (110), Entrance Transition (112),
Entrance Room (130), Reception Welcomes You (149).

http://www.intbau.org/Images/Steele/Badran5a.jpg

16

|

Elements of a Pattern - 1

* Name
- It must have a meaningful name useful to remember the pattern and
when it is used.
* Problem
- A statement of the problem ... a one-line preamble and the problem
stated as a question.
- Context

- The conditions under which the problem occurs. Defines when the
pattern is applicable and the configuration of the system before the
pattern is applied.

- Forces

- A description of the relevant forces and constraints and how they
interact/conflict with one another and with goals we wish to achieve.
Defines the tension that characterizes a problem.

|

Elements of a Pattern - 2

- Solution

- Instructions used to solve the problem. When done right, it resolves
the tension defined in the forces section; flowing from the context
and forces. We also define the new context for the system following
application of the pattern.

Invariant

- What must be invariantly true for this pattern o work. May be
stated in the form of Precondition, Invariant, Post-condition

Examples
- Examples to help the reader understand the pattern.

Known Uses and frameworks

- Cases where the pattern was used; preferably with literature
references.

Related Patterns

- How does this pattern fit-in or work-with the other patterns in the
pattern language.

*PLPP is the pattern language from Mattson, Sanders and Massingill

| |F' Computational Patterns
(Red Hot =)

Image apeech

———

7

Health

Games
ML

%o
E g

DB
CAD
HPC

usic Browser

Finite State Mach.
Circuits

Graph Algorithms
Structured Grid
Dense Matrix
Sparse Matrix
Spectral (FFT)
Dynamic Prog
Particle Methods
10 Backtrack/ B&B
11 Graphical Models
12 Unstructured Grid

OO NOOOMEWN -

19

I"# Patterns for Parallel Programming /)

» PLPP is the first attempt to develop a
complete pattern language for parallel
software development.

* PLPP is a great model for a pattern l)\ 'I‘ 'T I‘: R \ N
language for parallel software l) y
* PLPP mined scientific applications |4 () ll \ 'l \ I l l l‘

that utiize a PROGR \\1 M l\(.

monolithic application style

*PLPP doesn’t help us much with
horizontal composition

*Much more useful to us than: Design
Patterns: Elements of Reusable
Object-Oriented Software, Gamma,

Helm, Johnson & Vlissides, Addison- d RAMX
Wesley, 1995. EV l“*l. s Illnl

fana L L™ ﬁl!llu

20

!!r'uc'rur'al programming patterns

BIn order to create more SOFTWAR
complex software it is A R‘(-(l ; ITF(/?TLEJ RE
HZCZSSGI"Y.TO Compose Pmsru‘n;“ ON AN EMIRGING ID¥SC lrllN—l
programming patterns MARY SHAW DAVID GARIAN

BMFor this purpose, it has
been useful to induct a
set of patterns known as
“architectural styles”

BExamples:
- pipe and filter
- event based/event driven
- layered

- Agent and repository/
blackboard

- process control
- Model-view-controller

21

ether

APattern Language

Towas - Beiblings Constroction

A
.
L%

Christopber Abexander
Sara hbikawa - Marray Silversten

M Jacebson - bagrid Fiksdabl-Ring
Shiboeo Anpd

SOFTWARE
ARCHITECTURE

PERSPECTIVES ON AN EMERGING DISCIPLINE g
MARY SHAW DAVID GARLAN

: I;\'r TERNS

B e FOR PARALLEL
Fipe-and.fiker T < l) y \& A
i ROGRAMMING
S Layered systems L .

e i e e - \)
‘Event Based Data Parallelism

ForkiJoin Distributed Array Shared Quene Master'worker

- e e i

e elding |
Thevad Cresion'detroction Vessae pasing Speculation Barviers Semaphores
o

22

Our Pattern Language 2.0: Keutzer and Mattson

s Applﬁaﬂons N

4)
Choose vour hiah level Choose you high level architecture? Guided decomposition Identify the key
Y gn " " computational patterns
structure - what is the Task Decomposition © Data Decomposition —what are my ke
5‘;?‘“?”"‘2 0(1; mg’ 4 Group Tasks Order groups data sharing data access compu‘ra‘rio{‘lﬁy
application? Guide . . .
expansion Guided instantiation
. . Model-view controller Graph Algorithms Graphical models
Plpe-and-fll‘re'r' Tteration > Dynamic Programming Finite state machines
§ Agent and Repository Map reduce Dense Linear Algebra Backtrack Branch and Bound
_i i Procbess cfon‘rrTl e SRS E} Sparse Linear Algebra N-Body methods
+ implicit : N
£ ven in\(/]j?a'rlil)mnp Ici Arbitrary Static Task Unstructured Grids Circuits
+ Graph <,E/ Structured Grids Spectral Methods
5
08_ Refine the structure - what concurrent approach do I use? Guided re-organization
Event Based Data Parallelism Pipeline Task Parallelism Digital Circuits
Divide and Conquer Geometric Decomposition Discrete Event Graph algorithms
Utilize S ting Structures - how do I implement my con ncy? Guided mappin
. ilize Supporting Structures - how do I implement my coshc(;_lrr'erg C%euew ed mapping, . orker
§ Fork/Join Distributed Array Shared Hash Table Loop Parallelism
> CSP Shared Data SPMD BSP
§ Implementation methods - what are the building blocks of parallel programming? Guided implementation
o
v Thread Creation/destruction Message passing Speculation Barriers Semaphores
(il

Process Creation/destructidivllective communication Transactional memory Mutex

Our Pattern Language 2.0

Choose your high level Choose you high level architecture? Guided Identify the key

structure - what is the Task Decgr%fo% ROSA D ata Decomposition computational patterns

- what are my key
structure of my Group Tasks Order groups data sharing data access W -
application? Guided B group 9 computations?

Garlan and Shaw

L Graph Algorithms
SOFTWARE
ARCHITECTURE

Dynamic Programming
igsésﬁiL;h REo - &

Al image Speeck Music Browser CAD

Process Control N-Body methods

Circuits
I~ Spectral Methods

Event based, implicit
invocation

oductivity Layer

Refine the structure - what concurrent annroach do T yse? Guided re-organization

Event Based Data A he Task Parallelism Digital Circuits

) mm :) \' \.
Divide and Conquer Geometric FOR })t II, I\Ii II‘ ‘l" ‘| Event Graph algorithms
1 | | W s L

—_ = = = = = = = = = == PROGRAMMING

shared Queue PP aster/worker

Utilize Supporting Structures _ . w ncurrency? Guided ma

Fork/Join istri 4 3 A, "ired Hash Table Loop Parallelism

CcSP SPMD BSP

Implementation methods - what are the N \morny ¢ marrson fOgramming? Guided implementation
: EVERLY A. SANDERS

Thread Creation/destruction Messag N QRaRs SRS Llation Barriers Semaphores

ransactional memory Mutex

|

Architecting Parallel Software

Decompose Tasks/Data

Order tasks |ldentify Data Sharing and Access

|dentify the Software |dentify the Key
Structure Computations

» Graph Algorithms
*Pipe-and-Filter : :
* Dynamic programming

*Agent-and-Repository

* Dense/Spare Linear Algebra
*Event-based * (Un)Structured Grids
*Bulk Synchronous

» Graphical Models
MapReduce

* Finite State Machines
Layered Systems

» Backtrack Branch-and-Bound
* N-Body Methods

e Circuits

Arbitrary Task Graphs

» Spectral Methods

I

Pop Quiz: Software is More Like ...

a) A building b) A factory

8/19/2009 Kurt Keutzer Architecting Software 26

| lII Identify the SW Structure

Structural Patterns T

*Pipe-and-Filter

*Agent-and-Repository

Event-based coordination I
|terator

MapReduce
Process Control CO—

-Layered Systems —O—0L_19—

These define the structure of our software but they do not
describe what is computed

27

I III Identify Key Computations

Computational
Patterns

Embed
SPEC
Games

ML
HPC

Finite State Mach.

Circuits

Graph Algorithms
Structured Grid
Dense Matrix
Sparse Matrix
Spectral (FFT)
Dynamic Prog

oy aQ— B

Health Image Speech Music Browser

CAD

N-Body

Backtrack/ B&B

Graphical Models

Unstructured Grid

- Computational patterns describe the key computations

but not how they are implemented

29

30

I'I.r'chi'rec’ring the Whole Applica’rion/’i

J

Recognition
Network

i

Inference Engine Graphical
Model

4 Dynamic

i \-2 i

Computation Steps Pipe-and-filter rogramm

E =
—~

L L IRFe

Search

el || (o) [(=
R g Sequence
< Iterator ’ \ /
* SW Architecture of Large- Analogous to the design of an
Vocabulary Continuous entire manufacturing plant

Speech Recognition

Raises appropriate issues like scheduling, latency, throughput,
workflow, resource management, capacity etc.

31

I III Outline

B Intro to Kurt

B General approach to applying the pattern language
—> M Detail on Structural Patterns

B High-level examples of composing patterns

|

Inventory of Structural Patterns

M pipe and filter

H iterator

B MapReduce

B blackboard/agent and repository

B process control

W |layered

B event-based coordination

B puppeteer

B (call-and-return/arbitrary task graph)

¥

Elements of a structural pattern

- Components are where the computation
happens

= A configuration is a
~N graph of
components
(vertices) and
connectors (edges)

= A structural
patterns may be
described as a

J familiy of graphs.

Connectors are where the communication happens

34

| lII Pattern 1: Pipe and Filter

‘Filters embody
computation

*Only see inputs and r 1
Filter 1
produce outputs | | Pipes embody
.]) y R communication
[Filter 3] Filter 2
R ‘b
Filter 4 <
}
_) May have
| 1F|Iter 0 I) feedback

[Filter 6] [Filter 7]—

Examples?

I'I_ples of pipe and filter

B Almost everY large software program has a pipe and filter structure at
e

the highest level
Grogramd Cetiist
Scan
Broran Netlist
Build ;
Internal %l;'tlg
Representation
model
Optimize 1
Program Optimize
T circuit
Generate
Code

Object @
code

Compiler Image Refrieval Logic optimizer
System 26

Pattern 2: Iterator Pattern

Initialization condition

Variety of functions

performed T~__
asynchronousl\ \\6@ }
Synchronize results {@ }

of iteration

91049

Exit condition met?

‘7
" Yes Examples?

37

4 N
Update
C
surface
2 N [J
AN p Y100] + Y202 =K
\\\\\\/ l
0 \ 5
(48]
Identify
Outlier
_ Y,
All points within
Yes

acceptable error?

91es9)l

No

[terator Structural Pattern

38

I'I_'I"l'er'n 3: MapReduce

- To us, it means
- A map stage, where data is mapped onto independent computations

- A reduce stage, where the results of the map stage are summarized
(i.e. reduced)

Map

LT 11

Reduce

Reduce

Examples?
39

| Examples of Map Reduce

 General structure:
B Map a computation across distributed data sets
B Reduce the results to find the best/(worst), maxima/

e ol

Speech recognition

Support-vector machines (ML)

 Map HMM computation

» Map to evaluate distance from
to evaluate word match

the frontier

* Reduce to find the most-

» Reduce to find the greatest \
likely word sequences

outlier from the frontier

40

I lII Pattern 4: Agent and Repository

Agent 2

Agent 1
Repository/ Examples?
Blackboard
Agent 3 (i.e. database) Agent 4

Agent and repository : Blackboard structural pattern
Agents cooperate on a shared medium to produce a result
Key elements:

0 Blackboard: repository of the resulting creation that is shared by
all agents (circuit database)

0 Agents: intelligent agents that will act on blackboard
(optimizations)

0 Manager: orchestrates agents access to the blackboard and
creation of the aggregate results (scheduler) 41

I III Example: Compiler Optimization

Common-sub-expression

Constant

elimination

folding

Internal

loop

Program Strength-reduction

fusion

representation

Software

Dead-code elimination

pipelining

Optimization of a software program
Intermediate representation of program is stored in the repository
Individual agents have heuristics to optimize the program

Manager orchestrates the access of the optimization agents to the
program in the repository

Resulting program is left in the repository

I III Example: Logic Optimization

timing timing timing timing
QDT agen OpL agen optagent3 | opt agent
Circuit || Ka |
AR
-Database
ﬁ Q—0 & S

Optimization of integrated circuits
Integrated circuit is stored in the repository

Individual agents have heuristics to optimize the circuitry of an
intfegrated circuit

B Manager orchestrates the access of the optimization agents to the
circuit repository

B Resulting optimized circuit is left in the repository

I lII Pattern 5: Process Control

)

60\

. _ K
control manipulated input variables 2
parameters variables v
controller Q Drocess
/ controlled
actuators variables

Source: Adapted from Shaw & Garlan 1996, p27-31.

» Process control:
- Process: underlying phenomena to be controlled/computed
- Actuator: task(s) affecting the process
- Sensor: task(s) which analyze the state of the process
- Controller: task which determines what actuators should be effected

Examples?

44

| IIl Examples of Process Control

Return aif =

Furnace Hot air ——>

g

—i—— Thermonstat Temperature sensor
"4

~ Gas-valve control \

Temperature-setting control

n
&S
user Timing gQQ @{1

timing constraints l / <2o$

constraints Contr-ouy R Circuit N
\
Launchin
Process control J
structural pattern transformations

45

['# Pattern 6: Model-View-Controller y/

.‘f

[Model
Examples?
business logic
=7
S(t;ett Update Set
ate
Event Change State
/) 2 View BN
| View Controller

\\model representation user interaction
S

User

— - . -

Christian Ratlifr Actions

* Model: embodies the data and "intelligence” (aka business logic) of
the system

* Controller: captures all user input and translates it into actions on
the model

- View: renders the current state of the model for user

46

o

Example of Model-View Controller

Control Form
Values
50%
30%
20%
User Updates
Values
& Controller View
?\.}Tes‘:le:, Selects View Determines
Model State
Button

E Controller ——State Change =

Extended from : Design Patterns
Elements of Reusable Object -
Model Oriented Software

47

B ITndividual layers are big but the interface between two
adjacent layers is narrow

B Non-adjacent layers cannot communicate directly.

anmples?
Y 48

Example: ISO Network Protocol

Network layer

—

Gives services to

=

[.ANs

Data link layer

Packetizing I

Flow control I

Media
access control

Addressing I

Frror control I

|Receives services from

| Physical layer I

WANSs

49

B Agents interact via events/signals in a medium
B Event manager manages events
B Interaction among agents is dynamic - no fixed connection

Examples?

50

|

Example: The Internet

« Internet is the medium

V"
Q0Frg ‘oorro
oot
: 00000 o‘r’mgxoro

-Computers are agents
- Signals are IP packets

- Control plane of the router
is the event manager III o o P

Q P 128.0.0.56
lII

0 “00”'0
ro

51

| lII Pattern 9: Puppeteer

‘Need an efficient way to manage and control the interaction of |
multiple simulators/computational agents

* Puppeteer Pattern - guides the interaction between the
simulation codes to guarantee correctness of the overall simulation

Difference with agent and repository?

‘No central repository

» Data transfer between simulators

Simulation 1

Puppeteer

Simulation n

Simulation 2

Examples?

| lII Overall Computation

*Modeling of blood moving in blood vessels

*The computation is structured as a controlled interaction between
solid (blood vessel) and fluid (blood) simulation codes

* The two simulations use different data structures and the
number of iterations for each simulation code varies

* Need an efficient way o manage and control the interaction of

the two codes

Legend:
-Solid imestep

Anterpolated
solid position

-Fluidtimestep

h 4

Solid Code
Simulation of
Blood Vessel

Tractions l

Data Broker
Interface

Fluid Code
Simulation of
Blood

Velocities, Tractions

Velocities, Tractions

|'#'Remember the Analogy:

Layout of Factory Plant
4

o /

- We have only talked about structure. We haven't described computation.
54

I lII Architecting Parallel Software

Decompose Tasks Decompose Data
*Group tasks Ildentify data sharing
*Order Tasks ldentify data access

|dentify the Software |dentify the Key

Structure Computations

N—

Friday: Computational Patterns of Parallel
Programming (James Demmel (UCB))
(8:45 - 10:45am)

55

I III Outline

B Intro to Kurt
B General approach to applying the pattern language
B Detail on Structural Patterns

—> M High-level examples of composing patterns

New Images

}

Choose Examples Feature Extraction

}

Train Classifier &

Exercise Classifier 0
Results User Feedback -~ 9

Catanzaro, Sundaram, Keutzer, “Fast SVM Training and Classification
on Graphics Processors”, ICML 2008

I lII Feature Extraction

e Image is reduced to a set of low-
dimensional feature vectors

Build Scale-

Space %
Representation | 1

'Structu réd
Grid

Select Interest Points i
[and Support Regions} - SRy ':D:' [.

Dense Linear

Map Algebra
Reduce s

[Build Descriptors } = SR ':D:' 5 %
Map Structured

educe Grid
"Image Feature Extraction for Mobile Processors", Mark Murphy, Hong Wang, Kurt Keutzer IISWC '09

| '# Train Classifier:

SVM Training

Train Classifier

/

=

==
==

~
==

I
.-

—

Iterator Pattern

/1

v
()
a 2\
Update
Optimality —) [@ }
Conditions
b v - MapReduce
@
a
(D
" Select
Working
Set, [R—
Solve QP
< e y MapReduce

59

New Images

axercise Classifier : SVM
Classification

Test Data

*

Noo /(svi L
7 |(CES) -

products
Dense Linear
[Exercise Classifier } Algebra
\ 4 /
Compute Kernel
values, sum & ||ﬁ i é i
[scale } { J
N 1 J
7 MapReduce

Output 60

|'|i5uppor1'-Vec1'or' Machine Mini-
Framework

m » Support-Vector Machine
‘ Framework used to achieve:

Train Classifier |esssesssssssssssssssnansy

T - 9-35x speedup for training
Syt i — 81-138x for classification

“ m e 340 downloads since release

Fast support vector machine training and classification ,
Catanzaro, Sundaram, Keutzer, International Conference on
61 Machine Learning 2008

I'I_:hi'recting Speech Recognition

Recognition (Pipe-and-filter)

Network
Inference Engine ~ (©rphied)
Model
W Dynamic)
4 Active State l(Pipe-and-filter)\ Programmin

Computation Ste_ps

MapReduce

Beam
Search
: Iterations Most Likely
; Slgna! > Word
rocessing Sequence

y.-
\ lterator)

)~ -

Large Vocabulary Continuous Speech Recognition Poster: Chong, Yi

Work also to appear at Emerging Applications for Manycore Architecture .,

I'I-r'chi‘recfur'e of Logic Optimization Z.

)

Group, order tasks
timing

I area sz
Scan optimization \ / optimization
Netlist

Circuit
representation
BDl;Itl:) " power
model optimization
. Group, order tasks Decompose

O;:timllfe
circu

Data

input variables R
¢

netlist ConTrL
parameters

controlled
variables

actuators

Em Group, order tasks =

Graph algorithm pattern Graph algorithm pattern

63

| III The take away

My own experience has shown that a sound software architecture is the
greatest single indicator of a software project's success.

Software must be architected to achieve productivity, efficiency, and
correctness

SW architecture >> programming environments
- > programming languages
- >> compilers and debuggers
- (>>hardware architecture)

¥ to archl’rec‘rure (software or otherwise) is design patterns and a
tern language

AT the highest level our pattern language has:
- Eight structural patterns
- Thirteen computational patterns

Yes, we really believe arbitrarily complex parallel software can built just
from these!

I lII What's next ...

* Friday: Computational Patterns of Parallel
Programming (James Demmel (UCB))
(8:45 - 10:45am)

8/19/2009 Kurt Keutzer Architecting Parallel 65

66

plclxﬁerns and T T

Y
Frameworks End User ™ —
Target application Application
£
U Frameworks | %
O) Applicati Developer GL)
(O ppiication s 0P Application S
- Patterns £)
(@) Application Framework QO
% Framework E
p .
— Programming Devgqper ro9ramming 'IG;
Patterns i £ Framework ©
E Programming
U—
D) _ Framework) C
:j Computation & Developer Computation & —
E Communication Communication ;
Patterns b Framework
Framework m
v Developer
Today'’s talk focuses only /v HW target Platform
on the middle of the ()
pattern language Hardware Architect

67

Patterns and Framewor

End User

/

&

<

Developer

0,
%’ Application De\{eloper
) Patterns £
(@) Application
% Framework
— Programming Dev?(:)per
Patterns * £ 2
E Programming
Q _ Framework
:j Computation & Developer
(O Communication
an Patterns _a
Framework

Today'’s talk focuses only
on the middle of the ()
pattern language

y

Hardware Architect

Target application

Frameworks

Application

Framework

Programming

Framework

Computation &
Communication

Framework

HW target

Application

A

SW Infrastructure

Platform

68

|

Elements of a Pattern - 1

* Name
- It must have a meaningful name useful to remember the pattern and
when it is used.
* Problem
- A statement of the problem ... a one-line preamble and the problem
stated as a question.
- Context

- The conditions under which the problem occurs. Defines when the
pattern is applicable and the configuration of the system before the
pattern is applied.

- Forces

- A description of the relevant forces and constraints and how they
interact/conflict with one another and with goals we wish to achieve.
Defines the tension that characterizes a problem.

|

Elements of a Pattern - 2

- Solution

- Instructions used to solve the problem. When done right, it resolves
the tension defined in the forces section; flowing from the context
and forces. We also define the new context for the system following
application of the pattern.

Invariant

- What must be invariantly true for this pattern o work. May be
stated in the form of Precondition, Invariant, Post-condition

Examples
- Examples to help the reader understand the pattern.

Known Uses and frameworks

- Cases where the pattern was used; preferably with literature
references.

Related Patterns

- How does this pattern fit-in or work-with the other patterns in the
pattern language.

*PLPP is the pattern language from Mattson, Sanders and Massingill

|"# Definitions - 1

B Design Patterns: "Each design pattern describes a
problem which occurs over and over again in our
environment, and then describes the core of the
solution to that problem, in such a way that you can use
this solution a million times over, without ever doing it
the same way twice." Page x, A Pattern Language,
Christopher Alexander

B Structural patterns: design patterns that provide
solutions to problems associated with the development
of program structure

B Computational patterns: design patterns that provide
solutions tfo recurrent computational problems

| lIl Definitions - 2

B Library: The software implementation of a
computational pattern (e.g. BLAS) or a particular sub-
problem (e.g. matrix multiply)

B Framework: An extensible software environment (e.g.
Ruby on Rails) organized around a structural pattern
(e.g. model-view-controller) that allows for programmer
customization only in harmony with the structural
pattern

B Domain specific language: A programming language (e.g.
Matlab) that provides language constructs that
particularly support a particular application domain.
The language may also supply library support for
common computations in that domain (e.g. BLAS). If
the language is restricted to maintain fidelity to a
structure and provides library support for common

computations then it encompasses a framework (e.g.
NPClick).

| lII Eventually M

1 : + | Application End-user,
Domain Experts " > application
framework programs
s
2 Domain literate + Parallel) Application
programming gurus (1% patterns & frameworks
of the population). programming
poj E |
3 Parallel
Parallel programming gurus (1-10% of =) programmin
programmers) g
frameworks

The hope i1s for Domain Experts to create parallel code with little or no
understanding of parallel programming.

Leave hardcore “bare metal” efficiency layer programming to the parallel

programming experts

| III Today

1 : + | Application
Domain Experts L
framework
2 Domain literate + paFirqrreilLesl &
programming gurus (1% :
of the population). pEr'ogr'ammmI J
3 . o
Parallel programming gurus (1-10% of
programmers)

J

End-user,
application
programs

J

Application
frameworks

Parallel
programmin
q

frameworks

* For the foreseeable future, domain experts, application framework builders, and
parallel programming gurus will all need to learn the entire stack.

 That’s why you all need to be here today!

|

People, Patterns, and Frameworks

4l %]
]
3 w ij?t J
Design Patterns Frameworks
Application Developer Uses application Uses application
" design patterns frameworks
(e.g. feature extraction) (e.g. CBIR)
to architect the to develop application
application
Application-Framework | Uses programming Uses programming
Developer design patterns design patterns
(e.g. Map/Reduce) (e.g MapReduce)
to architect the to develop the
application framework | programming
framework

