
PARLab Parallel Boot Camp

Architecting Parallel Software

with

Patterns

Kurt Keutzer
Electrical Engineering and Computer Sciences

University of California, Berkeley

2

Assumption #1:
How not to develop parallel code

Initial Code

Profiler

Performance

profile

Re-code with

more threads

Not fast

enough

Fast enough

Ship it

3

Steiner Tree Construction Time By
Routing Each Net in Parallel

Benchmark Serial 2 Threads 3 Threads 4 Threads 5 Threads 6 Threads

adaptec1 1.68 1.68 1.70 1.69 1.69 1.69

newblue1 1.80 1.80 1.81 1.81 1.81 1.82

newblue2 2.60 2.60 2.62 2.62 2.62 2.61

adaptec2 1.87 1.86 1.87 1.88 1.88 1.88

adaptec3 3.32 3.33 3.34 3.34 3.34 3.34

adaptec4 3.20 3.20 3.21 3.21 3.21 3.21

adaptec5 4.91 4.90 4.92 4.92 4.92 4.92

newblue3 2.54 2.55 2.55 2.55 2.55 2.55

average 1.00 1.0011 1.0044 1.0049 1.0046 1.0046

4

Assumption #2: This won’t help
either

Code in new

cool language

Profiler

Performance

profile

Re-code with

cool language

Not fast

enough

Fast enough

Ship it

Parallel Programming environments
in the 90’s

Kurt Keutzer
Architecting Software 5

8/19/2009

6

6

Assumption #3: Nor this

Initial Code

Super-compiler

Performance

profile

Tune

compiler

Not fast

enough

Fast enough

Ship it

7

Automatic parallelization?

A Cost-Driven Compilation Framework for Speculative Parallelization of Sequential Programs, Zhao-Hui
Du, Chu-Cheow Lim, Xiao-Feng Li, Chen Yang, Qingyu Zhao, Tin-Fook Ngai (Intel Corporation) in PLDI

2004

•! Aggressive techniques
such as speculative
multithreading help,
but they are not
enough.

•! Ave SPECint speedup
of 8% … will climb to
ave. of 15% once their
system is fully
enabled.

•! There are no
indications auto par.
will radically improve
any time soon.

•! Hence, I do not
believe Auto-par will
solve our problems.

Results for a simulated dual core platform configured as a main core and a core for

speculative execution.

8

Outline

!!Intro to Kurt
!!General approach to applying the pattern language

!!Detail on Structural Patterns
!!High-level examples of composing patterns

9

Key Elements of Kurt’s SW Education
!! AT&T Bell Laboratories: CAD researcher and programmer

–! Algorithms: D. Johnson, R. Tarjan
–! Programming Pearls: S C Johnson, K. Thompson, (Jon Bentley)
–! Developed useful software tools:

»! Plaid: programmable logic aid: used for developing 100’s of FPGA-
based HW systems

»! CONES/DAGON: used for designing >30 application-specific
integrated circuits

!! Synopsys: researcher " CTO (25 products, ~15 million lines of code,
$750M annual revenue, top 20 SW companies)

–! Super programming: J-C Madre, Richard Rudell, Steve Tjiang
–! Software architecture: Randy Allen, Albert Wang
–! High-level Invariants: Randy Allen, Albert Wang

!! Berkeley: teaching software engineering and Par Lab
–! Took the time to reflect on what I had learned:
–! Architectural styles: Garlan and Shaw

»! Design patterns: Gamma et al (aka Gang of Four), Mattson’s PLPP
»! A Pattern Language: Alexander, Mattson
»! Dwarfs: Par Lab Team

10

What I learned (the hard way)

•! Software must be architected to achieve productivity, efficiency, and
correctness

•! SW architecture >> programming environments
–! >> programming languages
–! >> compilers and debuggers
–! (>>hardware architecture)

•! Discussions with superprogrammers taught me:
–! Give me the right program structure/architecture I can use any

programming language
–! Give me the wrong architecture and I’ll never get there

•! What I’ve learned when I had to teach this stuff at Berkeley:
!! Key to architecture (software or otherwise) is design patterns and a

pattern language
•! Resulting software design then uses a hierarchy of software frameworks

for implementation
–! Application frameworks for application (e.g. CAD) developers
–! Programming frameworks for those who build the application

frameworks

11

Outline

!!Intro to Kurt
!!General approach to applying the pattern language

!!Detail on Structural Patterns
!!High-level examples of composing patterns

12

Elements of a pattern language

13

Alexander’s Pattern Language

•! Christopher Alexander’s approach to
(civil) architecture:

–! "Each pattern describes a problem
which occurs over and over again in
our environment, and then describes
the core of the solution to that
problem, in such a way that you can
use this solution a million times over,
without ever doing it the same way
twice.“ Page x, A Pattern Language,
Christopher Alexander

•! Alexander’s 253 (civil) architectural
patterns range from the creation of
cities (2. distribution of towns) to
particular building problems (232. roof
cap)

•! A pattern language is an organized way
of tackling an architectural problem
using patterns

•! Main limitation:
–! It’s about civil not software

architecture!!!

14

Alexander’s Pattern Language
(95-103)

•! Layout the overall arrangement of a group of
buildings: the height and number of these
buildings, the entrances to the site, main parking
areas, and lines of movement through the complex.

•! 95. Building Complex

•! 96. Number of Stories

•! 97. Shielded Parking

•! 98. Circulation Realms

•! 99. Main Building

•! 100. Pedestrian Street

•! 101. Building Thoroughfare

•! 102. Family of Entrances

•! 103. Small Parking Lots

15

Family of Entrances (102)

•! May be part of Circulation Realms (98).

•! Conflict:

•! When a person arrives in a complex of offices or
services or workshops, or in a group of related
houses, there is a good chance he will experience
confusion unless the whole collection is laid out
before him, so that he can see the entrance of the
place where he is going. Resolution:

Lay out the entrances to form a family. This means:

#! 1) They form a group, are visible together, and each is visible
from all the others.

#! 2) They are all broadly similar, for instance all porches, or all
gates in a wall, or all marked by a similar kind of doorway.

#! May contain Main Entrance (110), Entrance Transition (112),
Entrance Room (130), Reception Welcomes You (149).

16

Family of Entrances

17

Elements of a Pattern - 1
•! Name

–! It must have a meaningful name useful to remember the pattern and
when it is used.

•! Problem

–! A statement of the problem … a one-line preamble and the problem
stated as a question.

•! Context

–! The conditions under which the problem occurs. Defines when the
pattern is applicable and the configuration of the system before the
pattern is applied.

•! Forces

–! A description of the relevant forces and constraints and how they
interact/conflict with one another and with goals we wish to achieve.
Defines the tension that characterizes a problem.

18

Elements of a Pattern - 2
•! Solution

–! Instructions used to solve the problem. When done right, it resolves
the tension defined in the forces section; flowing from the context
and forces. We also define the new context for the system following
application of the pattern.

•! Invariant
–! What must be invariantly true for this pattern to work. May be

stated in the form of Precondition, Invariant, Post-condition

•! Examples

–! Examples to help the reader understand the pattern.

•! Known Uses and frameworks

–! Cases where the pattern was used; preferably with literature
references.

•! Related Patterns

–! How does this pattern fit-in or work-with the other patterns in the
pattern language.

19

20

Patterns for Parallel Programming

•! PLPP is the first attempt to develop a

complete pattern language for parallel

software development.

•! PLPP is a great model for a pattern
language for parallel software

•! PLPP mined scientific applications
that utilize a

 monolithic application style

•!PLPP doesn’t help us much with

horizontal composition

•!Much more useful to us than: Design
Patterns: Elements of Reusable

Object-Oriented Software, Gamma,

Helm, Johnson & Vlissides, Addison-

Wesley, 1995.

21

Structural programming patterns

!!In order to create more
complex software it is
necessary to compose
programming patterns

!!For this purpose, it has
been useful to induct a
set of patterns known as
“architectural styles”

!!Examples:
–! pipe and filter
–! event based/event driven

–! layered

–! Agent and repository/
blackboard

–! process control

–! Model-view-controller

22

Put it all together

23

Graph Algorithms

Dynamic Programming

Dense Linear Algebra

Sparse Linear Algebra

Unstructured Grids

Structured Grids

Model-view controller

Iteration

Map reduce

Layered systems

Arbitrary Static Task
Graph

Pipe-and-filter

Agent and Repository

Process Control

Event based, implicit
invocation

Graphical models

Finite state machines

Backtrack Branch and Bound

N-Body methods

Circuits

Spectral Methods

Task Decomposition ! Data Decomposition

Group Tasks Order groups data sharing data access

Applications

Pipeline

Discrete Event

Event Based

Divide and Conquer

Data Parallelism

Geometric Decomposition

Task Parallelism

Graph algorithms

Fork/Join

CSP

Master/worker

Loop Parallelism

BSP

Distributed Array

Shared Data

Shared Queue

Shared Hash Table

SPMD

Barriers

Mutex

Thread Creation/destruction

Process Creation/destruction

Message passing

Collective communication

Speculation

Transactional memory

Choose your high level
structure – what is the

structure of my
application? Guided

expansion

Identify the key
computational patterns

– what are my key
computations?

Guided instantiation

Implementation methods – what are the building blocks of parallel programming? Guided implementation

Choose you high level architecture? Guided decomposition

Refine the structure - what concurrent approach do I use? Guided re-organization

Utilize Supporting Structures – how do I implement my concurrency? Guided mapping

Pr
od

uc
ti

vi
ty

 L
ay

er

E
ff

ic
ie

nc
y

La
ye

r

Digital Circuits

Semaphores

24

Graph Algorithms

Dynamic Programming

Dense Linear Algebra

Sparse Linear Algebra

Unstructured Grids

Structured Grids

Model-view controller

Iteration

Map reduce

Layered systems

Arbitrary Static Task
Graph

Pipe-and-filter

Agent and Repository

Process Control

Event based, implicit
invocation

Graphical models

Finite state machines

Backtrack Branch and Bound

N-Body methods

Circuits

Spectral Methods

Task Decomposition ! Data Decomposition

Group Tasks Order groups data sharing data access

Applications

Pipeline

Discrete Event

Event Based

Divide and Conquer

Data Parallelism

Geometric Decomposition

Task Parallelism

Graph algorithms

Fork/Join

CSP

Master/worker

Loop Parallelism

BSP

Distributed Array

Shared Data

Shared Queue

Shared Hash Table

SPMD

Barriers

Mutex

Thread Creation/destruction

Process Creation/destruction

Message passing

Collective communication

Speculation

Transactional memory

Choose your high level
structure – what is the

structure of my
application? Guided

expansion

Identify the key
computational patterns

– what are my key
computations?

Guided instantiation

Implementation methods – what are the building blocks of parallel programming? Guided implementation

Choose you high level architecture? Guided
decomposition

Refine the structure - what concurrent approach do I use? Guided re-organization

Utilize Supporting Structures – how do I implement my concurrency? Guided mapping

Pr
od

uc
ti

vi
ty

 L
ay

er

E
ff

ic
ie

nc
y

La
ye

r

Digital Circuits

Semaphores

Garlan and Shaw

Architectural Styles

Berkeley View

13 dwarfs

25

•!Pipe-and-Filter

•!Agent-and-Repository

•!Event-based

•!Bulk Synchronous

•!MapReduce

•!Layered Systems

•!Arbitrary Task Graphs

Decompose Tasks/Data

Order tasks Identify Data Sharing and Access

•!!Graph Algorithms

•! Dynamic programming

•! Dense/Spare Linear Algebra

•! (Un)Structured Grids

•! Graphical Models

•! Finite State Machines

•! Backtrack Branch-and-Bound

•! N-Body Methods

•! Circuits

•! Spectral Methods

Architecting Parallel Software

Identify the Software
Structure

Identify the Key
Computations

Pop Quiz: Software is More Like …

a) A building b) A factory

Kurt Keutzer Architecting Software 26 8/19/2009

27

•!Pipe-and-Filter

•!Agent-and-Repository

•!Event-based coordination

•!Iterator

•!MapReduce

•!Process Control

•!Layered Systems

Identify the SW Structure

Structural Patterns

These define the structure of our software but they do not
describe what is computed

28

Analogy: Layout of Factory Plant

29

Identify Key Computations

•! Computational patterns describe the key computations
but not how they are implemented

Computational
Patterns

30

Analogy: Machinery of the Factory

Architecting the Whole Application

•! SW Architecture of Large-
Vocabulary Continuous
Speech Recognition

31

•! Raises appropriate issues like scheduling, latency, throughput,

workflow, resource management, capacity etc.

Analogous to the design of an
entire manufacturing plant

32

Outline

!!Intro to Kurt
!!General approach to applying the pattern language

!!Detail on Structural Patterns
!!High-level examples of composing patterns

Inventory of Structural Patterns

!!pipe and filter

!!iterator

!!MapReduce

!!blackboard/agent and repository

!!process control

!!layered

!!event-based coordination

!!puppeteer

!!(call-and-return/arbitrary task graph)

34

Elements of a structural pattern

•! Components are where the computation
happens

Connectors are where the communication happens

!! A configuration is a

graph of

components

(vertices) and

connectors (edges)

!! A structural

patterns may be

described as a

familiy of graphs.

35

Filter 6

Filter 5

Filter 4

Filter 2

Filter 7

Filter 3

Filter 1

Pattern 1: Pipe and Filter

•!Filters embody
computation

•!Only see inputs and
produce outputs •!Pipes embody

communication

May have
feedback

36

Examples of pipe and filter

!! Almost every large software program has a pipe and filter structure at
the highest level

Logic optimizer Image Retrieval
System

Compiler

37

Pattern 2: Iterator Pattern

ite
ra

te

Exit condition met?

Initialization condition

Synchronize results
of iteration

Variety of functions
performed

asynchronously

Yes

No

38
38

Example of Iterator Pattern:
Training a Classifier: SVM Training

38

Update

surface

Identify

Outlier

ite
ra

te

Iterator Structural Pattern

All points within

acceptable error? Yes

No

39

Pattern 3: MapReduce

•! To us, it means
–! A map stage, where data is mapped onto independent computations

–! A reduce stage, where the results of the map stage are summarized
(i.e. reduced)

Map

Reduce

Map

Reduce

40

Examples of Map Reduce

•! General structure:

!!Map a computation across distributed data sets

!! Reduce the results to find the best/(worst), maxima/
(minima)

41

Pattern 4: Agent and Repository

Repository/

Blackboard

(i.e. database)

Agent 2 Agent 1

Agent 4

Agent and repository : Blackboard structural pattern

Agents cooperate on a shared medium to produce a result

Key elements:

#! Blackboard: repository of the resulting creation that is shared by
all agents (circuit database)

#! Agents: intelligent agents that will act on blackboard
(optimizations)

#! Manager: orchestrates agents access to the blackboard and
creation of the aggregate results (scheduler)

Agent 3

42

Example: Compiler Optimization

Constant

folding

loop

fusion

Software

pipelining

Common-sub-expression

elimination

Strength-reduction

Dead-code elimination

Optimization of a software program

!! Intermediate representation of program is stored in the repository

!! Individual agents have heuristics to optimize the program

!! Manager orchestrates the access of the optimization agents to the
program in the repository

!! Resulting program is left in the repository

Internal

Program

representation

43

Example: Logic Optimization

•! Optimization of integrated circuits
!! Integrated circuit is stored in the repository
!! Individual agents have heuristics to optimize the circuitry of an

integrated circuit
!! Manager orchestrates the access of the optimization agents to the

circuit repository
!! Resulting optimized circuit is left in the repository

timing

opt agent 1

timing

opt agent 2

timing

opt agent 3

timing

opt agent N

44

Pattern 5: Process Control

•! Process control:
–! Process: underlying phenomena to be controlled/computed

–! Actuator: task(s) affecting the process

–! Sensor: task(s) which analyze the state of the process

–! Controller: task which determines what actuators should be effected

process controller

input variables

controlled

variables

control

parameters

manipulated

variables

actuators

Source: Adapted from Shaw & Garlan 1996, p27-31.

45

Examples of Process Control

Circuit
controller

user

timing

constraints

Launching

transformations

Timing

constraints

Process control

structural pattern

46

Pattern 6: Model-View-Controller

•! Model: embodies the data and “intelligence” (aka business logic) of
the system

•! Controller: captures all user input and translates it into actions on
the model

•! View: renders the current state of the model for user

47

Example of Model-View Controller

48

Pattern 7: Layered Systems

!!Individual layers are big but the interface between two
adjacent layers is narrow

!!Non-adjacent layers cannot communicate directly.

49

Example: ISO Network Protocol

50

Pattern 8: Event-based Systems

!! Agents interact via events/signals in a medium

!! Event manager manages events

!! Interaction among agents is dynamic – no fixed connection

Agent

Agent

Agent Agent

Agent Agent

Agent

Agent

Event

Manager

Medium

51

Example: The Internet
•! Internet is the medium

•!Computers are agents

•! Signals are IP packets

•! Control plane of the router
is the event manager

Pattern 9: Puppeteer
•!Need an efficient way to manage and control the interaction of
multiple simulators/computational agents

•! Puppeteer Pattern – guides the interaction between the
simulation codes to guarantee correctness of the overall simulation

•!Difference with agent and repository?

•!No central repository

•! Data transfer between simulators

Puppeteer Simulation 1

Simulation 2

Simulation n

Examples?

Overall Computation
•!Modeling of blood moving in blood vessels

•!The computation is structured as a controlled interaction between
solid (blood vessel) and fluid (blood) simulation codes

•! The two simulations use different data structures and the
number of iterations for each simulation code varies

•! Need an efficient way to manage and control the interaction of
the two codes

•!

54

Remember the Analogy:
Layout of Factory Plant

•! We have only talked about structure. We haven’t described computation.

55

Decompose Tasks

•!Group tasks

•!Order Tasks

Architecting Parallel Software

Identify the Software
Structure

Identify the Key
Computations

Decompose Data

•!Identify data sharing

•!Identify data access

Friday: Computational Patterns of Parallel
Programming (James Demmel (UCB))

(8:45 - 10:45am)

56

Outline

!!Intro to Kurt
!!General approach to applying the pattern language

!!Detail on Structural Patterns
!!High-level examples of composing patterns

57

CBIR Application Framework

Results

Exercise Classifier

Train Classifier

Feature Extraction

User Feedback

Choose Examples

New Images

Catanzaro, Sundaram, Keutzer, “Fast SVM Training and Classification

on Graphics Processors”, ICML 2008

Feature Extraction

•! Image is reduced to a set of low-
dimensional feature vectors

•!

"Image Feature Extraction for Mobile Processors", Mark Murphy, Hong Wang, Kurt Keutzer IISWC '09

Build Scale-
Space

Representation

Select Interest Points
and Support Regions

Build Descriptors

Structured
Grid

Dense Linear
Algebra

Map
Reduce

Structured
Grid

Map
Reduce

59

Train Classifier:
SVM Training

Train Classifier ite
ra

te

Iterator Pattern

MapReduce

MapReduce

60

Exercise Classifier : SVM
Classification

Compute
dot

products

Compute Kernel
values, sum &

scale

Exercise Classifier

MapReduce

Dense Linear
Algebra

Support-Vector Machine Mini-
Framework

•! Support-Vector Machine
Framework used to achieve:

–! !"#$%&'())*+(&,-.&/.012123

4! 56"6#5%&,-.&780''1970:-2&

;! #<=&*->28-0*'&'127)&.)8)0')&

61

Fast support vector machine training and classification ,
Catanzaro, Sundaram, Keutzer, International Conference on

Machine Learning 2008

62

Architecting Speech Recognition

?13208&

@.-7)''123&

A2,).)27)&B2312)&

C)7-321:-2&

D)/>-.E&

F-17)&

A2(+/&

G-'/&H1E)8I&

J-.*&

?)K+)27)&

A/).0/-.&

@1()"02*"98/).&

G0(C)*+7)&

Beam

Search

Iterations

Active State
Computation Steps

LI20M17&

@.-3.0MM123&

N.0(O1708&

G-*)8&

@1()"02*"98/).&

63

Architecture of Logic Optimization

64

The take away

•! My own experience has shown that a sound software architecture is the
greatest single indicator of a software project’s success.

•! Software must be architected to achieve productivity, efficiency, and
correctness

•! SW architecture >> programming environments
–! >> programming languages
–! >> compilers and debuggers
–! (>>hardware architecture)

•! Key to architecture (software or otherwise) is design patterns and a
pattern language

•! At the highest level our pattern language has:
–! Eight structural patterns
–! Thirteen computational patterns

•! Yes, we really believe arbitrarily complex parallel software can built just
from these!

What’s next …

•! Friday: Computational Patterns of Parallel
Programming (James Demmel (UCB))
(8:45 - 10:45am)

Kurt Keutzer Architecting Parallel 65 8/19/2009

66

Extras

67

Frameworks

Application

Framework

Patterns

Programming

Framework
Programming

Patterns

Computation &

Communication

Framework

Computation &

Communication

Patterns

Target application
End User

Application

Patterns

HW target

 Hardware Architect

Patterns and
Frameworks

P
a
tt

e
rn

 L
a
n
g
u
a
g
e

S
W

 I
n
fr

a
st

ru
ct

u
re

Platform

 Application

Developer

Application

Framework
Developer

Programming

Framework
Developer

Framework

Developer

68

Frameworks

Application

Framework

Patterns

Programming

Framework
Programming

Patterns

Computation &

Communication

Framework

Computation &

Communication

Patterns

Target application
End User

Application

Patterns

HW target

 Hardware Architect

Patterns and Frameworks
P
a
tt

e
rn

 L
a
n
g
u
a
g
e

S
W

 I
n
fr

a
st

ru
ct

u
re

Platform

 Application

Developer

Application

Framework
Developer

Programming

Framework
Developer

Framework

Developer

69

Elements of a Pattern - 1
•! Name

–! It must have a meaningful name useful to remember the pattern and
when it is used.

•! Problem

–! A statement of the problem … a one-line preamble and the problem
stated as a question.

•! Context

–! The conditions under which the problem occurs. Defines when the
pattern is applicable and the configuration of the system before the
pattern is applied.

•! Forces

–! A description of the relevant forces and constraints and how they
interact/conflict with one another and with goals we wish to achieve.
Defines the tension that characterizes a problem.

70

Elements of a Pattern - 2
•! Solution

–! Instructions used to solve the problem. When done right, it resolves
the tension defined in the forces section; flowing from the context
and forces. We also define the new context for the system following
application of the pattern.

•! Invariant
–! What must be invariantly true for this pattern to work. May be

stated in the form of Precondition, Invariant, Post-condition

•! Examples

–! Examples to help the reader understand the pattern.

•! Known Uses and frameworks

–! Cases where the pattern was used; preferably with literature
references.

•! Related Patterns

–! How does this pattern fit-in or work-with the other patterns in the
pattern language.

71

Definitions - 1

!!Design Patterns: “Each design pattern describes a
problem which occurs over and over again in our
environment, and then describes the core of the
solution to that problem, in such a way that you can use
this solution a million times over, without ever doing it
the same way twice.“ Page x, A Pattern Language,
Christopher Alexander

!!Structural patterns: design patterns that provide
solutions to problems associated with the development
of program structure

!!Computational patterns: design patterns that provide
solutions to recurrent computational problems

72

Definitions - 2

!!Library: The software implementation of a
computational pattern (e.g. BLAS) or a particular sub-
problem (e.g. matrix multiply)

!!Framework: An extensible software environment (e.g.
Ruby on Rails) organized around a structural pattern
(e.g. model-view-controller) that allows for programmer
customization only in harmony with the structural
pattern

!!Domain specific language: A programming language (e.g.
Matlab) that provides language constructs that
particularly support a particular application domain.
The language may also supply library support for
common computations in that domain (e.g. BLAS). If
the language is restricted to maintain fidelity to a
structure and provides library support for common
computations then it encompasses a framework (e.g.
NPClick).

73

Eventually

Domain literate
programming gurus (1%

of the population).

Application
frameworks

Parallel
patterns &

programming
frameworks

+

Parallel programming gurus (1-10% of
programmers)

Parallel
programmin

g
frameworks

Domain Experts
End-user,
application
programs

Application
patterns &
framework

s

+

74

Today

Domain literate
programming gurus (1%

of the population).

Application
frameworks

Parallel
patterns &

programming
frameworks

+

Parallel programming gurus (1-10% of
programmers)

Parallel
programmin

g
frameworks

Domain Experts
End-user,
application
programs

Application
patterns &
framework

s

+

75

People, Patterns, and Frameworks

Design Patterns Frameworks

Application Developer Uses application

design patterns

(e.g. feature extraction)

 to architect the

application

Uses application

frameworks

(e.g. CBIR)

 to develop application

Application-Framework

Developer

Uses programming

design patterns

(e.g. Map/Reduce)

to architect the

application framework

Uses programming

design patterns

(e.g MapReduce)

 to develop the

programming

framework

