Par Lab Parallel Boot Camp

Performance Tools

Karl Fuerlinger

fuerling@eecs.berkeley.edu

e Motivation

e Concepts and Definitions

— Instrumentation, monitoring, analysis

e Some tools and their functionality
— PAPI — access to hardware performance counters
— ompP — profiling OpenMP code
— IPM — monitoring message passing applications

8/21/2009 Karl Fuerlinger Performance Tools: 2

| Motivatio
N

e Performance analysis is important

— For HPC: computer systems are large
investments

» Procurement: O(S40 Mio)
» Operational costs: ~S5 Mio per year
» Power: 1 MWyear ~S1 Mio

— Goals:
» Solve larger problems (new science)

» Solve problems faster (turn-around
time)

» Improve error bounds on solutions
(confidence)

8/21/2009 Karl Fuerlinger Performance Tools: 3

._d Definitions

e The typical performance optimization cycle

Code Development

Functionally
complete and
correct program

Modify / Tune

Complete, cor-
rect and well-
performing
program

Usage / Production

8/21/2009 Karl Fuerlinger Performance Tools: 4

| "s™instrumentation

8/21/2009

Instrumentation := adding

measurement probes to the
code in order to observe its
execution /

Can be done on several levels |
and ddifferent techniques for
different levels

Different overheads and levels
of accuracy with each technique

\
No application instrumentation \
needed: run in a simulator. E.g., \\
Valgrind, SIMICS, etc. but speed \
is an issue \

, source code -+

y

[preprcicessor} --------------)

source code

compiler -----------

- Instrumentation T

- instrumentation T

- instrumentation

object code || libraries |-

y

- instrumentation

executable 1

- instrumentation T

y

- instrumentation

runtime image -1

- instrumentation T

performance T VM__

data

~ instrumentation

Karl Fuerlinger

Performance Tools: 5

| RS Gmentation — Examples (1)

e Library Instrumentation:

N N\
[Call MPI_Send |- MPI_Send MPI_Send

PMPI_Send

[Call MPI_Bcast | MPI_Bcast

Interposition

User Program \ Library \ MPI Library

e MPI library interposition
— All functions are available under two names: MPI_Xxx and PMPI_Xxx,
— MPI_Xxx symbols are weak, can be over-written by interposition library

— Measurement code in the interposition library measures begin, end, transmitted data, etc...
and calls corresponding PMPI routine.

— Not all MPI functions need to be instrumented

8/21/2009 Karl Fuerlinger Performance Tools: 6

| RS UmERtation — Examples (2)

e Preprocessor Instrumentation

— Example: Instrumenting OpenMP constructs with Opari
— Preprocessor operation

R (instr
source code

This approach is used for OpenMP
instrumentation by most vendor-
independent tools. Examples:
TAU/Kojak/Scalasca/ompP

— Example: Instrumentation of a parallel region

} /* user code in parallel region */

8/21/2009 Karl Fuerlinger Performance Tools: 7

| RS UmERtation — Examples (3)

e Source code instrumentation
— User-added time measurement, etc. (e.g., printf(), gettimeofday())

— Think twice before you roll your own solution, many tools expose mechanisms for source code
instrumentation in addition to automatic instrumentation facilities they offer

— Instrument program phases:
» Initialization
» main loop iteration 1,2,3,4,...
» data post-processing

— Pragma and pre-processor based

#pragma pomp inst begin(foo)
// application code

#pragma pomp inst end(foo)

— Macro / function call based
ELG_USER_START(''name');
// application code

— ELG_USER_END("'name');

8/21/2009 Karl Fuerlinger Performance Tools: 8

e Profiling vs. Tracing

e Profiling
— Summary statistics of performance metrics
» Number of times a routine was invoked
» Exclusive, inclusive time
» Hardware performance counters
» Number of child routines invoked, etc.
» Structure of invocations (call-trees/call-graphs)

» Memory, message communication sizes

e Tracing
- When and where events took place along a global timeline
» Time-stamped log of events
» Message communication events (sends/receives) are tracked
» Shows when and from/to where messages were sent

» Large volume of performance data generated usually leads to more perturbation in the
program

8/21/2009 Karl Fuerlinger Performance Tools: 9

| INigasUrement: Profiling

e Profiling

— Helps to expose performance bottlenecks and hotspots

— 80/20 —rule or Pareto principle: often 80% of the execution time
in 20% of your application

— Optimize what matters, don’t waste time optimizing things that
have negligible overall influence on performance

e I[mplementation

— Sampling: periodic OS interrupts or hardware counter traps
» Build a histogram of sampled program counter (PC) values
» Hotspots will show up as regions with many hits

— Measurement: direct insertion of measurement code

» Measure at start and end of regions of interests, compute
difference

8/21/2009 Karl Fuerlinger Performance Tools: 10

n L L N
I RRIEVE Vs, Exclusive Time

int main()

{

f1();
/* other work */
f2();
f1();
/* other work */

8/21/2009

/* takes 100 secs */

/* takes 20 secs */

/* takes 50 secs */
/* takes 20 secs */

Inclusive time for main
— 100 secs

Exclusive time for main
- 100-20-50-20=10 secs

Exclusive time sometimes called “self”
time

Similar definitions for
inclusive/exclusive time for f1() and f2()

Similar for other metrics, such as
hardware performance counters, etc

Karl Fuerlinger Performance Tools: 11

| . .
I _ple: Instrumentation, Monitor, Trace

Event definitions

Process A:
) 1 | master
void master {
trace(ENTER, 1); 2 | slave

3

trace(SEND, B);
send(B, tag, buf); timestamp ;
\ l . location event . gntext
time I i

trace(EXIT, 1); J/
} N[/
ﬁ
MONITOR 58 | A | ENTER 1
Process B: 60 | B | ENTER 2
void slave { 62 | A | SEND B
trace(ENTER, 2); 6al a | EXIT 1
recv(A, tag, buf); 68 | B | RECV A
trace(RECV, A);
69| B | EXIT 2
trace(EXIT, 2);
}

8/21/2009 Karl Fuerlinger Performance Tools: 12

n s . . L
| EEEEEEERElifE Visualization

8/21/2009

1 | master

2 | slave

3| ...
58| A| ENTER | 1
60| B | ENTER | 2
62| A | SEND B
64| A | EXIT 1
68| B | RECV A
69| B | EXIT 2

" main
B master
B siave

v

I R D
58 60 62 64 66 68 70

Karl Fuerlinger Performance Tools: 13

| IVieastrement: Tracing

e Tracing

— Recording of information about significant points (events) during
program execution

» entering/exiting code region (function, loop, block, ...)
» thread/process interactions (e.g., send/receive message)
— Save information in event record
» timestamp
» CPU identifier, thread identifier
» Event type and event-specific information
— Event trace is a time-sequenced stream of event records
— Can be used to reconstruct dynamic program behavior
— Typically requires code instrumentation

8/21/2009 Karl Fuerlinger Performance Tools: 14

| IPErformance Data Analysis

e Draw conclusions from measured performance data

e Manual analysis
— Visualization
— Interactive exploration
— Statistical analysis
— Modeling

e Automated analysis

— Try to cope with huge amounts of performance by automation
— Examples: Paradyn, KOJAK, Scalasca, Periscope

8/21/2009 Karl Fuerlinger Performance Tools: 15

. [] [] []
| AEEEEEIEilE Visualization
e Vampir: timeline view

= T C— r—— | — Similar other tools: Jumpshot,
Paraver

Process H rP1
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process | | |
Process 16, | 2,500 5
Process |

Vampir=siimeimne

M fpplication

Proness 18/ b | (Process 1 M eI
Process Process 2
Process Frocess 5
Process Process 4
Process Process &
Process Fruuess 6
Process Process 7
ﬁr‘acess Process 8
rusess

Process 27 E:zz:zz H
Process 28, Process

| Process
Process
Frucess
Process
Process

Process 0
Process 1
Process 2
Process 3
Process 4
&
B
T
g

Process
Process
Frocess
Process
Process
Frouocess
Process
Process
Procecoz
Process
Process
Process
Process
Process
Praress
Process
Process
Process
Process
Mrocess
Process
Process
Procoaz
Process

8/21/2009 Karl Fuerlinger Performance Tools: 16

3 tion

e Vampir/IPM: message communication statistics

VAMPIR - M Statist

587 .78213501 MB
470, 22070501 MB
392.66928101 NB
235.11265400 MB
11755642700 ME
000000000 MB

OO EmEm

HPI_Rank

o
10
20 1
o —
50—
& —

=3
L)
HPI_Rank

8/21/2009 Karl Fuerlinger Performance Tools: 17

‘ llI 3D performance data exploration /,,\J;h\\

e Paraprof viewer (from the TAU toolset)

8/21/2009 Karl Fuerlinger Performance Tools: 18

n o
P IAURSmatedIPerformance Analysis

e Reason for Automation

— Size of systems: several tens of thousand of processors

— LLNL Sequoia: 1.6 million cores
— Trend to multi-core

e Large amounts of performance data when tracing

— Several gigabytes or even terabytes

e Not all programmers are performance experts
— Scientists want to focus on their domain
— Need to keep up with new machines

Procass o me1_alireduce

e Automation can solve some of .. : :

Procass 2 mei_alireduce

theseissues e e g e

MPI_allraduce

rrrrrrrr

ey SRS I 0 SR SRRSO IOCTSNONN | R {8 NN | NN 15 SRONRNRN . 1 SO O R 1

ssssssss

MR
S e S SR U6 SRR 1 1 N O R SR
el

ssssssss

bo S N NPTL SN SR
rrrrrrrr
BT - W ¥ N s TS

8/21/2009

Process E]
rrrrrrrrr
RN AN R S

Process "

NS NS o N =S 8774 |1 |
rrrrrrrrr | Mel_Al

| AN RN AN YR Y Z00. 7111 S S w1
Process 13 MeL

L R SR LN A
rrrrrrrrr e,

) IR W " 1% AN\ ¥ 1 o2 RN S
Process 15 Allry

RN TSRS V0N 4 WY <o £ LA a e BT A 15 M
rrrrrrrrr mei_atireduce

Karl Fuerlinger

Performance Tools:

| MAUEomation - Example

B 1300000000000 VAMPIR — Global Timeline (32:32:iziizizianinininianinnznas: o O X

e Late sender” pattern

S,BSI? H S,BSIB H S,BSIB H S,BSIB H S,BSIB H S,BSIB H S,BSIS H

e This pattern can be
detected automatically
by analyzing the trace

8/21/2009 Karl Fuerlinger Performance Tools: 20

e Motivation

e Concepts and Definitions

— Instrumentation, monitoring, analysis

e Some tools and their functionality
— PAPI — access to hardware performance counters
— ompP — profiling OpenMP code
— IPM — monitoring message passing applications

8/21/2009 Karl Fuerlinger Performance Tools: 21

n
| AAIErEErEIPE formance Counters

e Specialized hardware registers to measure the
performance of various aspects of a microprocessor

e Originally used for hardware verification purposes

e Can provide insight into:
— Cache behavior
— Branching behavior
— Memory and resource contention and access patterns
— Pipeline stalls
— Floating point efficiency
— Instructions per cycle

e Counters vs. events

— Usually a large number of countable events (several hundred)
— On a small number of counters (4-18)
— PAPI handles multiplexing if required

8/21/2009 Karl Fuerlinger Performance Tools: 22

8/21/2009

Middleware that provides a consistent and efficient programming
interface for the performance counter hardware found in most major
microprocessors.

Countable events are defined in two ways:
— Platform-neutral Preset Events (e.g., PAPI_TOT_INS)
— Platform-dependent Native Events (e.g., L3_CACHE_MISS)

Preset Events can be derived from multiple Native Events
(e.g. PAPI_L1_TCM might be the sum of L1 Data Misses and L1
Instruction Misses on a given platform)

Preset events are defined in a best-effort way
— No guarantees of semantics portably
— Figuring out what a counter actually counts and if it does so correctly can be hairy

Karl Fuerlinger Performance Tools: 23

| " IPAPIHardware Events

e Preset Events

— Standard set of over 100 events for application performance tuning

— No standardization of the exact definitions

— Mapped to either single or linear combinations of native events on each
platform

— Use papi_avail to see what preset events are available on a given
platform

e Native Events

— Any event countable by the CPU
— Same interface as for preset events

— Use papi_native_avail utility to see all available native events

e Use papi_event_chooser utility to select a compatible set
of events

8/21/2009 Karl Fuerlinger Performance Tools: 24

n
| IPAPICoUnter Interfaces

e PAPI provides 3 interfaces to the
underlying counter hardware:

3rd Party and GUI Tools

Low Level High Level

— Alow level APl manages hardware events User AP User AP
(preset and native) in user defined groups
called EventSets.

Meant for experienced application

programmers wanting fine-grained PAP| PORTABLE LAYER
measurements.

- A hlgh level API provides the ablllty to start, PAP| HARDWARE SPECIFIC
stop and read the counters for a specified list LAYER

Kernel Extension

of events (preset only).
Meant for programmers wanting simple event
measurements.

Operating System

Perf Counter Hardware

— Graphical and end-user tools provide facile
data collection and visualization.

8/21/2009 Karl Fuerlinger Performance Tools: 25

| " IPAPI High Level Calls

8/21/2009

PAPI_num_counters()
— get the number of hardware counters available on the system
PAPI_flips (float *rtime, float *ptime, long long *flpins, float *mflips)

— simplified call to get Mflips/s (floating point instruction rate), real and processor time
PAPI_flops (float *rtime, float *ptime, long long *flpops, float *mflops)
— simplified call to get Mflops/s (floating point operation rate), real and processor time
PAPI_ipc (float *rtime, float *ptime, long long *ins, float *ipc)

— getsinstructions per cycle, real and processor time

PAPI_accum_counters (long long *values, int array_len)

— add current counts to array and reset counters

PAPI_read_counters (long long *values, int array_len)

— copy current counts to array and reset counters

PAPI_start_counters (int *events, int array_len)

— start counting hardware events

PAPI_stop_counters (long long *values, int array_len)

— stop counters and return current counts

Karl Fuerlinger Performance Tools: 26

I.MLOW Level API Usage

8/21/2009

#include "papi.h”

#define NUM_EVENTS 2

int Events[NUM_EVENTS]={PAP1_FP_OPS,PAPI_TOT_CYC},
int EventSet;

long long values[NUM_EVENTS];

/* Initialize the Library */

retval = PAPI library init (PAP1_VER CURRENT);

/* Allocate space for the new eventset and do setup */
retval = PAPIl _create_eventset (&EventSet);

/* Add Flops and total cycles to the eventset */

retval = PAPl_add events (&EventSet,Events,NUM_EVENTS);

/* Start the counters */
retval = PAPIl_start (EventSet);

do work(); /* What we want to monitor*/

/*Stop counters and store results iIn values */
retval = PAPI _stop (EventSet,values);

Karl Fuerlinger

Performance Tools: 27

| “sAIUSIRg PAPI through tools

e You can use PAPI directly in your application, but most people use it
through tools

e Tool might have a predfined set of counters or lets you select
counters through a configuration file/environment variable, etc.

e Tools using PAPI
— TAU (UO)
— PerfSuite (NCSA)
— HPCToolkit (Rice)
— KOJAK, Scalasca (FZ Juelich, UTK)
— Open|Speedshop (SGI)
— ompP (UCB)
— IPM (LBNL)

8/21/2009 Karl Fuerlinger Performance Tools: 28

e Motivation

e Concepts and Definitions

— Instrumentation, monitoring, analysis

e Some tools and their functionality
— PAPI — access to hardware performance counters
— ompP — profiling OpenMP code
— IPM — monitoring message passing applications

8/21/2009 Karl Fuerlinger Performance Tools: 29

I._erformance Analysis with ompP

e ompP: Profiling tool for OpenMP

— Based on source code instrumentation

TECHNISCHE

— Independent of the compiler and runtime used S e
— Tested and supported: Linux, Solaris, AIX and Intel,
Pathscale, PG, IBM, gcc, SUN studio compilers Befké]*éy
— Supports HW counters through PAPI -
— Uses source code instrumenter Opari from ,m i;}
the KOJAK/SCALASCA toolset '_\H

— Available for download (GPL): http://www.ompp-tool.com

Source Code Automatic mstrumentgtlop of OpenME
. constructs, manual region instrumentation

ompP library | == ExecutableJ

Settings (env. Vars) 1
HW Counters, Execution on Profiling Report
output format, ... parallel machine
Vo A=

8/21/2009 Karl Fuerlinger Performance Tools: 30

| “#IGmpP’s Profiling Report

e Header

— Date, time, duration of the run, number of threads, used hardware counters,...

e Region Overview

— Number of OpenMP regions (constructs) and their source-code locations

e Flat Region Profile

— Inclusive times, counts, hardware counter data

e C(Callgraph

e Callgraph Profiles

— With Inclusive and exclusive times

e QOverhead Analysis Report
— Four overhead categories
— Per-parallel region breakdown
— Absolute times and percentages

8/21/2009 Karl Fuerlinger Performance Tools: 31

e Example profiling data

e Components:

— Source code location and type of region

— Timing data and execution counts, depending on the particular
construct

— One line per thread, last line sums over all threads

— Hardware counter data (if PAPI is available and HW counters are
selected)

— Data is “exact” (measured, not based on sampling)

8/21/2009 Karl Fuerlinger Performance Tools: 32

| IFiaERegion Profile (2) /4,\?2-{,1\\

e Times and counts reported by ompP for various OpenMP constructs

main | enter body barr | exit Ends with T: time

nC

Ends with C: count

execT
execC
enterT
startupT
bodyT
sectionT
sectio
singleT
singleC
exitBarT
exitT
shutdwnT

construct

MASTER

ATOMIC

BARRIER

FLUSH

USER REGION
CRITICAL

LOCK

LOCOP

WORKSHARE
SECTIONS

SINGLE

PARALLEL

PARALLEL LOOP
PARALLEL SECTIOQONS
PARALLEL WORKSHARE

Main =
enter +
body +
barr +

o exit

8/21/2009 Karl Fuerlinger Performance Tools: 33

e Callgraph View

— ‘Callgraph’ or ‘region stack’ of OpenMP constructs

— Functions can be included by using Opari’s mechanism to instrument user defined
regions: #pragma pomp inst begin(...), #pragma pomp inst end(...)

e (Callgraph profile
— Similar to flat profile, but with inclusive/exclusive times

e Example:

8/21/2009 Karl Fuerlinger Performance Tools: 34

e Callgraph display

e (Callgraph profiles

8/21/2009 Karl Fuerlinger Performance Tools: 35

| I6Verhead Analysis (1)

e Certain timing categories reported by ompP can be classified as
overheads:

— Example: exitBarT: time wasted by threads idling at the exit barrier of work-
sharing constructs. Reason is most likely an imbalanced amount of work

e Four overhead categories are defined in ompP:

— Imbalance: waiting time incurred due to an imbalanced amount of work in a
worksharing or parallel region

— Synchronization: overhead that arises due to threads having to synchronize their
activity, e.g. barrier call

— Limited Parallelism: idle threads due not enough parallelism being exposed by the
program

— Thread management: overhead for the creation and destruction of threads, and
for signaling critical sections, locks as available

8/21/2009 Karl Fuerlinger Performance Tools: 36

| |lI Overhead Analysis (2)

main enter body barr exit
B = | O E E
o, gl 8|y | . o
E— = o|lo| o | O © =
= (&) s-u P e e = s m e o
O O %) u e B ™ R) P P P
) 4] L o] < &) QO fw e s - pm)
o o = P o] D o |-+ - ™ o <
construct @ o o % Q| n|la|n | ® S o %)
MASTER ° o
ATQMIC o(S) | e
BARRIER o(S) | e
FLUSH o(S) | e
USER REGION o o
CRITICAL . o | o5) °
LOCK ° o | o5 °
LOOP o o o o(])
WORKSHARE ° o o o(])
SECTIONS o | o o | o o(I/L)
SINGLE ° ° o | o o(L)
PARALLEL .) ° o(])
PARALLEL LOOP ° ° ° o(])
PARALLEL SECTIONS ° o o (M) o | o o(l/1,)
PARALLEL WORKSHARE o o o(M) | o o(l)

S: Synchronization overhead I: Imbalance overhead

M: Thread management overhead L: Limited Parallelism overhead

8/21/2009 Karl Fuerlinger Performance Tools: 37

Total runtime (wallclock) : 172.64 sec [32 threads]

Number of parallel regions

Parallel coverage

- 12

- 134.83 sec (78.10%) &~

Parallel regions sorted by wallclock time:

Type
RO0011 PARALL
RO0019 PARALL
ROO009 PARALL

Location
mgrid.F (360-384)
mgrid.F (403-427)
mgrid.F (204-217)

Number of threads, parallel

regions, parallel coverage

Wallclock (%)
55.75 (32.29)
23.02 (13.34)
11.94 (6.92)

Wallclock time * number of threads

SUM 134.83 (78.10) _
1 Overhead percentages wrt. this
particular parallel region
Overheads wrt. each individual pa region:
Total Ovhds (%) = Synch (%) + Imbal @) + Limpar (%) + Mgmt (%)
ROO011 1783.95 337.26 (18.91) 0.00 (0.00) 305.75 (17.14) 0.00 (0.00) 31.51 (1.77)
RO0019 736.80 129.95 (17.64) 0.00 (0.00) 104.28 (14.15) 0.00 (0.00) 25.66 (3.48)
ROO009 382.15 183.14 (47.92) 0.00 (0.00) 96.47 (25.24) 0.00 (0.00) 86.67 (22.68)
RO0015 276.11 68.85 (24.94) 0.00 (0.00) 51.15 (18.52) 0.00 (0.00) 17.70 (6.-41)
Overhead percentages wrt. whole
Overheads wrt. whole program: program
Total Ovhds (%) @) + Imbal &) + Limpar (%) + Mgmt (%)
RO0011 1783.95 337.26 (6.10) 0.00 (0.00) 305.75 (5.53) 0.00 (0.00) 31.51 (0.57)
ROO009 382.15 183.14 (3.32) 0.00 (0.00) 96.47 (1.75) 0.00 (0.00) 86.67 (1.57)
RO0005 264.16 164.90 (2.-98) 0.00 (0.00) 63.92 (1.16) 0.00 (0.00) 100-98 (1.-83)
RO0007 230.63 151.91 (2.75) 0.00 (0.00) 68.58 (1.24) 0.00 (0.00) 83.33 (1.51)
SUM 4314.62 1277.89 (23.13) 0.00 (0.00) 872.92 (15.80) 0.00 (0.00) 404.97 (7-33)

8/21/2009 Karl Fuerlinger Performance Tools: 38

I._ability Analysis

e Methodology

8/21/2009

Classify execution time into “Work” and four overhead categories: “Thread Management”,
“Limited Parallelism”, “Imbalance”, “Synchronization”

Analyze how overheads behave for increasing thread counts
Graphs show accumulated runtime over all threads for fixed workload (strong scaling)
Horizontal line = perfect (linear) scalability

Wallclock time Accumulated time Imperfect scaling

A A

T |— Perfect (linear)

| scaling
1 2 3 4

Super-linear scaling

[[

1 2 3 4 VThread Count
Thread Count

Karl Fuerlinger Performance Tools: 39

e Example
— NAS Parallel Benchmarks
— Class C, SGI Altix machine (ltanium 2, 1.6 GHz, 6MB L3 Cache)

ovhds EFP.C.dat hds .5P.C.dat
as0 _ gooe o e td
400 [| | T
a0 oot Limpar
u M Inbal
L e
g R 1 Wark
3000 —
200
150 2000 —
100
1000 —
50
o - o -
1 2 4 & 1z 16 20 24 P 3z 1 2 4 g 17 16 20 24 28 32

8/21/2009 Karl Fuerlinger Performance Tools: 40

| ISPECIOpEnVIP Benchmarks (1)

e Application 314.mgrid_m

— Scales relatively poorly, application has 12 parallel loops, all contribute with increasingly
severe load imbalance

— Smaller load imbalance for thread counts of 32 and 16. Only three loops show this behavior

— Inall three cases, the iteration count is always a power of two (2 to 256), hence thread
counts which are not a power of two exhibit more load imbalance

314.0ovhds.dat

50004 B Mgmt
Limpar

4000 4 | Imbal

" Sync

3000 - . Work

2000 -

1000 =

8/21/2009 Karl Fuerlinger Performance Tools: 41

| ISPECIOpEnVIP Benchmarks (2)

e Application 316.applu

— Super-linear speedup

— Only one parallel region (ssor.f 138-209) shows super-linear speedup, contributes 80% of
accumulated total execution time

— Most likely reason for super-linear speedup: increased overall cache size

3000 _316.ovhds.dat
B wgmt
2500 — Lim
Zm
2000 1 W
|
1500 —
1000 L3_MISSES
16000000000
500 14000000000
¢, 12000000000
0 - & 10000000000

8000000000

I 6000000000
4000000000
2000000000

0

2}
=
™
4

2 4 8 12 16 20 24 28 32

Number of Threads

8/21/2009 Karl Fuerlinger Performance Tools: 42

| ISPECIOpEnVIP Benchmarks (3)

e Application 313.swim

8/21/2009

Dominating source of inefficiency is thread management overhead
Main source: reduction of three scalar variables in a small parallel loop in swim.f 116-126.

At 128 threads more than 6 percent of the total accumulated runtime is spent in the
reduction operation

Time for the reduction operation is larger than time spent in the body of the parallel region

12000 _313.ovhds.dat
B Mgmt

10000 Limpar
© Imbal

8000 1 W
0w

6000 —

4000 —

2000 —

32 48 64 80 96 112 128

Karl Fuerlinger Performance Tools: 43

| ISPECIOpEnVIP Benchmarks (4)

e Application 318.galgel

— Scales very poorly, large fraction of overhead not accounted for by ompP (most
likely memory access latency, cache conflicts, false sharing)

— lapack.f90 5081-5092 contributes significantly to the bad scaling

» accumulated CPU time increases from 107.9 (2 threads) to 1349.1 seconds
(32 threads)

» 32 thread version is only 22% faster than 2 thread version (wall-clock time)

» 32 thread version parallel efficiency is only approx. 8%

Whole application Region lapack.f90 5081-5092
3500 3 18.0vhds.dat 1600 318.R00034.0vhds.dat
3000 .Eglmt 1a00 -1 M Mgmt
par Limpar
W Sync B s
| 1000 — yne
2000 o Work N Work
BOOD
1500 -
600 —
1000 -
400 —
500 —
200
0 -

8/21/2009 Karl Fuerlinger Performance Tools: 44

e Motivation

e Concepts and Definitions

— Instrumentation, monitoring, analysis

e Some tools and their functionality
— PAPI — access to hardware performance counters
— ompP — profiling OpenMP code
— IPM — monitoring message passing applications

8/21/2009 Karl Fuerlinger Performance Tools: 45

n - .
| BB RAIREEErated Performance Monitoring

e |PM provides a performance profile of a job

— ,,Flip of a switch” operation

— http://ipm-hpc.sourceforge.net

8/21/2009 Karl Fuerlinger Performance Tools: 46

| IPM: Design Goals

e Provide high-level performance profile

— Event inventory: which events happened and how much time did they take

— How much time in communication operations
— Less focus on drill-down into application than other tools

e Efficiency
— Fixed memory footprint (approx. 1-2 MB per MPI rank)

— Monitorig data is kept in a hash-table, avoid dynamic memory allocation
— Low CPU overhead: 1-2 %

e Ease of use

— HTML, or ASCIlI-based based output format
— Flip of a switch, no recompilation, no user instrumentation
— Portability

8/21/2009 Karl Fuerlinger Performance Tools: 47

| “#®IPV: Methodology

e MPI_Init()

— Initialize monitoring environment, allocate memory

e For each MPI call

— Compute hash key from
» Type of call (send/recv/bcast/...)
» Buffer size (in bytes)
» Communication partner rank
» Call-site, region or phase identifier, ...
— Store / update value in hash table with timing data
» Number of invocations

» Minimum duration, maximum duration, summed time

e MPI_Finalize()
— Aggregate, report to stdout, write XML log

8/21/2009 Karl Fuerlinger Performance Tools: 48

n o
| " Using IPM: Basics

e Do “module load ipm”, then run normally

e Upon completion you get

| PMVO . SSHHAHHHHHHHHAHHHHHHHHHHHHH AR AR

#

command : ../exe/pmemd -0 -c inpcrd -0 res (completed)

host - s05405 mpi_tasks : 64 on 4 nodes

start - 02/22/05/10:03:55 wallclock : 24.278400 sec

stop : 02/22/05/10:04:17 %comm - 32.43

gbytes : 2.57604e+00 total gflop/sec : 2.04615e+00 total
#

HAHHHH AR AR AR R AR AR AR R AR

Maybe that’s enough. If so you’re done.
Have a nice day.

8/21/2009 Karl Fuerlinger Performance Tools: 49

| WaERt more detail? IPM_REPORT=full

TR VPMVO _ SO T T T T A A A A

#
command : ../exe/pmemd -0 -c inpcrd -o res (completed)
host - s05405 mpi_tasks : 64 on 4 nodes
start - 02/22/05/10:03:55 wallclock : 24.278400 sec
stop : 02/22/05/10:04:17 %comm - 32.43
gbytes : 2.57604e+00 total gflop/sec : 2.04615e+00 total
#
[total] <avg> min max
wallclock 1373.67 21.4636 21.1087 24.2784
user 936.95 14.6398 12.68 20.3
system 227.7 3.55781 1.51 5
mpi 503.853 7.8727 4.2293 9.13725
Y%comm 32.4268 17.42 41.407
gflop/sec 2.04614 0.0319709 0.02724 0.04041
gbytes 2.57604 0.0402507 0.0399284 0.0408173
gbytes tx 0.665125 0.0103926 1.09673e-05 0.0368981
gbyte rx 0.659763 0.0103088 9.83477e-07 0.0417372
#

8/21/2009 Karl Fuerlinger Performance Tools: 50

I..Vant more detail? IPM_REPORT=full

MP 1
MP1
MP 1

MP 1

MP 1
MP 1

HFHEFHFHFHFHFHFHEFHFFEHRFEHRER

PM_
PM_
PM_
PM_
PM_
PM_
PM_
PM_

cYC
FPUO_CMPL
FPU1_CMPL
FPU_FMA
INST_CMPL
LD_CMPL
ST_CMPL
TLB_MISS

_Bcast
_Waitany
_Allreduce
MP1_Allgatherv
MPI1_
_Gatherv
MPI1_

Isend

lrecv
_Wwartall
__Gather

P~NFRPWRRFPN®

.00519e+11
.45263e+10
-48426e+10
.03083e+10
.33597e+11
.03239%e+11
-19365e+10
.67892e+08

[time]
352.365
81.0002
38.6718
14.7468
12.9071
2.06443
1.349
0.606749
0.0942596

NFRPPFRPOFRPDNWDN

.69561e+09
.83223e+08
.31916e+08
.61067e+08
.21245e+09
.61311e+09
.12401e+09
.62332e+06

[calls]

2816
185729
5184
448
185729
128
185729
8064

192

4.
3.3396e+08
-90704e+08
.36815e+08
.33725e+09
.29033e+09
. 77684e+08
-16104e+06

R ORMNRR

50223e+09

<Wmpi>
69.93
16.08
7.68
2.93
.56
.41
.27
.12
.02

OOOOI\)

5.83342e+09
5.12702e+08
2.8053e+08
.96841e+08
.44214e+09
.84128e+09
.29017e+09
.36664e+07

NP RO

<Wwall>
22.68
5.21
2.49
0.95
0.83
0.13
0.09
0.04
0.01

HHHHHRHHH R R R R AR R R R R R R R R R R R R

8/21/2009

Karl Fuerlinger

Performance Tools: 51

| “#IPM: XML log files

e There’s a lot more information in the logfile than you get
to stdout. A logfile is written that has the hash table,
switch traffic, memory usage, executable information, ...

e Parallelism in writing of the log (when possible)

e The IPM logs are durable performance profiles serving

— HPC center production needs:
https://www.nersc.gov/nusers/status/llsum/

http://www.sdsc.edu/user_services/top/ipm/

— HPC research: ipm_parse renders txt and html
http://www.nersc.gov/projects/ipm/ex3/

— your own XML consuming entity, feed, or process

8/21/2009 Karl Fuerlinger Performance Tools: 52

zes : CAM 336 way

per MPI call per MPI call & buffer size

W P Gathery
M 1P Scattery

i 100 -@ ()
W PI_vaitall
Ry
R
e o
M go - ® MPI_Gatherwy
W ® MPI_Scatherw
E ® WPI_Alltoally
*= O MPI_Brast
& 60
& HPI_Recw
” o MPI_Allreduce
g & MPI_I=end
pr qn - ® HPI_Irecw
E @ HMPI_Alltoall
g o MPI_Send
« ® MPI_Allgather
20—
o]
i I I I I I T I
dq 16 B 2R6 1kE dlB 16kE cdkB 256kE 1ME 4HE 1a6HE

Buffer zsize {bytes)

8/21/2009 Karl Fuerlinger Performance Tools: 53

| ISealability: Required

32K tasks AMR code

MPI_Barrier
MPI_Send
MPI_Waitall
MPI_Allreduce
MPI_Reduce
MPI_Alltoall
MPI_Irecy

B HPI_Gather
MPI_Comm_size
MPI _Comm_rank,

tine in seconds

L) o L) o < L) L)
L= i L= i i i

o o o o o o

[Tyl i [Ty i o i

- REI rank o ™ iE

8/21/2009 Karl Fuerlinger Performance Tools: 54

pretty picture

a0 B 1PI_Earrier
Ry —— W eI e
B vPI_waitall
o MPI_Reduce
B rPI_Alltoall
o a0 MPI_Allreduce
'E MPI_Irecy
E a0 B rPI_Gather
W MPI_Comm_size
.5 gi MP I _Comm_t-ank,
£
= 30
20
10
0
—

= = = =
= o o o
= i i "
LA] ==+ o oo

sorted index

L0000
12000
1y
1000

8/21/2009 Karl Fuerlinger Performance Tools: 55

I._should be tackled with IPM?

e Performance Bottleneck Identification

— Does the profile show what | expect it to?

— Why is my code not scaling?
— Why is my code running 20% slower than | expected?

e Understanding Scaling

— Why does my code scale as it does ?

e Optimizing MPI Performance

— Combining Messages

8/21/2009 Karl Fuerlinger Performance Tools: 56

| A IABBiieatioh Assessment with IPM

e Provide high level performance numbers with small
overhead
— To get an initial read on application runtimes

— For allocation/reporting
— To check the performance weather on systems with high variability

e What’s going on overall in my code?

— How much comp, comm, 1/0?
— Where to start with optimization?

e How is my load balance?
— Domain decomposition vs. concurrency (M work on N tasks)

8/21/2009 Karl Fuerlinger Performance Tools: 57

n
| RERIESIFeach for another tool

e Full application tracing

e Looking for hotspots on the statement level in code
e \Want to step through the code

e Data structure level detail

e Automated performance feedback

8/21/2009 Karl Fuerlinger Performance Tools: 58

| " IWRat's wrong here?

Communication
% of MPI Time

B rPI_allreduce
B MPI_Comm_rank
B HPI_vait
MPI_Izzend
B HPI_Ecast
MPI_Irecw
MPI_Comm_zize
B HPI_Barrier
Communication Event Statistics (100.00% detail)
Buffer Size Ncalls Total Time Min Time Max Time 2% MPI % Wall
MPI_Allreduce 8 3278848 | 124132.547 0.000 114.920| 59.35 16.88
MPI_Comm_rank 0| 35173439489 43439.102 0.000 41.961, 20.77 5.91
MPI_ Wait 98304 13221888| 15710.953 0.000 3.586 7.51 2.14
MPI_ Wait 196608 13221888 5331.236 0.000 5.716 2.55 0.72
MPI_ Wait 589824 206848 5166.272 0.000 7.265 2.47 0.70
8/21/2009 Karl Fuerlinger Performance Tools: 59

Fercent of HFI Tine

Function Total calls Total time (sec) huf.ll-’::aslize
(MB)
MPI_Barrier 6.02e+05| 3. 48e+05 44 .23% 0 0
MPI_Allreduce 3.18e+07 | 2.31e+05 29.33%| 3.61e+05| 11,936
MPI_Send 1.29e+08|1.29e+05 16.36% | 5.24e+04 426
MPI_Bcast 5.73e+07 | 6.08e+04 7.73%| 5.39e+04 987
MPI_Reduce 1.08e+08|1.24e+04 1.58%|1.66e+05| 1,620
MPI_Recv 1.29e+08| 6.11e+03 0.78%| 5.24e+04 426
MPI_Comm_rank | 1.14e+03 5.92e-01|7.52e-05% 0 0
MPI_Comm_size | 6.66e+02 0 0% 0 0

Is MPI_Barrier time bad? Probably. Is it avoidable?

e The stray / unknown / debug barrier

e Barriers used for |/O ordering

8/21/2009

Karl Fuerlinger

MPI_Bartier
MPI_Allreduce
MPI_Send
MPI_Bcast
MPI_Reduce
MPI_Recw

MP I _Camm_t-ark.

Performance Tools: 60

e Performance montioring concepts

— Instrument, measure, analyze
— Profiling/tracing, sampling, direct measurment

e Tools
— PAPI, ompP, IPM as examples

e |ots of other tools

— Vendor tools: Cray PAT, Sun Studio, Intel Thread Profiler, Vtune, PTU,...

— Portable tools: TAU, Perfsuite, Paradyn, HPCToolkit, Kojak, Scalasca,
Vampir, oprofile, gprof, ...

Thank you for your attention!

8/21/2009 Karl Fuerlinger Performance Tools: 61

