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Abstract—Writing correct multithreaded programs is difficult.
Existing tools for finding bugs in multithreaded programs pri-
marily focus on finding generic concurrency problems such as
data races, atomicity violations, and deadlocks. However, these
generic bugs may sometimes be benign and may not help to catch
other functional errors in multithreaded programs. In this paper,
we focus on a high-level programming error, called typestate
error, which happens when a program does not follow the correct
usage protocol of an object. We present a novel technique that
finds typestate errors in multithreaded programs by looking at a
successful execution. An appealing aspect of our technique is that
it not only finds typestate errors that occur during a program
execution, but also many other typestate errors that could have
occurred in a different execution. We have implemented this
technique in a prototype tool for Java and have experimented it
with a number of real-world Java programs.

I. INTRODUCTION

Multithreaded programs often exhibit wrong behaviors due
to unintended interaction between concurrent threads. Such
errors are very difficult to detect because they happen under
very specific thread schedules. Existing research on finding
bugs in multithreaded programs has primarily focused on
developing techniques to find violations of generic invariants
such as data races [1], [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12] and violations of atomicity [13], [14], [15], [16],
[17], [18], [19], [20]. However, it has been found that the
violations of these low-level invariants do not always imply
that there is a bug in a program. For example, a recent tool [7]
on classifying harmful races from benign races showed that
90% of real data races are benign. Moreover, many times a
multithreaded program may satisfy all these low-level generic
invariants; yet, it can violate some functional invariant such as
a thread cannot read from a file handler that has already been
closed by another thread. Nevertheless, techniques for finding
violations of these generic invariants are popular because they
do not need a specification from the programmer.

In this paper, we focus on a dynamic technique to detect
violations of a class of high-level properties called typestate
properties. Typestate [21] is a temporal extension of types
where a user can effectively express the usage patterns of
many common libraries and application programming in-
terfaces (APIs). For example, a typestate property on an
InputStream object in Java is that one cannot read from an
InputStream object after it has been closed. The typestate
property of an object type can be conveniently represented by

a finite state automaton. A state in the automaton represents a
typestate. At any state in an execution, an object can be exactly
in one typestate, with the typestate of the object being set to
the initial state of the automaton when the object is being
created. Each edge of the typestate is labeled by a method
defined by the object type. The invocation of a method during
an execution changes the typestate of an object according to
its typestate automaton. If a typestate in the automaton has
no edge corresponding to a method, then an invocation of the
method during an execution on an object in the typestate leads
to a violation of the typestate property. Dynamically checking
a typestate property [22] of an object simply involves checking
that the sequence of method calls made on the object is a
sequence accepted by the object’s typestate automaton.

We present PRETEX, a dynamic and predictive typestate
checking technique for multithreaded program executions.
PRETEX instruments a multithreaded program to observe
various events in a multithreaded execution such as method
calls and thread creations. The observed execution need not
violate a typestate property (i.e. a successful execution); yet,
PRETEX can predict if some other concurrent execution could
violate the typestate property. Specifically, PRETEX computes
a dependency relation, called happens-before relation [23],
between various events generated by a multithreaded exe-
cution. The happens-before relation, which is also a partial-
order relation, is then used to create various interleavings of
the observed events so that they do not violate the observed
happens-before relation. Each such interleaving represents a
potential concurrent execution of the multithreaded program.
All the computed interleavings of events are then checked
against typestate properties. As such, although the observed
execution may not violate a typestate property, PRETEX can
predict typestate violations in other concurrent executions that
“came close to happening”.

PRETEX has the same flavor as some dynamic race detec-
tion [3], [6], [24] and atomicity checking [14], [13] techniques.
These techniques look at a multithreaded execution and try to
predict if a data race or an atomicity violation can happen in
some other concurrent execution. [25] is another approach that
extracts a causality relation from an execution trace, and uses
it to predict data races and atomicity violations. Unlike these
techniques, PRETEX focuses on typestate properties whose
violations imply a definite bug in a multithreaded program.
Other techniques [26] have been proposed to predict violations



of safety properties in multithreaded programs which can be
expressed using temporal logic. Temporal logic might not be
sufficient to express many typestate properties, and therefore
these techniques will not be able to check multithreaded
programs against those typestate properties.

Predictive typestate checking for concurrent programs poses
three problems. First, checking typestate property for each
object type is expensive and time-consuming. Second, coming
up with the valid typestate property for each object type
requires a lot of manual effort. Third, checking typestate
property efficiently against all “nearby” concurrent executions
could be expensive. PRETEX aims to solve these problems
by combining three techniques in three stages. In the first
stage, PRETEX performs object race detection [5] to iden-
tify the object types whose methods could be concurrently
invoked by multiple threads. Racing object types could only
cause a typestate violation due to different interleavings in a
concurrent execution; therefore, PRETEX only considers these
object types in the next two stages. This helps PRETEX to
significantly prune the object types whose typestate needs to be
checked predictively. Second, PRETEX observes a successful
concurrent execution, that is, an execution that does not throw
an exception, and tries to infer the likely typestate property
of an object type by using an existing dynamic specification
mining technique [27]. There are static methods to mine speci-
fications [28] too, which cover all possible ways an object type
can be used and not only the ways that were observed during
an execution, but are usually not very scalable. Although our
inferred typestate properties may not be accurate, they help
to reduce the burden of specifications writer who can further
help to refine the inferred specifications rather than trying to
write them from scratch. Third, PRETEX efficiently checks
the inferred typestate properties by constructing an abstract
model of a concurrent execution, called computation lattice.

We have implemented PRETEX in a prototype tool for Java.
We have applied PRETEX on a number of open-source Java
programs containing 500K lines of code. We have detected
a previously unknown typestate bug in a Java application
weblech. Our experiments show that PRETEX can run
efficiently on large programs.

The paper makes the following important contributions.
1) It proposes a dynamic technique to predict typestate er-

rors in multithreaded programs. This helps us to improve
the coverage of traditional testing.

2) It combines predictive typestate checking with object
race detection and specification mining to reduce the
runtime overhead and to reduce the burden of writing
specifications, respectively.

3) It presents an implementation and its evaluation on a
number of real-world Java programs. The results of our
experiments are encouraging.

II. OVERVIEW

In this section, we give a gentle introduction to predictive
typestate checking of multithreaded programs. We explain the
technique using the multithreaded program in Figure 1. The

example has two threads: MainThread and ChildThread.
MainThread creates a new Socket object, connects it to
an address, and then starts ChildThread. MainThread
obtains an input stream for the socket, and reads from it a
number of times. Finally, MainThread closes the socket.
ChildThread obtains an output stream for the socket, and
writes a string to it.

The example program is buggy and can throw an exception.
Such an exception is thrown if MainThread is executed
to completion before ChildThread executes its first state-
ment. This is because at the completion of its execution,
MainThread closes mySocket and then ChildThread
calls getOutputStream on the closed socket. In fact,
such an execution violates the typestate property that the
getOutputStream method of a Socket object cannot be
called after calling the method close on the same object.
However, in a normal execution it is very unlikely that
ChildThread will be called after the completion of the
execution of MainThread. This is because the execution of
MainThread will take a long time due to the presence of the
loop and a fair thread scheduler will schedule ChildThread
long before MainThread completes its execution. Neverthe-
less, the exception can happen under some schedule and the
bug in the program should be fixed.

A naı̈ve way to find this bug would be to execute the
program many times with the hope that the thread scheduler
will create the buggy thread interleaving in some execution.
We propose a technique where we can discover this types-
tate bug by looking at a single successful execution of the
multithreaded program. We next explain how we predict the
occurrence of the bug by looking at a successful execution (or
exception-free execution) where we execute ChildThread
before MainThread calls the method getInputStream.
The interleaving is shown in Figure 1.

Our technique works in three stages. In the first stage,
we compute the types of the objects whose method calls
could potentially race with each other. Only the object types
that could potentially race are considered for typestate check-
ing in the next two stages. This is because the objects
that could potentially race are likely to violate a typestate
property due to lack of synchronization. Note that the first
stage is only meant for optimization. In the example pro-
gram, the Socket object, mySocket, is in race, since the
method invocations, getInputStream() in MainThread,
and getOutputStream() in ChildThread, can occur in
either order.

Our second stage is the typestate specification mining stage.
We use the typestate properties mined in this stage to predict
if they could have been violated in some concurrent execution
that was not observed but that could have occurred. In this
stage, we infer the likely typestate property of each object type
by observing a successful concurrent execution. Specifically,
for each type obtained from the previous stage, we obtain
the sequence of method calls invoked on each object of that
type. We pass these sequences of method calls to an off-the-
shelf machine learning procedure [29] to learn an automaton



MainThread ChildThread

InetAddress ad = InetAddress.getByName("testsite.com");
Socket mySocket = new Socket();
mySocket.connect(new InetSocketAddress(ad,80));
ChildThread.start();

OutputStream os = MainThread.mySocket.
getOutputStream();

PrintWriter out = new PrintWriter(os,true);
out.println("testString");

InputStream is = mySocket.getInputStream();
BufferedReader ibr =

new BufferedReader(new InputStreamReader(is));
for (n =0; n < 100; n++)

String line = ibr.readLine();
mySocket.close();

Fig. 1. Predicting an IOException bug that is thrown when getOutputStream() is invoked on a closed Socket object
.
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Fig. 2. The likely typestate specification automaton learnt for Socket objects

that contains all the observed sequences. Such an automaton
represents the likely typestate property of the object type, i.e.
the valid sequence of method calls on that object type.

For example, the sequence of calls on mySocket, the
only Socket object, is connect, getOutputStream,
getInputStream, close in a successful run where
ChildThread terminates before MainThread. From this
sequence, we can infer the likely typestate property that
getInputStream or getOutputStream, cannot be
called on a Socket object after close() has been invoked on
it. Typically, in our benchmarks, we have a number of objects
for each type in race, and hence, the automaton that describes
the union of the sequences observed for these objects gets
close to the correct typestate specification automaton for that
type. Figure 2 gives a typestate specification automaton that
can be inferred for Socket objects from our example.

Our third stage is the predictive typestate checking stage.
Once we have a likely typestate property for each type and
a successful concurrent execution, we predictively check each
typestate property against the successful concurrent execution.
That is, by looking at the causal dependence among the various
events in the successful concurrent execution, we compute
other concurrent executions that can be obtained from the
successful concurrent execution by reordering independent
events. We then check each typestate property against the
computed concurrent executions. Since we check each types-

tate property against a number of concurrent executions that
“came close to happening”, we call this predictive typestate
checking. An advantage of predictive typestate checking is
that we can predict violations of a typestate property that
could potentially happen in other concurrent executions only
by analyzing a successful concurrent execution. In order
to compute the concurrent executions “near” the successful
execution, we compute an abstract model from the sucessful
concurrent execution, called the multithreaded computation
lattice. Each path in such a computation lattice denotes a
concurrent execution that could potentially happen if we
change the thread interleaving slightly. We then check the
typestate property against all paths in this lattice using a
dynamic programming algorithm.

Figure 3 gives the lattice for the observed execution in our
example. The solid lines describe the observed concurrent
execution from which we have computed the computation
lattice, whereas the dotted lines trace the concurrent executions
that could have been observed. The program state Σ30 in the
lattice shows that the typestate property of the Socket type
can be violated. This is because the socket is already closed
in this state, when the method getOutputStream() is
invoked on it. Note that we do not observe this state in the
actual concurrent execution, but we predicted this erroneous
state by analyzing the computation lattice.
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Fig. 3. The multithreaded computation lattice for Figure 1. The left-hand side diagram depicts the partial order observed during program execution. Each
event is a pair of the thread name in which it occurred, and the vector clock of the thread when it occurred. The state b in Σ31 in the computation lattice is
the bad state in the typestate specification automaton for Socket. Any transition that is not possible in the specification automaton leads to the bad state b.

III. PREDICTIVE TYPESTATE CHECKING OF
MULTITHREADED PROGRAMS

We describe the different stages of our technique in this
section. The first stage executes the program and finds the
types of objects that are involved in race in those executions.
The second stage executes the program again, once for each
type that was identified to be in race in the previous stage,
and obtains the sequence of method calls for each object of
that type. PRETEX then constructs a typestate specification
automaton for each type of object in race from the method
sequences. The third and final stage predictively checks the
inferred typestate specifications against a multithreaded exe-
cution.
A. Background Definitions

We introduce some standard definitions that we will use to
explain the different stages of our technique. The execution of
a multithreaded program can be seen as a sequence of events,
where an event could be one of the following types.

• MEM(o,t,L,m) denotes that thread t invoked the method
m on object o while holding the set of locks L. L is also
called as the lockset held by thread t.

• SND(g,t) denotes the sending of a message with unique
ID g by thread t.

• RCV(g,t) denotes the reception of a message with unique
ID g by thread t.

Given an event sequence 〈ei〉, we can define a happens-
before relation ≺ as follows. ≺ is the smallest relation
satisfying the following conditions:

• If ei and ej are events in the same thread and ei comes
before ej in the sequence 〈ei〉, then ei ≺ ej .

• If ei is the sending of the message g and ej is the
reception of the message g, then ei ≺ ej .

• If events ei, ej , and ek are such that ei ≺ ej and ej ≺ ek,
then ei ≺ ek.

The happens-before relation ≺ is computed at runtime by
maintaining a vector clock [30], [31], [24] with every thread.
Each thread ti maintains a vector clock indexed by thread IDs.
ti’s vector clock entry for tj indicates the last event in tj that
could have affected ti. The details of how we maintain vector
clocks is standard and can be found in [24].

We next describe the notion of a multithreaded computation
that we use in our predictive checking algorithm. This lattice
is computed from the execution of a multithreaded program
as in [32], [26], [33], [34]. We denote by ei

k, the k-th event
that occurred in the i-th thread ti. Then the program state
after events e1

k1 ,e2
k2 ,...,en

kn is denoted by Σk1k2...kn . A state
Σk1k2...kn is called consistent [34] if and only if for any 1 ≤ i
≤ n and any li ≤ ki, lj ≤ kj holds for any 1 ≤ j ≤ n and any
lj such that ej

lj ≺ ei
li . In other words, a consistent state is one

which can be formed by an interleaving of events that respects
the happens-before relation. Let Σ00...0 be the initial program
state. A feasible interleaving of events e1,e2,...,em generates
a sequence of program states ΣK0 ,ΣK1 ,...,ΣKm for which the
following two conditions hold. Each ΣKr is consistent, and for
any two consecutive states, ΣKr and ΣKr+1 , Kr and Kr+1

differ in exactly one index by one. If the index in which
the two differ is i, then the i-th element of Kr+1 is larger
by one than the i-th element of Kr. A sequence of states
ΣK0 ,ΣK1 ,...,ΣKm thus identifies an interleaving of events, or
a run of the program. We say that Σ leads to Σ

′
, written as Σ

! Σ
′

if there is a run in which Σ and Σ
′

are consecutive states.



The set of all program states together with the partial order !
forms a lattice. For a state Σk1k2...kn , we call k1+k2+...+kn

as its level in the computation lattice.
B. Object race detection

This stage finds the types of objects whose method calls by
different threads are in race. Our algorithm to detect the objects
that are in race is a combination of the dynamic race detection
techniques proposed in [5], [24]. Specifically, at runtime, we
check the following condition for each pair of events (ei,ej).

ei = MEM(oi, ti, Li, mi) ∧ ej = MEM(oj , tj , Lj ,mj)
∧(ti &= tj) ∧ (oi = oj) ∧ (Li ∩ Lj = ∅) ∧ ¬(ei ≺ ej)
∧¬(ej ≺ ei).

The above condition essentially states that two events are
in race if they are events on different threads, they are due
to method calls on the same object, and the two events
are not related by the happens-before relation (i.e. the two
events are concurrent). If the above condition holds, we say
that the object oi could be in race, and we record its type.
We use vector clock to track ≺. The following SND(g,t)
and RCV(g,t) events are considered in the above condition.
If thread t1 starts a thread t2, then events SND(g,t1) and
RCV(g,t2) are generated, where g is a unique message ID.
If thread t1 calls t2.join() and t2 terminates, then events
SND(g,t2) and RCV(g,t1) are generated, where g is a unique
message ID. If a o.notify() or o.notifyAll() in thread
t1 signals a o.wait() in thread t2, then events SND(g,t1) and
RCV(g,t2) are generated, where g is a unique message ID.
Objects which are in race are more likely to result in typestate
errors. Therefore, we concentrate on building the typestate
specification automaton for such objects in subsequent stages.

C. Inferring likely typestate specifications

Typestate [21] can be used to express the correct usage
rules for many application programming interfaces (APIs).
For example, one can use typestate to express that a
java.net.Socket object cannot be read from after it
has been closed. A typestate specification uses a finite state
automaton (FSA) to encode the correct usage protocol. A state
in the FSA is called a typestate, and an object is in one of these
typestates at any point of time during program execution. The
edges in the automaton are labeled with method names. When
a method is invoked on an object, it follows that outgoing edge
from its typestate which is labeled with the method name, and
transitions to a new typestate (which might be the same as its
old typestate). If no such edge exists in its current typestate,
then we say that a typestate error has occurred. In this section,
we briefly describe how we obtain the typestate specifications
for object types that we identified to be in race in the previous
stage.

For each type in race, we collect the sequence of method
calls invoked on each object of that type. For example, if
we find that objects of type java.net.Socket are in
race, then for each object of type java.net.Socket, we
record the sequence of method calls that was invoked on it

during the execution of the program. Thus, we get as many
sequences as the number of Socket objects that were used
during the execution of the program. For each such set of
sequences, we learn a finite state automaton (FSA) that accepts
the sequences in the set, and rejects most of those outside the
set. The automaton so learnt can be thought of as the typestate
specification of that object type because it captures all the
different ways objects of that type were used during program
execution. Moreover, since the execution does not throw an
exception, we can assume that the observed sequences of
method calls are valid.

The FSA that we learn is a deterministic finite automaton
(DFA), the edges of which are labeled with method names.
We use an off-the-shelf PFSA (Probabilistic Finite State Au-
tomaton) learner [29]. The learner infers a PFSA that accepts
the set of method call sequences presented to it, plus some
more sequences that get added as it generalizes. The PFSA
learner first constructs a prefix tree or a trie from the set of
sequences. Each arc of the trie is labelled with a frequency that
reflects how many times that arc was traversed while creating
the trie. The trie can be seen as a FSA that accepts the set
of sequences from which it was built. Since prefix trees are
usually very large in size, the PFSA learner uses the sk-strings
method [29] to merge states in the prefix trees. The sk-strings
method is a variation of the k-tails method [35] for stochastic
automata. It constructs a non-deterministic finite automaton
(NFA) by successively merging those states of the trie which
are sk-equivalent. Let Σ be the set of method names in the
set of sequences, Q be the set of states in the trie, δ : Q ×
Σ∗ → 2Q be the transition function of the trie, and FC be the
final states of the trie. The set of k-strings of state q is then
defined to be the set {z|z ∈ Σ∗, |z| = k ∧ δ(q, z) ⊂ Q∨ |z| <
k∧δ(q, z)∩Fc &= ∅}. Each k-string has a probability associated
with it which is equal to the product of the probabilities of the
arcs traversed to form that string. The k-strings of a state are
arranged in decreasing order of their probabilities. The top n
strings, whose probabilities add up to s% or more, are retained
and the rest discarded. Two states are said to be sk-equivalent
if the sets of the top n strings of both are equal. The process of
merging sk-equivalent states is repeated until no more states
can be merged. The resulting PFSA accepts a superset of the
method call sequences that was presented to it, due to the
generalizations performed during merging. The final stage in
the learning process converts the NFA into a DFA.

The DFA learned in this stage for each object type can be
used as the likely typestate specification for the type. Note
that we use this stage to reduce the burden on users so that
they do not have to write tedious typestate specification for
each type from scratch. However, they can take a look at the
inferred typestate automata and refine them as required.

D. Predictive checking against typestate specifications
After we infer the likely typestate specification automata,

we predictively check them against a multithreaded execution.
Using the multithreaded execution, we generate a mutithreaded
computation lattice for each automaton based on method invo-



cation events that are relevant to that automaton. The elements
of the lattice consist of program states, where a program
state is a mapping from objects of the type whose typestate
specification is represented by the automaton to sets of states
in the typestate specification automaton. The algorithm to
generate the lattice is very similar to the one presented in [34],
except for the happens-before relation employed by them.
The happens-before relation in [34] considers shared variable
reads and writes, and lock acquires and releases, along with
the synchronization events, start(), join(), wait(),
notify() and notifyAll(). We do not consider shared
variable reads and writes, and lock aquires and releases to
avoid the overhead that would be incurred if we kept track of
them. The happens-before relation that we employ is, thus, an
over-approximation of the exact happens-before relation that
exists between the events in a multithreaded execution, but it
helps us in verifying more thread interleavings, some of which
might be feasible, but not possible under the more conservative
happens-before relation in [34].

We generate the lattice on-the-fly during the execution of
the program, and analyze it level-by-level. After the states of a
level have been analyzed, we discard them. Storing all states
in a level may also lead to a number of states exponential
in the number of levels being stored. Therefore, we employ
the causality cone heuristic [34]. Instead of generating all
possible states in a level, the heuristic considers a level to
be complete after w states in the level are generated, where w
is a pre-determined parameter. However, a level may contain
less than w states. The level construction algorithm would get
stuck in that case. Also, one cannot determine if there are less
than w states in a level unless one sees all the events in the
complete computation. This is because the total number of
threads is not known until the end of the execution. To avoid
this, another parameter l is introduced, which is the length of
the current event queue Q. We consider the construction of
a level to be complete if we have used all the events in Q
for the construction of the states in the current level and the
length of queue is at least l, or if we have generated w states
in the current level. Algorithms 1 and 2 outline these.

In the functions, threadId(e) returns the thread t where
the event e has occurred. For a method invocation event
MEM(o,t,L,m), obj(e) returns o, and methodId(e) returns
m. We maintain vector clocks for each program state Σ and
each event e. The vector clock of a program state Σ reflects the
latest event that has occurred in each thread when the program
state is reached. The vector clock of an event e is the vector
clock of its thread when it occurred. VC(Σ) gives the vector
clock associated with program state Σ, and VC(e) gives the
vector clock associated with event e.

The function constructLevel() constructs feasible
states from the states in the current level and events in the event
queue Q. A state Σ in the current level and an event e in the
event queue can give rise to a feasible state if and only if Σ has
all the information about the events in the current execution of
the program and the happens-before relation between them that
e has, except for the event e itself. A new state is created by

applying the transition represented by the method invocation
event e to the set of states that each object is mapped to in
the program state.

The function isNextState() checks if the program state
Σ and the method invocation event e can give rise to a new
feasible state. If a new feasible state is possible, then the
function createState() creates the new state. ρ takes the
set of states obj(e) is mapped to in Σ and methodId(e),
applies the transition corresponding to methodId(e) in the
typestate specification automaton to the set of states, and
returns the resultant set of states. If the bad state b is present
in the resultant set of states, then we report a typestate error.
Any transition that is not possible in a typestate specification
automaton is considered to lead to the bad state b. If the new
state that is created has a vector clock equivalent to that of a
state already in the next level, we merge the two states. We
merge the mappings of the corresponding objects in the two
states.

We generate states for the next level until the predicate
isLevelComplete is satisfied. Upon the completion of a
level, all the events in the event queue Q which can no longer
give rise to feasible states in subsequent levels are discarded.
This is done by the function removeUselessEvents(),
which creates a vector clock V Cmin, each component of
which is the minimum of the corresponding components of
the vector clocks of the states in the current level. All events
in the event queue which have a vector clock less than or equal
to V Cmin are removed, because they cannot generate feasible
program states any more.

IV. IMPLEMENTATION

We have implemented our technique for Java in a proto-
type tool. We instrument Java bytecode to observe various
events. Bytecode instrumentation allows us to analyze any
Java program for which the source code is not available.
We use the Soot compiler framework [36] to insert probes
into the bytecodes of the Java programs. These probes call
methods in our analyses which are also written in Java.
For the first stage of the analysis, the object race detector,
we add instrumentation to keep track of the locksets and
vector clocks. For maintaining vector clocks, we instrument
the method calls, start(), join(), wait(), notify(),
and notifyAll(). We maintain a database of method
invocation events and the locksets and vector clocks associated
with them. Moreover, since storing each possible event in
the database would stress the memory requirement of the
application, we implement the following optimization. Before
adding an event to the database, we first search the database
to see if such an event already exists. If it does, then we
do not add the current event to the database, or else we add
it to the database. Since we track the thread dependencies
arising out of start(), join(), wait(), notify(),
and notifyAll() and ignore other dependencies present
between the threads, a considerable number of events that
occurs on an object in a thread occurs with the same vector



Algorithm 1 Level-by-level traversal of the computation lat-
tice

while not end of computation do
Q := enqueue(Q,NextEvent())
while constructLevel() do
NOP

end while
end while

boolean constructLevel()
for each e ∈ Q do

if Σ ∈ CurrLevel and isNextState(Σ,e) then
NextLevel := NextLevel " createState(Σ,e)
if isLevelComplete(NextLevel,e,Q) then

Q := removeUselessEvents(CurrLevel,Q)
CurrLevel := NextLevel
return true

end if
end if

end for
return false

boolean isNextState(Σ,e)
i := threadId(e)
if (∀ j $= i : VC(Σ)[j] ≥ VC(e)[j] and VC(Σ)[i]+1 = VC(e)[i])
then

return true
else

return false
end if

State createState(Σ,e)
Σ

′
:= new copy of Σ

j := threadId(e)
VC(Σ

′
)[j] := VC(Σ)[j] + 1

Σ
′

:= Σ
′
[obj(e) := ρ(Σ(obj(e)),methodId(e))]

if b ∈ ρ(Σ(obj(e)),methodId(e)) then
print ‘typestate error observed’

end if
return Σ

′

Algorithm 2 isLevelComplete predicate
boolean isLevelComplete(NextLevel,e,Q)
if size(NextLevel) ≥ w then

return true
else if e is the last event in Q and size(Q) ≥ l
then

return true
else

return false
end if

clock and lockset. Therefore, for all of these events, we have
to add only a single entry to the database.

For the second stage of the analysis, the method call
sequence extractor, we instrument the program to keep track
of the method calls invoked on objects of a certain type, which
is provided as a parameter to the instrumented program. We
run the instrumented program for each type that is identified
to be in race in the previous stage. For each such run, we
collect the sequences of method calls invoked on objects of
that type. We then use an off-the-shelf PFSA builder [29] on
the sequences of method calls for each type in race. The edges

of the automata are labeled with method call names. These
automata are used in the next stage for typestate checking.

For each automaton that we generate, we instrument the
program at each point where a method call present in one of
the edges of the automaton is invoked. The instrumentation
uses the method invocation events to build the levels of
the multithreaded computation lattice. We also track thread
dependencies by instrumenting the method calls, start(),
join(), wait(), notify(), and notifyAll().

V. EMPIRICAL EVALUATION

A. Experimental setup
We evaluated our prototype tool on a number of bench-

mark programs. We ran our experiments on a laptop with
a 2GHz Intel Core 2 Duo processor and 2GB RAM. We
considered the following benchmark programs: hedc, a meta-
crawler application kernel developed at ETH [5], weblech,
a website download tool, tornado, a multithreaded web
server, cache4j, a fast thread-safe implementation of a cache
for Java objects, jspider, a web spider engine, jigsaw
2.2.6, W3C’s web server, and apache ftpserver. The
eighth column of table I gives the LOC count for these
benchmarks. The last column in the table is the number of
threads that were spawned for the benchmark applications.
All of these were closed programs except for jigsaw and
tornado. For jigsaw and tornado, we wrote harnesses
that spawned a number of threads and queried the web server
for different urls.
B. Results

Table I summarizes the average execution time of the
various benchmarks for the different stages of the analysis.
The second column gives the average execution time of the
unmodified benchmark. The third column is the average time
taken for obtaining the method call sequences for objects of a
particular type. The fourth column gives the average time for
the PFSA builder to build a PFSA from a set of method call
sequences. The fifth column is the average execution time to
run the predictive typestate checker using a single automaton.
All of the execution time is in milliseconds. The sixth column
gives the total number of typestate errors reported by our tool.
An error that is reported more than once is counted only once,
and not the number of times it was reported. We manually
inspect all the errors that are reported, and provide the number
of real errors that we find in the seventh column.

As can be seen from the table, the execution time of an
application after being instrumented to print the method call
sequences is less than 3 times the execution time of the original
application, except in the case of cache4j. The execution
time of an application after being instrumented to predict
typestate errors is less than 2 times the execution time of
the uninstrumented application, except for cache4j. The
overhead of instrumentation is thus very small. The PFSA
builder takes almost constant time to build a PFSA from a set
of method sequences. We manually examined the errors that
were reported, and found one real error in weblech which
we describe next.



Benchmark Normal Exec Time Exec Time Exec Time Exec Time # errors # actual LOC Threads
(in ms) (method seqs) (PFSA) (typestate errors) reported errors

(in ms) (in ms) (in ms)
tornado 4141 4125 1235 4140 6 0 1326 40
cache4j 4250 90421 1228 99609 3 0 3897 10

hedc 2813 2829 1352 2766 5 0 29948 5
weblech 1079 2641 1353 1609 6 1 35175 3
jspider 641 922 1233 781 7 0 64933 5

ftpserver 4890 8109 152 8125 8 0 127297 40
jigsaw 39031 39000 1352 39000 12 0 381348 30

TABLE I
Execution time for typestate checking

In weblech, the URLs to be examined are queued in an
instance of the class DownloadQueue. In Spider.java,
due to insufficient synchronization, a thread might try to
retrieve a URL from DownloadQueue even if there is no
URL in it. The relevant portion of the code is shown below.

if(queueSize() == 0 && downloadsInProgress > 0)
{

...
continue;

}
else if(queueSize() == 0)
{

break;
}
....
synchronized(queue)
{

nextURL = queue.getNextInQueue();
downloadsInProgress++;

}

When queue.getNextInQueue() is called in
the above code, the condition that queueSize()
&= 0 could have become false. The execution of
queue.getNextInQueue() can result in an exception
being thrown if the size of queue is 0. The typestate
automaton inferred for DownloadQueue by our analysis
correctly infers that size() should always be called before
getNextInQueue(). The automaton is shown in figure 4.
Using this typestate automaton we could predict the typestate
error in the above code.

There are two main sources of false positives in our experi-
ments. We do not track all possible dependencies between the
threads, for example, the dependencies due to lock acquires
and releases. Therefore, our happens-before relation is an over-
approximation of the exact happens-before relation that exists
between the events in the observed multithreaded execution.
This results in the consideration of thread interleavings that
might be infeasible, and hence the typestate errors that are
reported to occur in them might not be possible in any real
execution of the program. Moreover, since the automata that
we build are based on the sequences of method calls that
are observed during a certain execution of the program, they
do not capture all legitimate sequences of method calls on

objects of the type concerned. Thus, some of the errors that are
reported are caused by legitimate interactions with the objects
that were not observed during the building of the typestate
specification automata.

VI. CONCLUSION

We proposed a dynamic technique to predictively check
typestate violations in multithreaded programs. An appealing
aspect of our approach is that we can predict a typestate
violation by analyzing a multithreaded execution that does
not directly violate the typestate specification. This helps
us to improve the coverage of traditional testing and check
properties that are more high-level than data race and atomicity
violation. We also showed how to combine predictive typestate
checking with object race detection and specification mining
to reduce the runtime overhead and to reduce the burden of
writing specifications, respectively. Thus, our technique is fully
automated. We presented an implementation and its evaluation
on a number of real-world Java programs. The results of our
experiments are encouraging.
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