
1/42

clSpMV: A Cross-Platform
OpenCL SpMV

Framework on GPUs

Bor-Yiing Su, subrian@eecs.berkeley.edu

Kurt Keutzer, keutzer@eecs.berkeley.edu

Parallel Computing Lab,

University of California, Berkeley

2/42

Outline

 Motivation

 The Cocktail Sparse Matrix Format

 The clSpMV Framework

 Experimental Results

 Conclusion

3/42

Usage of Sparse Matrix Vector

Multiplication

 Many iterative methods are composed of a BLAS2 operation with

BLAS1 updates

 BLAS2 operation dominates the execution time

 Many matrices are sparse in natural

 We need to optimize the SpMV operation

4/42

Optimizing the SpMV Computation

 Minimizing memory

footprint

 Proposing new sparse

matrix formats

 Saturating memory

bandwidth

 Optimizing the memory

access pattern on the

memory system

 Challenges of SpMV

 Low arithmetic intensity (memory bounded)

 Irregular memory access

Block matrix Symmetric Diagonal

NVIDIA G80

Intel Xeon E5345

(Clovertown)

5/42

Outline

 Motivation

 The Cocktail Sparse Matrix Format

 The clSpMV Framework

 Experimental Results

 Conclusion

6/42

Pros and Cons of Matrix Formats

Matrix
Format

Category

Example
Sparse
Matrix

Included
Matrix

Formats
Pros Cons

Suggested
Usage

Diagonal

BDIA
DIA

• Implicit column
indices for diagonals
• Aligned memory
access pattern

• Need zero
fillings on
sparse
diagonals

• Matrices
that are
mainly dense
diagonals

Blocked

SBELL
BELL
BCSR

• Implicit column
indices for blocks
• Can reuse the
multiplied vector

• Need zero
fillings on
sparse blocks

• Matrices
that are
mainly dense
blocks

Flat

SELL
ELL
CSR
COO

•No zero fillings • Need explicit
column indices
• Unaligned
memory access

• Irregular
matrices

 Every sparse matrix format has its own pros and cons

 Most of the matrix formats fall into three categories

7/42

Pros and Cons of

Diagonal-Based Formats

Matrix
Format

Example
Sparse
Matrix

Pros Cons
Suggested

Usage

DIA

• More flexible on
the width of the
diagonals

• Cannot use
shared memory
to cache the
vector

• Matrices
with arbitrary
dense
diagonals

BDIA

• Can use shared
memory to cache
the vector

• Need extra
storage to store
the pointers to
each band

• Matrices
with dense
bands

 DIA: Diagonal format

 BDIA: Banded DIA format

8/42

Pros and Cons of Flat Formats

Matrix
Format

Example
Matrix
Storage

Pros Cons Suggested Usage

ELL

• Aligned
memory access

• Need zero
paddings

• Matrices with
similar # of non-
zero per row

SELL

• Aligned
memory access
• Fewer zero
paddings

• Still need zero
paddings
• Additional
pointers to slices

• Matrices with
similar # of non-
zero per slice

CSR

• No zero
paddings

• Unaligned
memory access
• Bad load balance

• Matrices with
moderate
irregular # of
non-zero per row

COO

• No zero
paddings
• Good load
balance

• Explicit row
indices

• Matrices with
highly irregular #
of non-zero per
row

9/42

Pros and Cons of Blocked Formats

Matrix
Format

Example
Matrix
Storage

Pros Cons
Suggested

Usage

BELL

• Aligned memory
access

• Need zero
paddings

• Matrices
with similar #
of blocks per
blocked row

SBELL

• Aligned memory
access
• Fewer zero
paddings

• Still need zero
paddings
• Additional
pointers to slices

• Matrices
with similar #
of blocks per
slice

BCSR

• No zero paddings • Unaligned
memory access
• Bad load
balance

• Matrices
with irregular
of blocks per
blocked row

 BELL: Blocked ELL

 SBELL: Sliced blocked ELL

 BCSR: Blocked CSR

10/42

The Cocktail Format

 Our premise: Every specialized region on a matrix deserves its own

specialized representation

 The Cocktail Format: A combination of many different sparse matrix

formats

 A specialized submatrix is represented by a specialized format

 Trivial case: Only one format is selected to represent the matrix

 Complicated case: a matrix is partitioned into many submatrices,

each represented by a different format

11/42

The Cocktail Matrix Partitioning

Problem

 Challenges in matrix partitioning

 The partition is matrix dependent

 The partition is platform dependent

 The partition is implementation dependent

 The Cocktail Matrix Partitioning (CMP) problem

 Input: matrix A, k formats supported by the Cocktail Format, f1, f2, ..., fk,

k sets of implementations P1 to Pk for formats f1 to fk

 Let t(Ai, fi, Li) be the execution time of a SpMV kernel using format fi and

implementation Li on submatrix Ai

 Output: submatrices A1 to Ak, implementations L1 to Lk

12/42

Outline

 Motivation

 The Cocktail Sparse Matrix Format

 The clSpMV Framework

 Experimental Results

 Conclusion

13/42

Overall Structure of clSpMV

 Offline benchmarking

 Used to estimate the t(Ai, fi, Li) values

 Online decision making

 Partition the input matrix according to the offline benchmarking

profiles

Offline
Benchmarking

Implementations Input Matrix

Benchmarking
Profiles

Online Decision
Making

Benchmarking
Profiles

Cocktail
Format

Diagonal
sparse

matrices

14/42

Offline Benchmarking

 One-time cost

 For every implementation of every format supported by clSpMV,

sample the execution time on different sparse matrices

 Sample on the matrix dimension and # non-zeros per row

 Use interpolation to estimate t(Ai, fi, Li) values in the online

decision making stage

 The estimation accuracy can be further improved by getting

more sample points (e.g. variations of # non-zeros per row)

DIA

15/42

Online Decision Making

 Analyze the input matrix

 Extract specialized regions that should be represented by

specialized formats

 Use offline benchmarking profile to choose the best implementation

for the underlying hardware platform

 Use a decision tree to guide the procedure of analysis and

extraction

16/42

Decision Tree: Topmost Level

 Decide the priority of the matrix categories

 Based on the highest estimated performance each category can

achieve

17/42

Extracting Submatrices from a

Format Category

 Converting between formats is expensive

 Follow a three-step strategy

 Feature collection: Collecting features that are able to

differentiate performance of different formats in the same

category

 Evaluation: Estimating the performance of different partitioning

scenarios, find the best scenario

 Extraction: Extracting submatrices based on the best scenario

Feature
Collection

Evaluation

Extraction

18/42

Decision Tree: Extract Diagonals

 Feature collection

 Compute the number of non-zeros per diagonal

 Evaluation

 Evaluate the estimated performance of each tree branch, and

make decision

 Extraction

 Extract diagonals or bands based on the evaluation decision

Feature
Collection

Evaluation

Extraction

Input
Matrix

Extract
DIA

Extract
BDIA

Extract
DIA and

BDIA

19/42

Extracting Diagonals: Evaluation

 Definition of dense diagonals

 gd: maximum GFLOPS achievable by the diagonal category at the

current matrix settings

 gf: maximum GFLOPS achievable by the flat category at the current

matrix settings

 nd: the dimension of a diagonal

 ed: # of non-zeros in a diagonal

 A diagonal is considered dense if ed > ndgf/gd

 Decision tree branches

 Extract DIA: Representing all dense diagonals with DIA

 Extract BDIA: Representing all dense diagonals with BDIA

 Extract DIA and BDIA: Representing thick bands with BDIA, and thin

bands with DIA

20/42

Decision Tree: Extract Blocks

 Feature collection

 Compute the number of dense/sparse blocks per row

 Evaluation

 Evaluate the estimated performance of each tree branch, and

make decision

 Extraction

 Extract blocks based on the evaluation decision

Feature
Collection

Evaluation

Extraction

Input
Matrix

Extract
SBELL

Extract
BELL

Extract
None

Extract
BCSR

21/42

Extracting Blocks: Evaluation

 Definition of dense blocks

 gb: maximum GFLOPS achievable by the blocked category at the current matrix

settings

 gf: maximum GFLOPS achievable by the flat category at the current matrix

settings

 nb: the size of a block

 eb: # of non-zeros in a block

 A block is considered dense if eb > nbgf/gb

 Decision tree branches

 Extract SBELL: Representing all dense blocks/all non-zeros with SBELL

 Extract BELL: Representing all dense blocks/all non-zeros with BELL

 Extract BCSR: Representing all dense blocks/all non-zeros with BCSR

 Extract None: Do not extract any dense blocks

22/42

Decision Tree: Extract ELL or SELL

 We should extract regular # of non-zeros per row using ELL or SELL, then

use CSR or COO to represent the remaining irregular non-zeros

 Feature collection

 Compute the number of non-zeros per row

 Evaluation

 Evaluate the estimated performance of each tree branch, and make

decision

 Extraction

 Extract ELL or SELL parts based on the evaluation decision

Feature
Collection

Evaluation

Extraction

Input
Matrix

Extract
ELL

Extract
SELL

Extract
None

23/42

Extracting ELL or SELL: Evaluation

 Decision tree branches

 Extract ELL

• w: ELL width

• z(w): zero paddings with width w

• e(w): # of non-zeros covered with width w

• r(w): # of remaining non-zeros not covered with width w

• gELL: achievable performance of ELL

• mc: maximum achivable GFLOPS with CSR or COO formats

• c : # of columns of the matrix

• Solve the following problem:

min (z(w)+e(w))/gELL + r(w)/mc (the estimated execution time)

s. t. w <= c

 w is an integer

 Extract SELL: Similar to ELL, but consider each slice separately

 Extract None: Do not extract ELL or SELL portions

24/42

Decision Tree: Extract CSR or COO

 Feature collection

 Compute the load balancing problem of the CSR format

 Evaluation

 Evaluate the estimated performance of each tree branch, and make

decision

 Extraction

 Representing the remaining matrix with CSR or COO format based on

the evaluation decision

Feature
Collection

Evaluation

Extraction

Input
Matrix

Extract
CSR

Extract
COO

25/42

Extracting CSR or COO: Evaluation

 Decision tree branches (CSR vs. COO)

 u: # of work groups created in CSR

 n: # of non-zeros

 nnz(i): # of non-zeros computed by work group i

 gCSR: achievable performance of CSR

 gCOO: achievable performance of COO

 Select CSR if the following criterion is met; select COO if the criterion is not met

26/42

Overhead of the Online Decision

Making Stage

 Analysis and extraction cost

 Diagonal analysis: 2 SpMV

 Block analysis: 20 SpMV per block size

 Flat analysis: 4 SpMV

 Block analysis dominates the online decision making stage

 Possible fixes

 Let user to provide clues on the block dimension, and the

uniformity of the number of dense blocks per row

• Skip the entire analysis procedure, just do extraction

– Might reduce the cost to 1-2 SpMV

 Instead of analyzing the entire matrix, sample it

• OSKI by Vuduc et al. achieves good performance based on

this approach1

 Parallelize the analysis procedure

• All the features are basically histogram accumulation, very

likely to get 10-30x speedups
1. R. Vuduc, J. W. Demmel, and K. A. Yelick. Oski: A library of automatically tuned sparse matrix kernels. In Proceedings of SciDAC 2005, Journal of Physics: Conference Series, June 2005.

27/42

Outline

 Motivation

 The Cocktail Sparse Matrix Format

 The clSpMV Framework

 Experimental Results

 Conclusion

28/42

Experiment Setup

 The benchmarking sparse matrices

 14 matrices from William et al.’s 2007 SC paper1

• Most of them are regular, only one format is enough

 6 matrices from the University of Florida Sparse Matrix Collection

• Choose irregular matrices

 clSpMV statistics

 9 sparse matrix formats

 107 kernels

 Experiment platform and comparison

 Nvidia GTX 480

• Compare to the Hybrid format from Nvidia’s 2009 SC paper2

• Compare to the best format from Nvidia’s 2009 SC paper2

• Compare to the best single format including Nvidia’s implementation

and our implementation

 AMD Radeon 6970

• Compare to the best single format
1. S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel. Optimization of sparse matrix-vector multiplication on emerging multicore

platforms. In Proceedings of the ACM/IEEE conference on Supercomputing, pages 38:1–38:12, New York, USA, 2007.

2. N. Bell and M. Garland. Implementing sparse matrix-vector multiplication on throughput-oriented processors. In Proceedings of the

Conference on High Performance Computing Networking, Storage and Analysis, pages 18:1–18:11, New York, USA, 2009.

29/42

Offline Benchmarking on

Nvidia GTX 480

DIA BDIA COO

BCSR BELL SBELL

ELL SELL CSR

30/42

clSpMV Performance on

Nvidia GTX 480: Regular Matrices

 Performance on 11 regular matrices

 Only one format is chosen by clSpMV to represent these

matrices

 114% better than the Nvidia Hybrid format

 48% better than the best Nvidia format

 0.5% worse than the best single format

31/42

clSpMV Format Selection on

Regular Matrices (GTX 480)

Name Spyplot Dimension
Nonzeros

(nnz/row)

Best Single

Format

clSpMV

Format

Dense 2kx2k 4M (2k) BCSR BCSR

Protein 36kx36k 4.3M (119) SBELL SBELL

Spheres 83kx83k 6M (72) SBELL SBELL

Cantilever 62kx62k 4M (65) SBELL SBELL

Wind 218kx218k 11.6M (53) SBELL SBELL

Harbor 47kx47k 2.37M (50) SBELL SBELL

QCD 49kx49k 1.9M (39) SELL ELL

Ship 141kx141k 3.98M (28) SBELL SBELL

Epidemiology 526kx526k 2.1M (4) SELL ELL

Accelerator 121kx121k 2.62M (22) SBELL SELL

LP 4kx1.1M 11.3M (2825) BCSR BCSR

32/42

clSpMV Performance on

Nvidia GTX 480: Irregular Matrices

 The performance on 9 irregular matrices

 clSpMV decides to partition the matrix into many submatrices

 46% better than the Nvidia Hybrid format

 29% better than the best Nvidia format

 38% better than the best single format

33/42

clSpMV Format Selection on

Irregular Matrices (GTX 480)

Name Spyplot Dimension
Nonzeros

(nnz/row)
Best Single

Format
clSpMV Format

Economics 207kx207k 1.27M (6) SELL
ELL(81%)

COO(19%)

Circuit 171kx171k 959k (6) SELL
ELL(84%)

COO(16%)

Webbase 1Mx1M 3.1M (3) COO
ELL(64%)

COO(36%)

Circuit5M 5.56Mx5.56M 59.5M (11) COO
DIA(9%)SELL(73%

)COO(18%)

Eu-2005 863Kx863K 19M (22) SBELL
SELL(85%)

COO(15%)

Ga41As41H72 268kx268k 18M (67) CSR
BDIA(18%)ELL(32

%)CSR(50%)

in-2004 1.38Mx1.38M 17M (12) SBELL
SELL(79%)

COO(21%)

mip1 66Kx66K 10M (152) CSR
SBELL(80%)SELL(

17%)COO(3%)

Si41Ge41H72 186kx186k 15M (81) CSR
BDIA(15%)ELL(27

%)CSR(58%)

34/42

Offline Benchmarking on

AMD Radeon 6970

DIA BDIA COO

BCSR BELL SBELL

ELL SELL CSR

35/42

clSpMV Performance on

AMD Radeon 6970: Regular Matrices

 The performance on 9 regular matrices

 Only one format is chosen by clSpMV to represent these

matrices

 2% worse than the best single format

36/42

clSpMV Format Selection on

Regular Matrices (Radeon 6970)

Name Spyplot Dimension
Nonzeros

(nnz/row)

Best Single

Format

clSpMV

Format

Dense 2kx2k 4M (2k) BCSR BCSR

Spheres 83kx83k 6M (72) SBELL SBELL

Wind 218kx218k 11.6M (53) SBELL SBELL

Harbor 47kx47k 2.37M (50) SBELL SBELL

QCD 49kx49k 1.9M (39) SELL BELL

Ship 141kx141k 3.98M (28) SBELL SBELL

Epidemiology 526kx526k 2.1M (4) ELL ELL

Accelerator 121kx121k 2.62M (22) SELL SELL

LP 4kx1.1M 11.3M (2825) BCSR BCSR

37/42

clSpMV Performance on

AMD Radeon 6970: Irregular Matrices

 The performance on 11 irregular matrices

 clSpMV decides to partition the matrix into many submatrices

• On Nvidia 480, 9 matrices are considered regular

– The huge gap between BDIA and other formats drives

clSpMV to extract more BDIA regions on matrices

 80% better than the best single format

38/42

clSpMV Format Selection on

Irregular Matrices (Radeion 6970)

Name Spyplot Dimension
Nonzeros

(nnz/row)
Best Single

Format
clSpMV Format

Protein 36kx36k 4.3M (119) SBELL
BDIA(43%)SBELL(57

%)

Cantilever 62kx62k 4M (65) DIA BDIA(90%) ELL(10%)

Economics 207kx207k 1.27M (6) SELL ELL(81%) COO(19%)

Circuit 171kx171k 959k (6) COO
ELL(84%)

COO(16%)

Webbase 1Mx1M 3.1M (3) COO
ELL(64%)

COO(36%)

Circuit5M 5.56Mx5.56M 59.5M (11) COO
DIA(9%)SELL(73%)C

OO(18%)

Eu-2005 863Kx863K 19M (22) COO
SELL(85%)

COO(15%)

Ga41As41H72 268kx268k 18M (67) CSR
BDIA(18%)ELL(32%)

CSR(50%)

in-2004 1.38Mx1.38M 17M (12) COO
SELL(79%)

COO(21%)

mip1 66Kx66K 10M (152) BCSR
SBELL(80%)SELL(17

%)COO(3%)

Si41Ge41H72 186kx186k 15M (81) SBELL
BDIA(15%)ELL(27%)

CSR(58%)

39/42

clSpMV Format Selection on

Different Platforms

Name
clSpMV on

GTX 480

clSpMV on

Radeon 6970

Dense BCSR BCSR

Protein SBELL
BDIA(43%)

SBELL(57%)

Spheres SBELL SBELL

Cantilevel SBELL
BDIA(90%)

ELL(10%)

Wind SBELL SBELL

Harbor SBELL SBELL

QCD ELL BELL

Ship SBELL SBELL

Economics
ELL(81%)

COO(19%)

ELL(88%)

COO(12%)

Epidemiology ELL ELL

Name
clSpMV on

GTX 480

clSpMV on

Radeon 6970

Accelerator SELL SELL

Circuit
ELL(84%)

COO(16%)

ELL(88%)

COO(12%)

Webbase
ELL(64%)

COO(36%)

ELL(70%)

COO(30%)

LP BCSR BCSR

Circuit5M
DIA(9%)SELL(73

%)COO(18%)

SELL(82%)

COO(18%)

Eu-2005
SELL(85%)

COO(15%)

ELL(83%)

COO(17%)

Ga41As41H72
BDIA(18%)ELL(3

2%)CSR(50%)

BDIA(18%)ELL(3

2%)CSR(50%)

in-2004
SELL(79%)

COO(21%)

SBELL(28%)ELL

(53%)COO(19%)

mip1
SBELL(80%)SEL

L(17%)COO(3%)

BDIA(20%)SBEL

L(62%)SELL(14

%)COO(4%)

Si41Ge41H72
BDIA(15%)ELL(2

7%)CSR(58%)

BDIA(15%)

SBELL(85%)

40/42

Outline

 Motivation

 The Cocktail Sparse Matrix Format

 The clSpMV Framework

 Experimental Results

 Conclusion

41/42

Conclusion

 We proposed a new format for sparse matrices: the Cocktail Format

that is a composition of many matrix formats

 We developed the clSpMV framework that can automatically tune

the representation and implementation of SpMV on an input matrix

 On regular matrices, it chooses one out of 9 formats and

achieves similar performance compared with the best out of the

9 formats

 On irregular matrices, it partitions the matrix into many

submatrices, represents them using the Cocktail Format, and

achieves significant speedups

 The general ideas behind the Cocktail Format and the clSpMV

framework are applicable to all kinds of parallel platforms

 We can expand the framework by plugging in implementations

optimized for other platforms

 Code is available at

 http://www.eecs.berkeley.edu/~subrian/clSpMV.html

42/42

Thank You

