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Usage of Sparse Matrix Vector 

Multiplication 

 Many iterative methods are composed of a BLAS2 operation with 

BLAS1 updates 

 BLAS2 operation dominates the execution time 

 Many matrices are sparse in natural  

 We need to optimize the SpMV operation 
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Optimizing the SpMV Computation 

 Minimizing memory 

footprint 

 Proposing new sparse 

matrix formats 

 Saturating memory 

bandwidth 

 Optimizing the memory 

access pattern on the 

memory system 

 Challenges of SpMV 

 Low arithmetic intensity (memory bounded) 

 Irregular memory access 

Block matrix Symmetric Diagonal 

NVIDIA G80 

Intel Xeon E5345  

(Clovertown) 
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Pros and Cons of Matrix Formats 

Matrix 
Format 

Category 

Example 
Sparse 
Matrix 

Included 
Matrix 

Formats 
Pros Cons 

Suggested 
Usage 

Diagonal 

 
 
 
 

BDIA 
DIA 

• Implicit column 
indices for diagonals 
• Aligned memory 
access pattern 

• Need zero 
fillings on 
sparse 
diagonals 

• Matrices 
that are 
mainly dense 
diagonals 

Blocked 

 
 
 
 

SBELL 
BELL 
BCSR 

• Implicit column 
indices for blocks 
• Can reuse the 
multiplied vector 

• Need zero 
fillings on 
sparse blocks 

• Matrices 
that are 
mainly dense 
blocks 

Flat 

 
 
 
 

SELL 
ELL 
CSR 
COO 

•No zero fillings • Need explicit 
column indices 
• Unaligned 
memory access 

• Irregular 
matrices 

 Every sparse matrix format has its own pros and cons 

 Most of the matrix formats fall into three categories 
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Pros and Cons of  

Diagonal-Based Formats 

Matrix 
Format 

Example 
Sparse 
Matrix 

Pros Cons 
Suggested 

Usage 

DIA 

 
 
 
 

• More flexible on 
the width of the 
diagonals 

• Cannot use 
shared memory 
to cache the 
vector 

• Matrices 
with arbitrary 
dense 
diagonals 

BDIA 

 
 
 
 

• Can use shared 
memory to cache 
the vector 

• Need extra 
storage to store 
the pointers to 
each band 

• Matrices 
with dense 
bands 

 DIA: Diagonal format 

 BDIA: Banded DIA format 
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Pros and Cons of Flat Formats 

Matrix 
Format 

Example 
Matrix 
Storage 

Pros Cons Suggested Usage 

ELL 

 
 
 
 

• Aligned 
memory access 

• Need zero 
paddings  

• Matrices with 
similar # of non-
zero per row 

SELL 

 
 
 
 

• Aligned 
memory access 
• Fewer zero 
paddings 

• Still need zero 
paddings 
• Additional 
pointers to slices 

• Matrices with 
similar # of non-
zero per slice 

CSR 

 
 
 

• No zero 
paddings 

• Unaligned 
memory access 
• Bad load balance 

• Matrices with 
moderate 
irregular # of 
non-zero per row 

COO 

 
 

• No zero 
paddings 
• Good load 
balance 

• Explicit row 
indices 

• Matrices with 
highly irregular # 
of non-zero per 
row 
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Pros and Cons of Blocked Formats 

Matrix 
Format 

Example 
Matrix 
Storage 

Pros Cons 
Suggested 

Usage 

BELL 

 
 
 
 

• Aligned memory 
access 

• Need zero 
paddings  

• Matrices 
with similar # 
of blocks per 
blocked row 

SBELL 

 
 
 
 

• Aligned memory 
access 
• Fewer zero 
paddings 

• Still need zero 
paddings 
• Additional 
pointers to slices 

• Matrices 
with similar # 
of blocks per 
slice 

BCSR 

 
 
 

• No zero paddings • Unaligned 
memory access 
• Bad load 
balance 

• Matrices 
with irregular 
# of blocks per 
blocked row 

 BELL: Blocked ELL 

 SBELL: Sliced blocked ELL 

 BCSR: Blocked CSR 
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The Cocktail Format 

 Our premise: Every specialized region on a matrix deserves its own 

specialized representation 

 The Cocktail Format: A combination of many different sparse matrix 

formats 

 A specialized submatrix is represented by a specialized format 

 Trivial case: Only one format is selected to represent the matrix 

 Complicated case: a matrix is partitioned into many submatrices, 

each represented by a different format 
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The Cocktail Matrix Partitioning 

Problem 

 Challenges in matrix partitioning 

 The partition is matrix dependent 

 The partition is platform dependent 

 The partition is implementation dependent 

 The Cocktail Matrix Partitioning (CMP) problem 

 Input: matrix A, k formats supported by the Cocktail Format, f1, f2, ..., fk, 

k sets of implementations P1 to Pk for formats f1 to fk 

 Let t(Ai, fi, Li) be the execution time of a SpMV kernel using format fi and 

implementation Li on submatrix Ai 

 Output: submatrices A1 to Ak, implementations L1 to Lk 
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Overall Structure of clSpMV 

 Offline benchmarking 

 Used to estimate the t(Ai, fi, Li) values  

 Online decision making 

 Partition the input matrix according to the offline benchmarking 

profiles 

 

Offline 
Benchmarking 

Implementations Input Matrix 

Benchmarking 
Profiles 

Online Decision 
Making 

Benchmarking 
Profiles 

Cocktail 
Format 

Diagonal 
sparse 

matrices 
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Offline Benchmarking 

 One-time cost 

 For every implementation of every format supported by clSpMV, 

sample the execution time on different sparse matrices 

 Sample on the matrix dimension and # non-zeros per row 

 Use interpolation to estimate t(Ai, fi, Li) values in the online 

decision making stage 

 The estimation accuracy can be further improved by getting 

more sample points (e.g. variations of # non-zeros per row)  

DIA 
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Online Decision Making 

 Analyze the input matrix 

 Extract specialized regions that should be represented by 

specialized formats 

 Use offline benchmarking profile to choose the best implementation 

for the underlying hardware platform 

 Use a decision tree to guide the procedure of analysis and 

extraction  
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Decision Tree: Topmost Level 

 Decide the priority of the matrix categories 

 Based on the highest estimated performance each category can 

achieve 
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Extracting Submatrices from a  

Format Category 

 Converting between formats is expensive 

 Follow a three-step strategy 

 Feature collection: Collecting features that are able to 

differentiate performance of different formats in the same 

category 

 Evaluation: Estimating the performance of different partitioning 

scenarios, find the best scenario 

 Extraction: Extracting submatrices based on the best scenario 

Feature 
Collection 

Evaluation 

Extraction 



18/42 

Decision Tree: Extract Diagonals 

 Feature collection 

 Compute the number of non-zeros per diagonal 

 Evaluation 

 Evaluate the estimated performance of each tree branch, and 

make decision 

 Extraction 

 Extract diagonals or bands based on the evaluation decision 

Feature 
Collection 

Evaluation 

Extraction 

Input 
Matrix 

Extract 
DIA 

Extract 
BDIA 

Extract 
DIA and 

BDIA 
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Extracting Diagonals: Evaluation 

 Definition of dense diagonals 

 gd: maximum GFLOPS achievable by the diagonal category at the 

current matrix settings  

 gf: maximum GFLOPS achievable by the flat category at the current 

matrix settings 

 nd: the dimension of a diagonal 

 ed: # of non-zeros in a diagonal 

 A diagonal is considered dense if ed > ndgf/gd 

 Decision tree branches 

 Extract DIA: Representing all dense diagonals with DIA 

 Extract BDIA: Representing all dense diagonals with BDIA 

 Extract DIA and BDIA: Representing thick bands with BDIA, and thin 

bands with DIA 
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Decision Tree: Extract Blocks 

 Feature collection 

 Compute the number of dense/sparse blocks per row 

 Evaluation 

 Evaluate the estimated performance of each tree branch, and 

make decision 

 Extraction 

 Extract blocks based on the evaluation decision 

Feature 
Collection 

Evaluation 

Extraction 

Input 
Matrix 

Extract 
SBELL 

Extract 
BELL 

Extract 
None 

Extract 
BCSR 
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Extracting Blocks: Evaluation 

 Definition of dense blocks 

 gb: maximum GFLOPS achievable by the blocked category at the current matrix 

settings  

 gf: maximum GFLOPS achievable by the flat category at the current matrix 

settings 

 nb: the size of a block 

 eb: # of non-zeros in a block 

 A block is considered dense if eb > nbgf/gb 

 Decision tree branches 

 Extract SBELL: Representing all dense blocks/all non-zeros with SBELL 

 Extract BELL: Representing all dense blocks/all non-zeros with BELL 

 Extract BCSR: Representing all dense blocks/all non-zeros with BCSR 

 Extract None: Do not extract any dense blocks 
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Decision Tree: Extract ELL or SELL 

 We should extract regular # of non-zeros per row using ELL or SELL, then 

use CSR or COO to represent the remaining irregular non-zeros 

 Feature collection 

 Compute the number of non-zeros per row 

 Evaluation 

 Evaluate the estimated performance of each tree branch, and make 

decision 

 Extraction 

 Extract ELL or SELL parts based on the evaluation decision 

Feature 
Collection 

Evaluation 

Extraction 

Input 
Matrix 

Extract 
ELL 

Extract 
SELL 

Extract 
None 
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Extracting ELL or SELL: Evaluation 

 Decision tree branches 

 Extract ELL 

• w: ELL width 

• z(w): zero paddings with width w 

• e(w): # of non-zeros covered with width w 

• r(w): # of remaining non-zeros not covered with width w 

• gELL: achievable performance of ELL 

• mc: maximum achivable GFLOPS with CSR or COO formats  

• c : # of columns of the matrix 

• Solve the following problem: 

min (z(w)+e(w))/gELL + r(w)/mc (the estimated execution time) 

s. t. w <= c 

       w is an integer 

 Extract SELL: Similar to ELL, but consider each slice separately 

 Extract None: Do not extract ELL or SELL portions 
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Decision Tree: Extract CSR or COO 

 Feature collection 

 Compute the load balancing problem of the CSR format 

 Evaluation 

 Evaluate the estimated performance of each tree branch, and make 

decision 

 Extraction 

 Representing the remaining matrix with CSR or COO format based on 

the evaluation decision 

Feature 
Collection 

Evaluation 

Extraction 

Input 
Matrix 

Extract 
CSR 

Extract 
COO 
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Extracting CSR or COO: Evaluation 

 Decision tree branches (CSR vs. COO) 

 u: # of work groups created in CSR  

 n: # of non-zeros 

 nnz(i): # of non-zeros computed by work group i 

 gCSR: achievable performance of CSR 

 gCOO: achievable performance of COO 

 Select CSR if the following criterion is met; select COO if the criterion is not met 
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Overhead of the Online Decision 

Making Stage 

 Analysis and extraction cost 

 Diagonal analysis: 2 SpMV 

 Block analysis: 20 SpMV per block size 

 Flat analysis: 4 SpMV 

 Block analysis dominates the online decision making stage 

 Possible fixes 

 Let user to provide clues on the block dimension, and the 

uniformity of the number of dense blocks per row 

• Skip the entire analysis procedure, just do extraction 

– Might reduce the cost to 1-2 SpMV  

 Instead of analyzing the entire matrix, sample it 

• OSKI by Vuduc et al. achieves good performance based on 

this approach1 

 Parallelize the analysis procedure 

• All the features are basically histogram accumulation, very 

likely to get 10-30x speedups 
1. R. Vuduc, J. W. Demmel, and K. A. Yelick. Oski: A library of automatically tuned sparse matrix kernels. In Proceedings of SciDAC 2005, Journal of Physics: Conference Series, June 2005. 
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Experiment Setup 

 The benchmarking sparse matrices 

 14 matrices from William et al.’s 2007 SC paper1 

• Most of them are regular, only one format is enough 

 6 matrices from the University of Florida Sparse Matrix Collection 

• Choose irregular matrices  

 clSpMV statistics 

 9 sparse matrix formats 

 107 kernels 

 Experiment platform and comparison 

 Nvidia GTX 480 

• Compare to the Hybrid format from Nvidia’s 2009 SC paper2 

• Compare to the best format from Nvidia’s 2009 SC paper2 

• Compare to the best single format including Nvidia’s implementation 

and our implementation 

 AMD Radeon 6970 

• Compare to the best single format 
1. S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel. Optimization of sparse matrix-vector multiplication on emerging multicore  

platforms. In Proceedings of the ACM/IEEE conference on Supercomputing, pages 38:1–38:12, New York, USA, 2007. 

2. N. Bell and M. Garland. Implementing sparse matrix-vector multiplication on throughput-oriented processors. In Proceedings of the  

Conference on High Performance Computing Networking, Storage and Analysis, pages 18:1–18:11, New York, USA, 2009. 
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Offline Benchmarking on  

Nvidia GTX 480 

DIA BDIA COO 

BCSR BELL SBELL 

ELL SELL CSR 
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clSpMV Performance on  

Nvidia GTX 480: Regular Matrices 

 Performance on 11 regular matrices 

 Only one format is chosen by clSpMV to represent these 

matrices 

 114% better than the Nvidia Hybrid format 

 48% better than the best Nvidia format 

 0.5% worse than the best single format 
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clSpMV Format Selection on  

Regular Matrices (GTX 480) 

Name Spyplot Dimension 
Nonzeros 

(nnz/row) 

Best Single 

Format 

clSpMV 

Format 

Dense 2kx2k 4M (2k) BCSR BCSR 

Protein 36kx36k 4.3M (119) SBELL SBELL 

Spheres 83kx83k 6M (72) SBELL SBELL 

Cantilever 62kx62k 4M (65) SBELL SBELL 

Wind 218kx218k 11.6M (53) SBELL SBELL 

Harbor 47kx47k 2.37M (50) SBELL SBELL 

QCD 49kx49k 1.9M (39) SELL ELL 

Ship 141kx141k 3.98M (28) SBELL SBELL 

Epidemiology 526kx526k 2.1M (4) SELL ELL 

Accelerator 121kx121k 2.62M (22) SBELL SELL 

LP 4kx1.1M 11.3M (2825) BCSR BCSR 
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clSpMV Performance on  

Nvidia GTX 480: Irregular Matrices 

 The performance on 9 irregular matrices 

 clSpMV decides to partition the matrix into many submatrices 

 46% better than the Nvidia Hybrid format 

 29% better than the best Nvidia format 

 38% better than the best single format 
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clSpMV Format Selection on  

Irregular Matrices (GTX 480) 

Name Spyplot Dimension 
Nonzeros 

(nnz/row) 
Best Single 

Format 
clSpMV Format 

Economics 207kx207k 1.27M (6) SELL 
ELL(81%) 

COO(19%) 

Circuit 171kx171k 959k (6) SELL 
ELL(84%) 

COO(16%) 

Webbase 1Mx1M 3.1M (3) COO 
ELL(64%) 

COO(36%) 

Circuit5M 5.56Mx5.56M 59.5M (11) COO 
DIA(9%)SELL(73%

)COO(18%) 

Eu-2005 863Kx863K 19M (22) SBELL 
SELL(85%) 

COO(15%) 

Ga41As41H72 268kx268k 18M (67) CSR 
BDIA(18%)ELL(32

%)CSR(50%) 

in-2004 1.38Mx1.38M 17M (12) SBELL 
SELL(79%) 

COO(21%) 

mip1 66Kx66K 10M (152) CSR 
SBELL(80%)SELL(

17%)COO(3%) 

Si41Ge41H72 186kx186k 15M (81) CSR 
BDIA(15%)ELL(27

%)CSR(58%) 
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Offline Benchmarking on  

AMD Radeon 6970 

DIA BDIA COO 

BCSR BELL SBELL 

ELL SELL CSR 
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clSpMV Performance on  

AMD Radeon 6970: Regular Matrices 

 The performance on 9 regular matrices 

 Only one format is chosen by clSpMV to represent these 

matrices 

 2% worse than the best single format 
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clSpMV Format Selection on  

Regular Matrices (Radeon 6970) 

Name Spyplot Dimension 
Nonzeros 

(nnz/row) 

Best Single 

Format 

clSpMV 

Format 

Dense 2kx2k 4M (2k) BCSR BCSR 

Spheres 83kx83k 6M (72) SBELL SBELL 

Wind 218kx218k 11.6M (53) SBELL SBELL 

Harbor 47kx47k 2.37M (50) SBELL SBELL 

QCD 49kx49k 1.9M (39) SELL BELL 

Ship 141kx141k 3.98M (28) SBELL SBELL 

Epidemiology 526kx526k 2.1M (4) ELL ELL 

Accelerator 121kx121k 2.62M (22) SELL SELL 

LP 4kx1.1M 11.3M (2825) BCSR BCSR 
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clSpMV Performance on  

AMD Radeon 6970: Irregular Matrices 

 The performance on 11 irregular matrices 

 clSpMV decides to partition the matrix into many submatrices 

• On Nvidia 480, 9 matrices are considered regular 

– The huge gap between BDIA and other formats drives 

clSpMV to extract more BDIA regions on matrices 

 80% better than the best single format 
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clSpMV Format Selection on  

Irregular Matrices (Radeion 6970) 

Name Spyplot Dimension 
Nonzeros 

(nnz/row) 
Best Single 

Format 
clSpMV Format 

Protein 36kx36k 4.3M (119) SBELL 
BDIA(43%)SBELL(57

%) 

Cantilever 62kx62k 4M (65) DIA BDIA(90%) ELL(10%) 

Economics 207kx207k 1.27M (6) SELL ELL(81%) COO(19%) 

Circuit 171kx171k 959k (6) COO 
ELL(84%) 

COO(16%) 

Webbase 1Mx1M 3.1M (3) COO 
ELL(64%) 

COO(36%) 

Circuit5M 5.56Mx5.56M 59.5M (11) COO 
DIA(9%)SELL(73%)C

OO(18%) 

Eu-2005 863Kx863K 19M (22) COO 
SELL(85%) 

COO(15%) 

Ga41As41H72 268kx268k 18M (67) CSR 
BDIA(18%)ELL(32%)

CSR(50%) 

in-2004 1.38Mx1.38M 17M (12) COO 
SELL(79%) 

COO(21%) 

mip1 66Kx66K 10M (152) BCSR 
SBELL(80%)SELL(17

%)COO(3%) 

Si41Ge41H72 186kx186k 15M (81) SBELL 
BDIA(15%)ELL(27%)

CSR(58%) 
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clSpMV Format Selection on  

Different Platforms 

Name 
clSpMV on 

GTX 480 

clSpMV on 

Radeon 6970 

Dense BCSR BCSR 

Protein SBELL 
BDIA(43%) 

SBELL(57%) 

Spheres SBELL SBELL 

Cantilevel SBELL 
BDIA(90%) 

ELL(10%) 

Wind SBELL SBELL 

Harbor SBELL SBELL 

QCD ELL BELL 

Ship SBELL SBELL 

Economics 
ELL(81%) 

COO(19%) 

ELL(88%) 

COO(12%) 

Epidemiology ELL ELL 

Name 
clSpMV on 

GTX 480 

clSpMV on 

Radeon 6970 

Accelerator SELL SELL 

Circuit 
ELL(84%) 

COO(16%) 

ELL(88%) 

COO(12%) 

Webbase 
ELL(64%) 

COO(36%) 

ELL(70%) 

COO(30%) 

LP BCSR BCSR 

Circuit5M 
DIA(9%)SELL(73

%)COO(18%) 

SELL(82%) 

COO(18%) 

Eu-2005 
SELL(85%) 

COO(15%) 

ELL(83%) 

COO(17%) 

Ga41As41H72 
BDIA(18%)ELL(3

2%)CSR(50%) 

BDIA(18%)ELL(3

2%)CSR(50%) 

in-2004 
SELL(79%) 

COO(21%) 

SBELL(28%)ELL

(53%)COO(19%) 

mip1 
SBELL(80%)SEL

L(17%)COO(3%) 

BDIA(20%)SBEL

L(62%)SELL(14

%)COO(4%) 

Si41Ge41H72 
BDIA(15%)ELL(2

7%)CSR(58%) 

BDIA(15%) 

SBELL(85%) 
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Conclusion 

 We proposed a new format for sparse matrices: the Cocktail Format 

that is a composition of many matrix formats 

 We developed the clSpMV framework that can automatically tune 

the representation and implementation of SpMV on an input matrix 

 On regular matrices, it chooses one out of 9 formats and 

achieves similar performance compared with the best out of the 

9 formats 

 On irregular matrices, it partitions the matrix into many 

submatrices, represents them using the Cocktail Format, and 

achieves significant speedups 

 The general ideas behind the Cocktail Format and the clSpMV 

framework are applicable to all kinds of parallel platforms 

 We can expand the framework by plugging in implementations 

optimized for other platforms 

 Code is available at  

 http://www.eecs.berkeley.edu/~subrian/clSpMV.html 
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Thank You 


