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First: Shameless Advertising

* Kurt Keutzer and | are teaching C5194-15: Engineering
Parallel Software, a new undergraduate course on parallel
computing at UC Berkeley

 We'll teach everything you need to know to write efficient,
correct parallel software for manycore processors

* Plenty of practical experience writing parallel code for
Multi-Core CPUs and GPUs in efficiency-level languages

— In a small video game | have been developing for this purpose

Screenshot showing an NPC object (Pink)
searching a maze for its target. The
navigation graph is shown in red (visited
nodes) and green (unvisited nodes).
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Evolution of GPU Hardware
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* CPU architectures have used Moore’s Law to increase:
— The amount of on-chip cache
— The complexity and clock rate of processors
— Single-threaded performance of legacy workloads

* GPU architectures have used Moore’s Law to:
— Increase the degree of on-chip parallelism and DRAM bandwidth
— Improve the flexibility and performance of Graphics applications
— Accelerate general-purpose Data-Parallel workloads




Cuda Programming Model Goals
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16 way SIMD (LRB)

Provide an inherently scalable
environment for Data-Parallel
programming across a wide range
of processors (Nvidia only makes
GPUs, however)

Make SIMD hardware accessible to
general-purpose programmers.
Otherwise, large fractions of the
available execution hardware are
wasted!



VN

Cuda Goals: Scalability AT
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4 way SIMD (SSE)

16 way SIMD (LRB)
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Hardware architects love SIMD,
since it permits a very space-
and energy-efficient
implementation

However, standard SIMD
instructions on CPUs are
inflexible, and difficult to use,
difficult for a compiler to target

The Cuda Thread abstraction
will provide programmability at
the cost of additional hardware
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Cuda C Language Extensions A~ Tx
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e Code to run on the GPU is written in standard C/C++ syntax
with a minimal set of extensions:

— Provide a MIMD Thread abstraction for SIMD execution

— Enable specification of Cuda Thread Hierarchies

— Synchronization and data-sharing within Thread Blocks

— Library of intrinsic functions for GPU-specific functionality

void KernelFunc(...); // define a kernel callable from host
void DeviceFunc(...); // function callable only on the device

int GlobalVvar; // variable in device memory

int SharedVar; // in per-block shared memory
KernelFunc (...); // 500 blocks, 128 threads each
// Thread indexing and identification
dim3 ;  dim3 ;  dim3 ;

5 // thread block synchronization intrinsic
) ) ) ) ) ,...// <math.h> functionality



Cuda Host Runtime Support M

* Cudais inherently a Heterogeneous programming model

— Sequential code runs in a CPU “Host Thread”, and parallel
“Device” code runs on the many cores of a GPU

— The Host and the Device communicate via a PCI-Express link

— The PCI-E link is slow (high latency, low bandwidth): it is
desirable to minimize the amount of data transferred and the

number of transfers

* Allocation/Deallocation of memory on the GPU:

* Memory transfers to/from the GPU:

is



Hello World: Vector Addition

// Compute sum of length-N vectors: C = A + B
void
vecAdd (float* a, float* b, float* c, int N) {
for (int 1 = 0; i < N; i++)
c[i] = a[i] + b[i];

int main () {
int N = ... ;
float *a, *b, *c;
a = new float[N];
// ... allocate other arrays, fill with data

vecAdd (a, b, c, N);



Hello World: Vector Addition

// Compute sum of length-N vectors: C = A + B
void global
vecAdd (float* a, float* b, float* c, int N) {
int 1 = blockIdx.x * blockDim.x + threadIdx.x;
if (1 < N) c[i] = a[i] + b[i];

int main () {
int N = ... ;
float *a, *b, *c;
cudaMalloc (&a, sizeof(float) * N);
// ... allocate other arrays, fill with data

// Use thread blocks with 256 threads each
vecAdd <<< (N+255)/256, 256 >>> (a, b, c, N);

11



Cuda Software Environment %"'\A\

* nvcc compiler works much like icc or gcc: compiles C++ source
code, generates binary executable

* Nvidia Cuda OS driver manages low-level interaction with device,
provides APl for C++ programs

* Nvidia Cuda SDK has many code samples demonstrating various
Cuda functionalities

e Library support is continuously growing:

— CUBLAS for basic linear algebra

— CUFFT for Fourier Fransforms

— CULapack (3 party proprietary) linear solvers, eigensolvers, ...
e (OS-Portable: Linux, Windows, Mac OS

* Alot of momentum in Industrial adoption of Cuda!

http://developer.nvidia.com/object/cuda 3 1 downloads.html
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Nvidia Cuda GPU Architecture

* [|'ll discuss some details of Nvidia's GPU architecture
simultaneously with discussing the Cuda Programming Model

— The Cuda Programming Model is a set of data-parallel extensions to
C, amenable to implementation on GPUs, CPUs, FPGAs, ...

 Cuda GPUs are a collection of “Streaming Multiprocessors”
— Each SM is analogous to a core of a Multi-Core CPU

 Each SM is a collection of SIMD execution pipelines (Scalar
Processors) that share control logic, register file, and L1 Cache

DRAMI/F
ENT\ 2o (e

HOSTI/F
dN1AYHAa

o
ol
>
=
i

nnnnnnnnnnnnnnn

14

N1\ 2:e]




Cuda Thread Hierarchy

e Parallelism in the Cuda Programming Model is expressed as

a 4-level Hierarchy:

Grid

Block (0, 0) Block (1,0) Block (2, 0)

Block (0, 1) Block (1, 1) “Block (2, 1)

Block (1, 1)

A Stream is a list of Grids that
execute in-order. Fermi GPUs execute
multiple Streams in parallel

A Grid is a set of up to 232 Thread
Blocks executing the same kernel

A Thread Block is a set of up to 1024
[512 pre-Fermi] Cuda Threads

Each Cuda Thread is an independent,
lightweight, scalar execution context

* Groups of 32 threads form Warps
that execute in lockstep SIMD

15



What is a Cuda Thread? M

* Logically, each Cuda Thread is its own very lightweight
independent MIMD execution context

— Has its own control flow and PC, register file, call stack, ...
— Can access any GPU global memory address at any time
— ldentifiable uniquely within a grid by the five integers:

* Very fine granularity: do not expect any single thread to do
a substantial fraction of an expensive computation

— At full occupancy, each Thread has 21 32-bit registers
— ... 1,536 Threads share a 64 KB L1 Cache / mem

— GPU has no operand bypassing networks: functional unit
latencies must be hidden by multithreading or ILP (e.g. from
loop unrolling)



What is a Cuda Warp? M

* The Logical SIMD Execution width of the Cuda processor
* A group of 32 Cuda Threads that execute simultaneously

— Execution hardware is most efficiently utilized when all
threads in a warp execute instructions from the same PC.

— |If threads in a warp diverge (execute different PCs), then
some execution pipelines go unused (predication)

— If threads in a warp access aligned, contiguous blocks of

DRAM, the accesses are coalesced into a single high-
bandwidth access

— Identifiable uniquely by dividing the Thread Index by 32
e Technically, warp size could change in future architectures
— But many existing programs would break



What is a Cuda Thread Block? VAN

e A Thread Block is a virtualized multi-threaded core

— Number of scalar threads, registers, and memory
are configured dynamically at kernel-call time

— Consists of a number (1-1024) of Cuda Threads, who all share
the integer identifiers

e ... executing a data parallel task of moderate granularity

— The cacheable working-set should fit into the 128 KB (64 KB,
pre-Fermi) Register File and the 64 KB (16 KB) L1

— Non-cacheable working set limited by GPU DRAM capacity
— All threads in a block share a (small) instruction cache

* Threads within a block synchronize via barrier-intrinsics and
communicate via fast, on-chip shared memory



What is a Cuda Grid? M

* Aset of Thread Blocks performing related computations

— All threads in a single kernel call have the same entry point and
function arguments, initially differing only in

— Thread blocks in a grid may execute any code they want, e.g.
switch ( ) { ... } incursno extra penalty

* Performance portability/scalability requires many blocks
per grid: 1-8 blocks execute on each SM

 Thread blocks of a kernel call must be parallel sub-tasks
— Program must be valid for any interleaving of block executions

— The flexibility of the memory system technically allows Thread
Blocks to communicate and synchronize in arbitrary ways ...

— E.G. Shared Queue index: OK! Producer-Consumer: RISKY!



What is a Cuda Stream? AT TR

* A sequence of commands (kernel calls, memory transfers)
that execute in order.
* For multiple kernel calls or memory transfers to execute
concurrently, the application must specify multiple streams.
— Concurrent Kernel execution will only happen on Fermi
— On pre-Fermi devices, Memory transfers will execute
concurrently with Kernels

cudaMemcpy (a@, cpu_a@, NO*sizeof(float),
cudaMemcpyHostToDevice, )
vecAdd <<<No@/256, 256, O, >>> (a0, bo, cO, NO);

cudaMemcpy (al, cpu_al, Nl*sizeof(float),
cudaMemcpyHostToDevice, );
vecAdd <<<N1/256, 256, 0O, >>> (al, bl, cl1l, N1);
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Cuda Memory Hierarchy AT TR

 Each Cuda Thread has private access to a
configurable number of registers
Per-thread 8 .g _ .
Local Memory — The 128 KB (6_4 KB) SM register file is partitioned
among all resident threads

— The Cuda program can trade degree of thread
block concurrency for amount of per-thread state

— Registers, stack spill into (cached, on Fermi)
“local” DRAM if necessary
 Each Thread Block has private access to a
par-block configurable amount of scratchpad memory
g Shared — The Fermi SM’s 64 KB SRAM can be

Memory configured as 16 KB L1 cache + 48 KB
scratchpad, or vice-versa®

— Pre-Fermi SM’s have 16 KB scratchpad only

— The available scratchpad space is partitioned
among resident thread blocks, providing
another concurrency-state tradeoff

* selected via cudaFuncSetCacheConfig()




Cuda Memory Hierarchy M

 Thread blocks in all Grids share access to a large pool of
“Global” memory, separate from the Host CPU’s memory.

— Global memory holds the application’s persistent state, while
the thread-local and block-local memories are temporary

— Global memory is much more expensive than on-chip
memories: O(100)x latency, O(1/50)x (aggregate) bandwidth

* On Fermi, Global Memory is cached in a 768KB shared L2

Kernel o

<+>

Per Device Global
Memory

Sequential
Kernels

<+->




Vi

Cuda Memory Hierarchy AT TR

 There are other read-only components of the Memory
Hierarchy that exist due to the Graphics heritage of Cuda

* The 64 KB Cuda Constant Memory resides in the same

DRAM as global memory, but is accessed via special read-
only 8 KB per-SM caches

* The Cuda Texture Memory also resides in DRAM and is
accessed via small per-SM read-only caches, but also
includes interpolation hardware

— This hardware is crucial for graphics performance, but only
occasionally is useful for general-purpose workloads

 The behaviors of these caches are highly optimized for their
roles in graphics workloads.



Cuda Memory Hierarchy

 Each Cuda device in the system has its own Global memory,
separate from the Host CPU memory

— Allocated via cudaMalloc()/cudaFree() and friends

 Host <> Device memory transfers are via cudaMemcpy()
over PCI-E, and are extremely expensive

— microsecond latency, ~“GB/s bandwidth

 Multiple Devices managed via multiple CPU threads

cudaMemcpy ()
€

cudaMemcpy ()

25
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Thread-Block Synchronization

* Intra-block barrier instruction for synchronizing
accesses to and global memory
— To guarantee correctness, must before reading
values written by other threads
— All threads in a block must execute the same , or

the GPU will hang (not just the same number of barriers !)
e Additional intrinsics worth mentioning here:

extern float T[];

__device_  void

transpose (float* a, int 1da){
int i = threadIdx.x, j = threadIdx.y;
T[i + lda*j] = a[i + lda*j];

al[i + lda*j] = T[j + lda*i];
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Using per-block shared memory

* The per-block shared memory / L1 cache is a crucial
resource: without it, the performance of most Cuda
programs would be hopelessly DRAM-bound

* Block-shared variables can be declared statically:

int begin, end;

e Software-managed scratchpad is allocated statically:

int scratch[128];

|
|
i
X

scratch|[ ] = ...
e ...ordynamically:
extern int scratch[];
kernel call <<< grid dim, block dim, > (... );
* Most intra-block communication is via shared scratchpad:
scratch| ] = ...;

int left = scra%ch[ - 1];
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Using per-block shared memory

e Each SM has 64 KB of private memory, divided 16KB/48KB
(or 48KB/16KB) into software-managed scratchpad and
hardware-managed, non-coherent cache

— Pre-Fermi, the SM memory is only 16 KB, and is usable only
as software-managed scratchpad
 Unless data will be shared between Threads in a block, it
should reside in registers

— On Fermi, the 128 KB Register file is twice as large, and
accessible at higher bandwidth and lower latency

— Pre-Fermi, register file is 64 KB and equally fast as scratchpad
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* Shared memory is banked: it consists of 32 (16, pre-Fermi)
independently addressable 4-byte wide memories

Shared Memory Bank Conflicts

— Addresses interleave: float *p points to a float in bank k, p+1
points to a float in bank (k+1) mod 32

* Each bank can satisfy a single 4-byte access per cycle.

— A bank conflict occurs when two threads (in the same warp)
try to access the same bank in a given cycle.

— The GPU hardware will execute the two accesses serially, and
the warp's instruction will take an extra cycle to execute.

* Bank conflicts are a second-order performance effect: even
serialized accesses to on-chip shared memory is faster than
accesses to off-chip DRAM



Shared Memory Bank Conflict
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Shared Memory Bank Conflict

N/ —— 2 * Three more cases of conflict-
- - : : free access

N :: s — Figure G-3 from Cuda C
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Atomic Memory Operations M

* Cuda provides a set of instructions which execute
atomically with respect to each other

— Allow non-read-only access to variables shared between
threads in shared or global memory

— Substantially more expensive than standard load/stores
— Wth voluntary consistency, can implement e.g. spin locks!
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Voluntary Memory Consistency

e By default, you cannot assume memory accesses are occur in the
same order specified by the program

— Although a thread's own accesses appear to that thread to occur in
program order

* To enforce ordering, use memory fence instructions

: make all previous memory accesses
visible to all other threads within the thread block

: make previous global memory accesses visible
to all other threads on the device

* Frequently must also use the type qualifier

— Has same behavior as CPU C/C++: the compiler is forbidden from
register-promoting values in volatile memory

— Ensures that pointer dereferences produce load/store instructions
— Declared as float *p; *p must produce a memory ref.
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Mapping Cuda to Nvidia GPUs

* Cudais designed to be "functionally forgiving": Easy to get
correct programs running. The more time you invest in
optimizing your code, the more performance you will get

e Speedup is possible with a simple "Homogeneous SPMD"
approach to writing Cuda programs

* Achieving performance requires an understanding of the
hardware implementation of Cuda
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Scalar Thread < SIMD Lane
Warp < SIMD execution granularity
Thread Block <> Streaming Multiprocessor
Grid <~ Multiple SMs

Set of Streams < Whole GPU
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e Scalar Thread <> SIMD Lane

 Warp < Logical SIMD width

 Thread Block <> Streaming Multiprocessor
* Grid <» Multiple SMs

* Set of Streams < Whole GPU
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* Scalar Thread < SIMD Lane—
 Warp < Logical SIMD width
 Thread Block <> Stjeaming Multiprocessor
* Grid <» Multiple SMls

e Set of Streams < ole GPU
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Scalar Thread < SIMD Lane

Warp < Logical SIMD width

Thread Block <> Streaming Multiprocessor
Grid <~ Multiple SMs

Set of Streams < Whole GPU

n
¢

n
e

DRAMIF
JNY¥A

n
-

LDIST
LD/ST
LDIST
LD/ST
LDIST
LD/ST
LDIST
LD/ST
LDIST
LDIST
LDIST
LDIST
LDIST
LDIST
LDIST
LD/ST
O 2558

ET1T\ - e

P e e—————
L2

PolyMorph Engine

rex Fetch || Tessellator || Viewpor
[atribute setup| | stream output |

=
-
(/7]
(o]
I

3

—— F———+———————— o

=

m
=
=
<
[+ 4
(a]

dNNVHa

| & [ ¥ [ ¥ | ¥ [ ¥ | 4§ [ ¥4 | 39



e Scalar Thread <> SIMD Lane

 Warp < SIMD execution granularity

* Thread Block <> Streaming Multiprocessor
* Grid <» Multiple SMs

* Set of Streams < Whole GPU
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e Scalar Thread <> SIMD Lane

 Warp < Logical SIMD width

 Thread Block <> Streaming Multiprocessor
Grid < Multiple SMs

* Set of Streams < Whole GPU
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e Scalar Thread <> SIMD Lane
 Warp < Logical SIMD width
 Thread Block <> Streaming Multiprocessor
* Grid <» Multiple SMs
Set of Streams < Whole GPU

DRAMIF
JNY¥A

dNNvya

HOSTI/F

B o
L2

N A (a]

PolyMorph Engine

| vertex Fetch | [ Tessellator | [ Viewport
[atribute setup| | stream output |

E________

dNINVHa

(& 1 ¥+ 1 ¥ [ ¥ | ¥ [ ¥ | ¥ [ 42




Mapping Cuda to Nvidia GPUs /\/\

* Each level of the GPU's processor hierarchy is associated
with a memory resource
— Scalar Threads / Warps: Subset of register file
— Thread Block / SM: shared memory (1 Cache)
— Multiple SMs / Whole GPU: Global DRAM
* Massive multi-threading is used to hide latencies: DRAM
access, functional unit execution, PCI-E transfers
* A highly performing Cuda program must carefully trade
resource usage for concurrency
— More registers per thread <> fewer threads
— More shared memory ber block <~ fewer blocks



Memory, Memory, Memory

* A many core processor = A device for turning a compute
bound problem into a memory bound problem
— Memory concerns dominate performance tuning!
e Memory is SIMD too! The memory systems of CPUs and
GPUs alike require memory to be accessed in aligned blocks
— Sparse accesses waste bandwidth!
[l Ol " | - | = | 4|5 | 6| 7” 2 words used, 8 words loaded:
' Y, effective bandwidth
I

|
cache line

— Unaligned accesses waste bandwidth!

4 words used, 8 words loaded:
TEAEAEIR] /5 effective bandwidth
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Cuda Summary AT TR

 The Cuda Programming Model provides a general approach
to organizing Data Parallel programs for heterogeneous,
hierarchical platforms

— Currently, the only production-quality implementation is
Cuda for C/C++ on Nvidia's GPUs

— But Cuda notions of "Scalar Threads", "Warps", "Blocks", and
"Grids" can be mapped to other platforms as well!

 Asimple "Homogenous SPMD" approach to Cuda

programming is useful, especially in early stages of
implementation and debugging

— But achieving high efficiency requires careful consideration of

the mapping from computations to processors, data to
memories, and data access patterns



