
Hello World: Vector Addi/on 
// Compute sum of length‐N vectors: C = A + B 
void 
vecAdd (float* a, float* b, float* c, int N) { 
    for (int i = 0; i < N; i++) 
        c[i] = a[i] + b[i]; 
} 

int main () { 
    int N = ... ; 
    float *a, *b, *c; 
    a = new float[N]; 
  // ... allocate other arrays, fill with data 

    vecAdd (a, b, c, N); 
} 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Hello World: Vector Addi/on 
// Compute sum of length‐N vectors: C = A + B 
void __global__ 
vecAdd (float* a, float* b, float* c, int N) { 
    int i = blockIdx.x * blockDim.x + threadIdx.x; 
    if (i < N) c[i] = a[i] + b[i]; 
} 

int main () { 
    int N = ... ; 
    float *a, *b, *c; 
    cudaMalloc (&a,  sizeof(float) * N); 
  // ... allocate other arrays, fill with data 

  // Use thread blocks with 256 threads each 
    vecAdd <<< (N+255)/256, 256 >>> (a, b, c, N); 
} 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Cuda So7ware Environment 
•  nvcc compiler works much like icc or gcc: compiles C++ source 

code, generates binary executable 
•  Nvidia Cuda OS driver manages low‐level interac/on with device, 

provides API for C++ programs 
•  Nvidia Cuda SDK has many code samples demonstra/ng various 

Cuda func/onali/es 
•  Library support is con/nuously growing: 

–  CUBLAS for basic linear algebra 
–  CUFFT for Fourier Fransforms 
–  CULapack (3rd party proprietary) linear solvers, eigensolvers, ... 

•  OS‐Portable: Linux, Windows, Mac OS 
•  A lot of momentum in Industrial adop/on of Cuda! 

hYp://developer.nvidia.com/object/cuda_3_1_downloads.html 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Agenda 
•  A Shameless self‐promo/on 

•  Introduc/on to GPGPUs and Cuda Programming Model 

•  The Cuda Thread Hierarchy 
•  The Cuda Memory Hierarchy 

•  Mapping Cuda to Nvidia GPUs 

•  As much of the OpenCL informa/on as I can get through 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Nvidia Cuda GPU Architecture 
•  I'll discuss some details of Nvidia's GPU architecture 

simultaneously with discussing the Cuda Programming Model 
–  The Cuda Programming Model is a set of data‐parallel extensions to 

C, amenable to implementa/on on GPUs, CPUs, FPGAs, ... 

•  Cuda GPUs are a collec/on of “Streaming Mul/processors” 
–  Each SM is analogous to a core of a Mul/‐Core CPU 

•  Each SM is a collec/on of SIMD execu/on pipelines (Scalar 
Processors) that share control logic, register file, and L1 Cache 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Cuda Thread Hierarchy 
•  Parallelism in the Cuda Programming Model is expressed as 

a 4‐level Hierarchy: 
•  A Stream is a list of Grids that 

execute in‐order. Fermi GPUs execute 
mul/ple Streams in parallel 

•  A Grid is a set of up to 232 Thread 
Blocks execu/ng the same kernel 

•  A Thread Block is a set of up to 1024 
[512 pre‐Fermi] Cuda Threads 

•  Each Cuda Thread is an independent, 
lightweight, scalar execu/on context 
•  Groups of 32 threads form Warps 

that execute in lockstep SIMD 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What is a Cuda Thread? 
•  Logically, each Cuda Thread is its own very lightweight 

independent MIMD execu5on context 
–  Has its own control flow and PC, register file, call stack, ... 
–  Can access any GPU global memory address at any /me 

–  Iden/fiable uniquely within a grid by the five integers: 
threadIdx.{x,y,z}, blockIdx.{x,y} 

•  Very fine granularity: do not expect any single thread to do 
a substan/al frac/on of an expensive computa/on 
–  At full occupancy, each Thread has 21 32‐bit registers 
–  ... 1,536 Threads share a 64 KB L1 Cache / __shared__ mem 

–  GPU has no operand bypassing networks: func/onal unit 
latencies must be hidden by mul/threading or ILP (e.g. from 
loop unrolling) 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Cuda Memory Hierarchy 

… 

… 

Per Device Global 
Memory 

•  Thread blocks in all Grids share access to a large pool of 
“Global” memory, separate from the Host CPU’s memory. 
–  Global memory holds the applica/on’s persistent state, while 
the thread‐local and block‐local memories are temporary 

–  Global memory is much more expensive than on‐chip 
memories: O(100)x latency, O(1/50)x (aggregate) bandwidth 

•  On Fermi, Global Memory is cached in a 768KB shared L2 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Cuda Memory Hierarchy 
•  There are other read‐only components of the Memory 

Hierarchy that exist due to the Graphics heritage of Cuda 

•  The 64 KB Cuda Constant Memory  resides in the same 
DRAM as global memory, but is accessed via special read‐
only 8 KB per‐SM caches 

•  The Cuda Texture Memory also resides in DRAM and is 
accessed via small per‐SM read‐only caches, but also 
includes interpola/on hardware 
–  This hardware is crucial for graphics performance, but only 
occasionally is useful for general‐purpose workloads 

•  The behaviors of these caches are highly op/mized for their 
roles in graphics workloads. 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Cuda Memory Hierarchy 

Host Memory 

Device 0 
Global Memory 

Device 1 
Global Memory 

cudaMemcpy() 

•  Each Cuda device in the system has its own Global memory, 
separate from the Host CPU memory 
–  Allocated via cudaMalloc()/cudaFree() and friends 

•  Host  Device memory transfers are via cudaMemcpy() 
over PCI‐E, and are extremely expensive 
–  microsecond latency, ~GB/s bandwidth 

•  Mul/ple Devices managed via mul/ple CPU threads 

10 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Thread‐Block Synchroniza/on 
•  Intra‐block barrier instruc/on __syncthreads() for synchronizing 

accesses to __shared__ and global memory 
–  To guarantee correctness, must __syncthreads() before reading 

values wriYen by other threads 
–  All threads in a block must execute the same __syncthreads(), or 

the GPU will hang (not just the same number of barriers !) 
•  Addi/onal intrinsics worth men/oning here: 

–   int __syncthreads_count(int), int __syncthreads_and(int),  
int __syncthreads_or(int) 

extern __shared__ float T[]; 
__device__ void 
transpose (float* a, int lda){ 
    int i = threadIdx.x, j = threadIdx.y; 
    T[i + lda*j] = a[i + lda*j]; 
    __syncthreads(); 
    a[i + lda*j] = T[j + lda*i]; 
} 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Using per‐block shared memory 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Using per‐block shared memory 
•  Each SM has 64 KB of private memory, divided 16KB/48KB 

(or 48KB/16KB) into so7ware‐managed scratchpad and 
hardware‐managed, non‐coherent cache 
–  Pre‐Fermi, the SM memory is only 16 KB, and is usable only 
as so7ware‐managed scratchpad 

•  Unless data will be shared between Threads in a block, it 
should reside in registers 
–  On Fermi, the 128 KB Register file is twice as large, and 
accessible at higher bandwidth and lower latency  

–  Pre‐Fermi, register file is 64 KB and equally fast as scratchpad 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Shared Memory Bank Conflicts 
•  Shared memory is banked: it consists of 32 (16, pre‐Fermi) 

independently addressable 4‐byte wide memories 
–  Addresses interleave: float *p points to a float in bank k, p+1 
points to a float in bank (k+1) mod 32 

•  Each bank can sa/sfy a single 4‐byte access per cycle. 
–   A bank conflict occurs when two threads (in the same warp) 
try to access the same bank in a given cycle.  

–  The GPU hardware will execute the two accesses serially, and 
the warp's instruc/on will take an extra cycle to execute. 

•  Bank conflicts are a second‐order performance effect: even 
serialized accesses to on‐chip shared memory is faster than 
accesses to off‐chip DRAM 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Shared Memory Bank Conflicts 

•  Figure G‐2 from Cuda C 
Programming Gude 3.1 

•  Unit‐Stride access is conflict‐free 
•  Stride‐2 access: thread n conflicts 

with thread 16+n 

•  Stride‐3 access is conflict‐free 

15 



Shared Memory Bank Conflicts 

•  Three more cases of conflict‐
free access 
–  Figure G‐3 from Cuda C 
Programming Gude 3.1 

•  Permua/ons within a 32‐float 
block are OK 

•  Mul/ple threads reading the 
same memory address 

•  All threads reading the same 
memory address is a 
broadcast 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Atomic Memory Opera/ons 
•  Cuda provides a set of instruc/ons which execute 

atomically with respect to each other 
–  Allow non‐read‐only access to variables shared between 
threads in shared or global memory 

–  Substan/ally more expensive than standard load/stores 

–  Wth voluntary consistency, can implement e.g. spin locks! 

int atomicAdd (int*,int), float atomicAdd (float*, float), ... 
... 
int atomicMin (int*,int), 
... 
int atomicExch (int*,int), float atomicExch (float*,float), ... 
int atomicCAS (int*, int compare, int val), ... 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Voluntary Memory Consistency 
•  By default, you cannot assume memory accesses are occur in the 

same order specified by the program 
–  Although a thread's own accesses appear to that thread to occur in 

program order 

•  To enforce ordering, use memory fence instruc/ons 
–  __threadfence_block(): make all previous memory accesses 

visible to all other threads within the thread block 
–  __threadfence(): make previous global memory accesses visible 

to all other threads on the device 

•  Frequently must also use the volatile type qualifier 
–  Has same behavior as CPU C/C++: the compiler is forbidden from 

register‐promo/ng values in vola/le memory 
–  Ensures that pointer dereferences produce load/store instruc/ons 
–  Declared as volatile float *p; *p must produce a memory ref. 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OpenCL: 20 

Agenda 
•  Ugly programming models and why they rule 
•  The origin of OpenCL 
•  A high level view of OpenCL 
•  OpenCL and the CPU 
•  An OpenCL “deep dive” 



Heterogeneous computing 
•  A modern platform has: 

–  Multi-core CPU(s) 
–  A GPU 
–  DSP processors 
–  … other? 

•  The goal should NOT be to “off-load" the CPU. We need 
to make the best use of all the available resources from 
within a single program: 

–  One program that runs well (i.e. reasonably close to “hand-tuned” 
performance) on a heterogeneous mixture of processors. 

OpenCL: 21 

GMCH GPU 

ICH 

CPU CPU 

DRAM 

GMCH = graphics memory control hub,   ICH = Input/output control hub 



Heterogeneous many core processors  

OpenCL: 22 

Intel Dual Core CPU


3rd party names are the property of their owners.


The mass market hardware landscape has never been so chaotic … and its only 
going to get worse. 



The many-core challenge 
•  We have arrived at many-core solutions not 

because of the success of our parallel software 
but because of our failure to keep increasing 
CPU frequency. 

•  Result: a fundamental and dangerous mismatch 
–  Parallel hardware is ubiquitous.  
–  Parallel software is rare  

OpenCL: 23 

Our challenge … make parallel software as 
routine as our parallel hardware. 
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Patterns and Frameworks 
•  In the long run, we will provide high level 

frameworks/scripting-languages that will meet 
the needs of the domain-expert, application 
programmers (we hope). 

–  Design patterns will guide us to the right framework 
designs. 

•  But even in a frameworks world, you need to 
support the framework programmers  

–  (also known as efficiency programmers, technology 
programmers, socially mal-adjusted performance hackers, etc)  

•  How do we support these low-level “performance 
obsessed” programmers? 
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Solution: Find A Good parallel programming model, right? 
ABCPL 
ACE  
ACT++  
Active messages  
Adl 
Adsmith 
ADDAP 
AFAPI 
ALWAN 
AM 
AMDC 
AppLeS 
Amoeba  
ARTS 
Athapascan-0b 
Aurora 
Automap 
bb_threads  
Blaze 
BSP 
BlockComm  
C*.  
"C* in C  
C**  
CarlOS 
Cashmere 
C4 
CC++  
Chu 
Charlotte 
Charm 
Charm++ 
Cid 
Cilk 
CM-Fortran  
Converse 
Code 
COOL 

CORRELATE  
CPS  
CRL 
CSP 
Cthreads  
CUMULVS 
DAGGER 
DAPPLE  
Data Parallel C  
DC++  
DCE++  
DDD 
DICE. 
DIPC  
DOLIB 
DOME  
DOSMOS. 
DRL 
DSM-Threads 
Ease . 
ECO 
Eiffel  
Eilean  
Emerald  
EPL  
Excalibur 
Express 
Falcon 
Filaments 
FM 
FLASH 
The FORCE  
Fork 
Fortran-M 
FX 
GA  
GAMMA  
Glenda 

GLU 
GUARD 
HAsL. 
Haskell  
HPC++ 
JAVAR. 
HORUS 
HPC 
IMPACT 
ISIS. 
JAVAR 
JADE  
Java RMI 
javaPG 
JavaSpace 
JIDL 
Joyce 
Khoros 
Karma  
KOAN/Fortran-S 
LAM 
Lilac  
Linda 
JADA  
WWWinda 
ISETL-Linda  
ParLin  
Eilean  
P4-Linda 
POSYBL 
Objective-Linda 
LiPS 
Locust 
Lparx 
Lucid 
Maisie  
Manifold 

Mentat 
Legion 
Meta Chaos  
Midway 
Millipede 
CparPar 
Mirage 
MpC 
MOSIX 
Modula-P 
Modula-2* 
Multipol 
MPI 
MPC++ 
Munin 
Nano-Threads 
NESL 
NetClasses++  
Nexus 
Nimrod 
NOW 
Objective Linda 
Occam 
Omega 
OpenMP 
Orca 
OOF90 
P++ 
P3L 
Pablo 
PADE 
PADRE  
Panda  
Papers  
AFAPI. 
 Para++ 
Paradigm 

Parafrase2  
Paralation  
Parallel-C++  
Parallaxis 
ParC  
ParLib++ 
ParLin 
Parmacs 
Parti 
pC 
PCN 
PCP:  
PH 
PEACE 
PCU 
PET 
PENNY 
Phosphorus  
POET. 
Polaris  
POOMA 
POOL-T 
PRESTO 
P-RIO  
Prospero 
Proteus  
QPC++  
PVM 
PSI 
PSDM 
Quake 
Quark 
Quick Threads 
Sage++ 
SCANDAL 
 SAM 

pC++  
SCHEDULE 
SciTL  
SDDA. 
SHMEM  
SIMPLE 
Sina  
SISAL. 
distributed smalltalk  
SMI. 
SONiC 
Split-C. 
SR 
Sthreads  
Strand. 
SUIF. 
Synergy 
Telegrphos 
SuperPascal  
TCGMSG. 
Threads.h++. 
TreadMarks 
TRAPPER 
uC++  
UNITY  
UC  
V  
ViC*  
Visifold V-NUS  
VPE 
Win32 threads  
WinPar  
XENOOPS   
XPC 
Zounds 
ZPL 

Third party names are the property of their owners. 

Models from the golden age of parallel programming    



Tim Mattson OpenCL: 26 8/19/10 

The only thing sillier than creating too many models 
is using too many 

ABCPL 
ACE  
ACT++  
Active messages  
Adl 
Adsmith 
ADDAP 
AFAPI 
ALWAN 
AM 
AMDC 
AppLeS 
Amoeba  
ARTS 
Athapascan-0b 
Aurora 
Automap 
bb_threads  
Blaze 
BSP 
BlockComm  
C*.  
"C* in C  
C**  
CarlOS 
Cashmere 
C4 
CC++  
Chu 
Charlotte 
Charm 
Charm++ 
Cid 
Cilk 
CM-Fortran  
Converse 
Code 
COOL 

CORRELATE  
CPS  
CRL 
CSP 
Cthreads  
CUMULVS 
DAGGER 
DAPPLE  
Data Parallel C  
DC++  
DCE++  
DDD 
DICE. 
DIPC  
DOLIB 
DOME  
DOSMOS. 
DRL 
DSM-Threads 
Ease . 
ECO 
Eiffel  
Eilean  
Emerald  
EPL  
Excalibur 
Express 
Falcon 
Filaments 
FM 
FLASH 
The FORCE  
Fork 
Fortran-M 
FX 
GA  
GAMMA  
Glenda 

GLU 
GUARD 
HAsL. 
Haskell  
HPC++ 
JAVAR. 
HORUS 
HPC 
IMPACT 
ISIS. 
JAVAR 
JADE  
Java RMI 
javaPG 
JavaSpace 
JIDL 
Joyce 
Khoros 
Karma  
KOAN/Fortran-S 
LAM 
Lilac  
Linda 
JADA  
WWWinda 
ISETL-Linda  
ParLin  
Eilean  
P4-Linda 
POSYBL 
Objective-Linda 
LiPS 
Locust 
Lparx 
Lucid 
Maisie  
Manifold 

Mentat 
Legion 
Meta Chaos  
Midway 
Millipede 
CparPar 
Mirage 
MpC 
MOSIX 
Modula-P 
Modula-2* 
Multipol 
MPI 
MPC++ 
Munin 
Nano-Threads 
NESL 
NetClasses++  
Nexus 
Nimrod 
NOW 
Objective Linda 
Occam 
Omega 
OpenMP 
Orca 
OOF90 
P++ 
P3L 
Pablo 
PADE 
PADRE  
Panda  
Papers  
AFAPI. 
 Para++ 
Paradigm 

Parafrase2  
Paralation  
Parallel-C++  
Parallaxis 
ParC  
ParLib++ 
ParLin 
Parmacs 
Parti 
pC 
PCN 
PCP:  
PH 
PEACE 
PCU 
PET 
PENNY 
Phosphorus  
POET. 
Polaris  
POOMA 
POOL-T 
PRESTO 
P-RIO  
Prospero 
Proteus  
QPC++  
PVM 
PSI 
PSDM 
Quake 
Quark 
Quick Threads 
Sage++ 
SCANDAL 
 SAM 

pC++  
SCHEDULE 
SciTL  
SDDA. 
SHMEM  
SIMPLE 
Sina  
SISAL. 
distributed smalltalk  
SMI. 
SONiC 
Split-C. 
SR 
Sthreads  
Strand. 
SUIF. 
Synergy 
Telegrphos 
SuperPascal  
TCGMSG. 
Threads.h++. 
TreadMarks 
TRAPPER 
uC++  
UNITY  
UC  
V  
ViC*  
Visifold V-NUS  
VPE 
Win32 threads  
WinPar  
XENOOPS   
XPC 
Zounds 
ZPL 

Programming models I’ve worked with. 
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There is nothing new under the sun 
•  Message passing models: 

–  MPI  PVM 
•  Data Parallel programming models 

–  C*  HPF  NESL  CMFortran 
•  Virtual Shared Memory models 

–  Linda  GA 
•  Functional Languages 

–  Haskell  SISAL 
•  Formal compositional models 

–  CC++  PCN 
•  Shared address space … threads 

–  OpenMP   Cilk 
•  Parallel object Oriented programming 

–  Mentat  CHARM++  POOMA  TBB 

Parallel programming …  
“been there, done that”  
Will we be wise enough 
to learn from the past? 
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Lesson 1: computer scientists are 
easily seduced by beauty 
•  A beautiful programming model: 

–  Safe: its hard to do bad things 
–  Expressive: focus on the intent of the algorithm. 
–  Abstract: Hides hardware details 
–  Novel: New ideas and fresh perspectives  

To the computer scientist … There is no problem that 
can’t be solved by adding another layer of 
abstraction. 
The history of parallel programming can be viewed as 
computer scientists chasing after an elusive ideal of 
beauty 
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Lesson 2: Software vendors (not 
academics and not hardware vendors) 
choose the winning programming models 

•  What software developers need: 
–  Portability: recompile to run on 

every platform the market 
demands 

– Stability: program life times 
measured in decades. 

–  Predictability: the ability to 
build code that adapts to 
hardware details for 
predictable performance. 

Industry standards with 
minimal HW constraints 

Established prog. Envs. 
from long term, trusted 
sources 

HW details exposed  so SW 
can adapt 
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Ugly programming models win! 
•  Software developers only weakly care 

about beauty in a programming model … 
pragmatism wins. 

•  History supports ugly programming models 
… with all the elegant abstractions for 
parallelism that have been created, what is 
actually used: 
– MPI 
– Explicit thread libraries 
– Compiler directives 

OpenCL is truly ugly … and to support our framework developers facing 
heterogenous many core platforms, its exactly what we need! 



OpenCL: 31 

Math Functions 
gentype acos (gentype) 
gentype acosh (gentype) 
gentype acospi (gentype x) 
gentype asin (gentype) 
gentype asinh (gentype) 
gentype asinpi (gentype x) 
gentype atan (gentype y_over_x) 
gentype atan2 (gentype y, gentype x) 
gentype atanh (gentype) 
gentype atanpi (gentype x) 
gentype atan2pi (gentype y, gentype x) 
gentype cbrt (gentype) 
gentype ceil (gentype) 
gentype copysign (gentype x, gentype y) 
gentype cos (gentype) 
gentype cosh (gentype) 
gentype cospi (gentype x) 
gentype erfc (gentype) 
gentype erf (gentype) 
gentype exp (gentype x) 
gentype exp2 (gentype) 
gentype exp10 (gentype) 
gentype expm1 (gentype x) 
gentype fabs (gentype) 
gentype fdim (gentype x, gentype y) 
gentype floor (gentype) 
gentype fma (gentype a, gentype b, gentype c) 
gentype fmax (gentype x, gentype y) 
gentype fmax (gentype x, float y) 
gentype fmin (gentype x, gentype y) 
gentype fmin (gentype x, float y) 
gentype fmod (gentype x, gentype y) 
gentype fract (gentype x, gentype *iptr) 
gentype frexp (gentype x, intn *exp) 
gentype hypot (gentype x, gentype y) 
intn ilogb (gentype x) 
gentype ldexp (gentype x, intn n) 
gentype ldexp (gentype x, int n) 
gentype lgamma (gentype x) 
gentype lgamma_r (gentype x, intn *signp) 
gentype log (gentype) 
gentype log2 (gentype) 
gentype log10 (gentype) 
gentype log1p (gentype x) 
gentype logb (gentype x) 
gentype mad (gentype a, gentype b, gentype c) 
gentype modf (gentype x, gentype *iptr) 
gentype nan (uintn nancode) 
gentype nextafter (gentype x, gentype y) 

gentype pow (gentype x, gentype y) 
gentype pown (gentype x, intn y) 
gentype powr (gentype x, gentype y) 
gentype remainder (gentype x, gentype y) 
gentype remquo (gentype x, gentype y, intn *quo) 
gentype rint (gentype) 
gentype rootn (gentype x, intn y) 
gentype round (gentype x) 
gentype rsqrt (gentype) 
gentype sin (gentype) 
gentype sincos (gentype x, gentype *cosval) 
gentype sinh (gentype) 
gentype sinpi (gentype x) 
gentype sqrt (gentype) 
gentype tan (gentype) 
gentype tanh (gentype) 
gentype tanpi (gentype x) 
gentype tgamma (gentype) 
gentype trunc (gentype) 
Integer Ops 
ugentype abs (gentype x) 
ugentype abs_diff (gentype x, gentype y) 
gentype add_sat (gentype x, gentype y) 
gentype hadd (gentype x, gentype y) 
gentype rhadd (gentype x, gentype y) 
gentype clz (gentype x) 
gentype mad_hi (gentype a, gentype b, gentype c) 
gentype mad_sat (gentype a, gentype b, gentype c) 
gentype max (gentype x, gentype y) 
gentype min (gentype x, gentype y) 
gentype mul_hi (gentype x, gentype y) 
gentype rotate (gentype v, gentype i) 
gentype sub_sat (gentype x, gentype y) 
shortn upsample (intn hi, uintn lo) 
ushortn upsample (uintn hi, uintn lo) 
intn upsample (intn hi, uintn lo) 
uintn upsample (uintn hi, uintn lo) 
longn upsample (intn hi, uintn lo) 
ulongnn upsample (uintn hi, uintn lo) 
gentype mad24 (gentype x, gentype y, gentype z) 
gentype mul24 (gentype x, gentype y) 
Common Functions 
gentype clamp (gentype x, gentype minval, gentype maxval) 
gentype clamp (gentype x, float minval, float maxval) 
gentype degrees (gentype radians) 
gentype max (gentype x, gentype y) 
gentype max (gentype x, float y) 
gentype min (gentype x, gentype y) 
gentype min (gentype x, float y) 

gentype mix (gentype x, gentype y, gentype a) 
gentype mix (gentype x, gentype y, float a) 
gentype radians (gentype degrees) 
gentype sign (gentype x) 
Geometric Functions 
float4 cross (float4 p0, float4 p1) 
float dot (gentype p0, gentype p1) 
float distance (gentype p0, gentype p1) 
float length (gentype p) 
float fast_distance (gentype p0, gentype p1) 
float fast_length (gentype p) 
gentype fast_normalize (gentype p) 
Relational  Ops 
int isequal (float x, float y) 
intn isequal (floatn x, floatn y) 
int isnotequal (float x, float y) 
intn isnotequal (floatn x, floatn y) 
int isgreater (float x, float y) 
intn isgreater (floatn x, floatn y) 
int isgreaterequal (float x, float y) 
intn isgreaterequal (floatn x, floatn y) 
int isless (float x, float y) 
intn isless (floatn x, floatn y) 
int islessequal (float x, float y) 
intn islessequal (floatn x, floatn y) 
int islessgreater (float x, float y) 
intn islessgreater (floatn x, floatn y) 
int isfinite (float) 
intn isfinite (floatn) 
int isnan (float) 
intn isnan (floatn) 
int isnormal (float) 
intn isnormal (floatn) 
int isordered (float x, float y) 
intn isordered (floatn x, floatn y) 
int isunordered (float x, float y) 
intn isunordered (floatn x, floatn y) 
int signbit (float) 
intn signbit (floatn) 
int any (igentype x) 
int all (igentype x) 
gentype bitselect (gentype a, gentype b, gentype c) 
gentype select (gentype a, gentype b,igentype c) 
gentype select (gentype a, gentype b,ugentype c) 
Vector Loads/Store Functions 
gentypen vloadn (size_t offset, const global gentype *p) 
gentypen vloadn (size_t offset, const __local gentype *p) 
gentypen vloadn (size_t offset, const __constant gentype *p) 
gentypen vloadn (size_t offset, const __private gentype *p) 

void vstoren (gentypen data, size_t offset, global gentype *p) 
void vstoren (gentypen data, size_t offset, __local gentype *p) 
void vstoren (gentypen data, size_t offset, __private gentype *p) 
void vstore_half (float data, size_t offset, global half *p) 
void vstore_half_rte (float data, size_t offset, global half *p) 
void vstore_half_rtz (float data, size_t offset, global half *p) 
void vstore_half_rtp (float data, size_t offset, global half *p) 
void vstore_half_rtn (float data, size_t offset, global half *p) 
void vstore_half (float data, size_t offset, __local half *p) 
void vstore_half_rte (float data, size_t offset, __local half *p) 
void vstore_half_rtz (float data, size_t offset, __local half *p) 
void vstore_half_rtp (float data, size_t offset, __local half *p) 
void vstore_half_rtn (float data, size_t offset, __local half *p) 
void vstore_half (float data, size_t offset, __private half *p) 
void vstore_half_rte (float data, size_t offset, __private half *p) 
void vstore_half_rtz (float data, size_t offset, __private half *p) 
void vstore_half_rtp (float data, size_t offset, __private half *p) 
void vstore_half_rtn (float data, size_t offset, global half *p) 
void vstore_halfn (floatn data, size_t offset, global half *p) 
void vstore_halfn_rte (floatn data, size_t offset, global half *p) 
void vstore_halfn_rtz (floatn data, size_t offset, global half *p) 
void vstore_halfn_rtp (floatn data, size_t offset, global half *p) 
void vstore_halfn_rtn (floatn data, size_t offset, global half *p) 
void vstore_halfn (floatn data, size_t offset, __local half *p) 
void vstore_halfn_rte (floatn data, size_t offset, __local half *p) 
void vstore_halfn_rtz (floatn data, size_t offset, __local half *p) 
void vstore_halfn_rtp (floatn data, size_t offset, __local half *p) 
void vstore_halfn_rtn (floatn data, size_t offset, __local half *p) 
void vstore_halfn (floatn data, size_t offset, __private half *p) 
void vstore_halfn_rte (floatn data, size_t offset, __private half *p) 
void vstore_halfn_rtz (floatn data, size_t offset, __private half *p) 
void vstore_halfn_rtp (floatn data, size_t offset, __private half *p) 
void vstore_halfn_rtn (floatn data, size_t offset, __private half *p) 
void vstorea_halfn (floatn data, size_t offset, global half *p) 
void vstorea_halfn_rte (floatn data, size_t offset, global half *p) 
void vstorea_halfn_rtz (floatn data, size_t offset, global half *p) 
void vstorea_halfn_rtp (floatn data, size_t offset, global half *p) 
void vstorea_halfn_rtn (floatn data, size_t offset, global half *p) 
void vstorea_halfn (floatn data, size_t offset, __local half *p) 
void vstorea_halfn_rte (floatn data, size_t offset, __local half *p) 
void vstorea_halfn_rtz (floatn data, size_t offset, __local half *p) 
void vstorea_halfn_rtp (floatn data, size_t offset, __local half *p) 
void vstorea_halfn_rtn (floatn data, size_t offset, __local half *p) 
void vstorea_halfn (floatn data, size_t offset, __private half *p) 
void vstorea_halfn_rte (floatn data, size_t offset, __private half *p) 
void vstorea_halfn_rtz (floatn data, size_t offset, __private half *p) 
void vstorea_halfn_rtp (floatn data, size_t offset, __private half *p) 
void vstorea_halfn_rtn (floatn data, size_t offset, __private half *p) 

… just look at all the built-in fuctions we had to define to make this thing work? 
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Agenda 
•  Ugly programming models and why they rule 
•  The origin of OpenCL 
•  A high level view of OpenCL 
•  OpenCL and the CPU 
•  An OpenCL “deep dive” 
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OpenCL … the ugliest programming model in 
existence 

CPUs 
Multiple cores driving 
performance 
increases 

GPUs 
Increasingly general 
data-parallel 
computing 

Graphics APIs 
and Shading 
Languages 

Multi-processor 
programming – 
e.g. OpenMP 

OpenCL 
Heterogenous 
Computing 

OpenCL – Open Computing Language 
Open standard for portable programming of heterogeneous 
platforms (CPUs, GPUs, and other processors) 
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Consider the historical precedent with 
OpenMP … 

SGI 

Cray 

Merged, 
needed 
commonality 
across 
products 

KAI ISV - needed 
larger market 

was tired of 
recoding for 
SMPs.  Forced 
vendors to 
standardize. 

ASCI 

Wrote a 
rough draft 
straw man 
SMP API 

DEC 

IBM 

Intel 

HP 

Other vendors 
invited to join 

1997 Third party names are the property of their owners. 
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OpenCL: Can history repeat itself? 

AMD 

ATI 

Merged, 
needed 
commonality 
across 
products 

Nvidia 
GPU vendor  - 
wants to steel mkt 
share  from CPU 

Intel 
CPU vendor  - 
wants to steal mkt 
share  from GPU 

Wrote a 
rough draft 
straw man 
API 

was tired of recoding 
for many core, GPUs.  
Pushed vendors to 
standardize. 

Apple 

Ericsson 

Sony 

Blizzard 

Nokia 

Khronos  
Compute 
group formed 

Freescale 

TI 

IBM 

+ many 
more 

As ASCI did for OpenMP, Apple is doing for GPU/CPU with 
OpenCL 

Dec 2008 
CL 

Third party names are the property of their owners. 
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OpenCL Working Group 

• Designed with real users (Apple + ISVs) to solve their 
problems. 

• Used Khronos to make it an industry standard.  
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OpenCL Timeline 

•  Six months from proposal to released specification 
•  Commercial support: 

–  Apple’s Mac OS X Snow Leopard (9’2009) will include OpenCL.   
–  Nvidia OpenCL beta release on CUDA.    
–  AMD rleased a CPU OpenCL SIGGRAPH’09 
–  Intel actively promotes OpenCL, but we have not announced our product strategy for 

OpenCL yet. 

Apple, AMD, Intel, 
NVIDIA write draft 
proposal 

Khronos working 
group starts work on 
OepenCL 

Working Group 
submits OpenCL for 
Ratification 

Khronos releases 
OpenCL 
specification 

Khronos releases 
conformance tests 

Jun08 Oct08 
Dec08 

May09 
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OpenCL 1.0 Embedded Profile 
•  Enables OpenCL on mobile and 

embedded silicon 
– Relaxes some data type 

and precision requirements 
– Avoids the need for a 

separate “ES” specification 
•  Khronos APIs provide 

computing support for imaging 
& graphics 

– Enabling advanced 
applications in, e.g., 
Augmented Reality 

• OpenCL will enable parallel 
computing in new markets 

– Mobile phones, cars, 
avionics 

38 

A camera phone with GPS  
processes images to recognize  
buildings and landmarks and  
provides relevant data from internet Source: Kari Pulli, Nokia 
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Agenda 
•  Ugly programming models and why they rule 
•  The origin of OpenCL 
•  A high level view of OpenCL 
•  OpenCL and the CPU 
•  An OpenCL “deep dive” 
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OpenCL: high level view 
•  OpenCL applications: 

–  A host program running on the PC 
–  One or more Kernels that are queued up to run on CPUs, GPUs, 

and “other processors”. 

•  OpenCL is understood in terms of these models 
–  Platform model 
–  Execution model 
–  Memory model 
–  Programming model 
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OpenCL Platform model 
The  basic platform is a host and one or more 
compute devices. 
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Execution Model 
•  Host defines a command queue and associates it with a context 

(devices, kernels, memory, etc). 
•  Host enqueues commands to the command queue 

Gy


Gx


(wx, wy)


(wxSx + sx, wySy + sy)

(sx, sy) = (0,0)


(wxSx + sx, wySy + sy)

(sx, sy) = (Sx-1,0)


(wxSx + sx, wySy + sy)

(sx, sy) = (0, Sy-1)


(wxSx + sx, wySy + sy)

(sx, sy) = (Sx-1, Sy- 1)


Index Space

Work items execute together as a work-group. 

A (Gy by Gx ) 
index space 
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OpenCL Memory model 
•  Implements a relaxed consistency, shared memory model 

Global 
memory: 
visible to host 
and compute 
devices 

Private 
memory: 
Local to 
each work-
item 

Local 
memory: 
Shared 
within a 
work 
group 
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OpenCL programming model 
•  Data Parallel, SPMD 

–  Work-items in a work-group run the same program 
–  Update data structures in parallel using the work-item ID to select 

data and guide execution. 
•  Task Parallel 

–  One work-item per work group … for coarse grained task-level 
parallelism. 

–  Native function interface: trap-door to run arbitrary code from an 
OpenCL command-queue. 
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Programming Kernels: OpenCL C 
Language 

• Derived from ISO C99 
– No standard C99 headers, function pointers, recursion, variable length arrays, and bit 

fields 

• Additions to the language for parallelism 
– Work-items and workgroups 
– Vector types 
– Synchronization 

• Address space qualifiers 
• Optimized image access 
• Built-in functions 

Acknowledgement: Aaftab Munshi of Apple 
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• Scalar data types 
– char , uchar,  short, ushort, int, uint, long, ulong 
– bool, intptr_t, ptrdiff_t, size_t, uintptr_t, void,  half (storage) 

•  Image types 
–  image2d_t, image3d_t, sampler_t 

• Vector data types 

Acknowledgement: Aaftab Munshi of Apple 
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• Portable 
• Vector length of 2, 4, 8, and 16 
• char2, ushort4, int8, float16, … 
• Endian safe 
• Aligned at vector length 
• Vector operations and built-in functions 

Acknowledgement: Aaftab Munshi of Apple 
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• Vector literal 

• Vector components 

• Vector ops 

2 3 -7 -7 

-7 -7 -7 -7 int4 vi0 = (int4) -7; 

0 1 2 3 int4 vi1 = (int4)(0, 1, 2, 3); 

vi0.lo = vi1.hi; 

int8 v8 = (int8)(vi0, vi1.s01, vi1.odd); 2 3 -7 -7 0 1 1 3 

0 1 2 3 

2 4 -5 -4 

+ vi0 += vi1; 

vi0 = abs(vi0); 2 4 5 4 

2 3 -7 -7 

Acknowledgement: Aaftab Munshi of Apple 
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OpenCL Software Stack 
•  Platform Layer:  

–  query and select compute devices 
–  create contexts and command-queues 

•  Runtime 
–  Coordinate between host and Compute 

devices 
–  resource management 
–  execute kernels 

•  Compiler  
–  Implements kernel code on Target Device 
–  ISO C99 subset + a few language additions 
–  Builds executables online or offline 

Application 

OpenCL Framework 

Host 

GPU Device 

Back-End 
Compiler 

Runtime 
(common) Front End 

Compiler 
Platform 
layer 

Runtime 

IR IR IR 

OCL 

“Bin
” 

CPU Device 

Back-End 
Compiler 

Runtime 

“Bin
” 

… 
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Example: vector addition 
•  The “hello world” program of data parallel 

programming is a program to add two vectors 

C[i] = A[i] + B[i]   for i=1 to N 

•  For the OpenCl solution, there are two parts 
–  Kernel code 
–  Host code 
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Vector Addition - Kernel 

__kernel void vec_add (__global const float *a, 
                       __global const float *b,  
                       __global       float *c) 
 { 
     int gid = get_global_id(0); 
     c[gid] = a[gid] + b[gid]; 
} 
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Vector Addition - Host Program 
// create the OpenCL context on a GPU device 
cl_context = clCreateContextFromType(0, 

CL_DEVICE_TYPE_GPU, NULL, NULL, NULL); 

// get the list of GPU devices associated with context 
clGetContextInfo(context, CL_CONTEXT_DEVICES, 0,  
                                        NULL, &cb); 
devices = malloc(cb); 
clGetContextInfo(context, CL_CONTEXT_DEVICES, cb, 

devices, NULL); 

// create a command-queue 
cmd_queue = clCreateCommandQueue(context, devices[0], 

0, NULL); 

// allocate the buffer memory objects 
memobjs[0] = clCreateBuffer(context, CL_MEM_READ_ONLY | 

CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcA,  
                                         NULL);} 

memobjs[1] = clCreateBuffer(context,CL_MEM_READ_ONLY | 
CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcB,  
                                         NULL); 

memobjs[2] = clCreateBuffer(context,CL_MEM_WRITE_ONLY,  
                            sizeof(cl_float)*n, NULL, 

                                         NULL); 
// create the program 
program = clCreateProgramWithSource(context, 1, 

&program_source, NULL, NULL); 

// build the program 
err = clBuildProgram(program, 0, NULL, NULL, NULL,  

                                         NULL); 

// create the kernel 
kernel = clCreateKernel(program, “vec_add”, NULL); 

// set the args values 
err  = clSetKernelArg(kernel, 0, (void *) &memobjs[0],  
                                 sizeof(cl_mem)); 
err |= clSetKernelArg(kernel, 1, (void *)&memobjs[1], 
                                 sizeof(cl_mem)); 
err |= clSetKernelArg(kernel, 2, (void *)&memobjs[2],  
                                  sizeof(cl_mem)); 
// set work-item dimensions 
global_work_size[0] = n; 

// execute kernel 
err = clEnqueueNDRangeKernel(cmd_queue, kernel, 1, 

NULL, global_work_size, NULL, 0, NULL, NULL); 

// read output array 
err = clEnqueueReadBuffer(context, memobjs[2], CL_TRUE, 

0, n*sizeof(cl_float), dst, 0, NULL, NULL); 

The host program is ugly … but its not too hard to 
understand (details with readable font in back-up slides) 
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Vector Addition - Host Program 
// create the OpenCL context on a GPU device 
cl_context = clCreateContextFromType(0, 

CL_DEVICE_TYPE_GPU, NULL, NULL, NULL); 

// get the list of GPU devices associated with context 
clGetContextInfo(context, CL_CONTEXT_DEVICES, 0,  
                                        NULL, &cb); 
devices = malloc(cb); 
clGetContextInfo(context, CL_CONTEXT_DEVICES, cb, 

devices, NULL); 

// create a command-queue 
cmd_queue = clCreateCommandQueue(context, devices[0], 

0, NULL); 

// allocate the buffer memory objects 
memobjs[0] = clCreateBuffer(context, CL_MEM_READ_ONLY | 

CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcA, 
NULL);} 

memobjs[1] = clCreateBuffer(context,CL_MEM_READ_ONLY | 
CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcB, 
NULL); 

memobjs[2] = clCreateBuffer(context,CL_MEM_WRITE_ONLY,  
                            sizeof(cl_float)*n, NULL, 

NULL); 
// create the program 
program = clCreateProgramWithSource(context, 1, 

&program_source, NULL, NULL); 

// build the program 
err = clBuildProgram(program, 0, NULL, NULL, NULL, 

NULL); 

// create the kernel 
kernel = clCreateKernel(program, “vec_add”, NULL); 

// set the args values 
err  = clSetKernelArg(kernel, 0, (void *) &memobjs[0],  
                                 sizeof(cl_mem)); 
err |= clSetKernelArg(kernel, 1, (void *)&memobjs[1], 
                                 sizeof(cl_mem)); 
err |= clSetKernelArg(kernel, 2, (void *)&memobjs[2],  
                                  sizeof(cl_mem)); 
// set work-item dimensions 
global_work_size[0] = n; 

// execute kernel 
err = clEnqueueNDRangeKernel(cmd_queue, kernel, 1, 

NULL, global_work_size, NULL, 0, NULL, NULL); 

// read output array 
err = clEnqueueReadBuffer(context, memobjs[2], CL_TRUE, 

0, n*sizeof(cl_float), dst, 0, NULL, NULL); 
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Agenda 
•  Ugly programming models and why they rule 
•  The origin of OpenCL 
•  A high level view of OpenCL 
•  OpenCL and the CPU 
•  An OpenCL “deep dive” 
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OpenCL’s Two Styles of Data-Parallelism 
•  Explicit SIMD data parallelism: 

–  The kernel defines one stream of instructions 
–  Parallelism from using wide vector types 
–  Size vector types to match native HW width 
–  Combine with task parallelism to exploit multiple cores. 

•  Implicit SIMD data parallelism (i.e. shader-style): 
–  Write the kernel as a “scalar program” 
–  Use vector data types sized naturally to the algorithm 
–  Kernel automatically mapped to SIMD-compute-resources and cores by 

the compiler/runtime/hardware. 

Both approaches are viable CPU options 
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Data-Parallelism: options on IA processors 

•  Explicit SIMD data parallelism  
–  Programmer chooses vector data type (width) 
–  Compiler hints using attributes 

»  vec_type_hint(typen)  

•  Implicit SIMD Data parallel   
–  Map onto CPUs, GPUs, Larrabee, … 

»  SSE/AVX/LRBni: 4/8/16 workitems in parallel 

• Hybrid use of the two methods 
»  AVX: can run two 4-wide workitems in parallel 
»  LRBni: can run four 4-wide workitems in parallel 
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Explicit SIMD data parallelism 
•  OpenCL as a portable interface to vector instruction sets. 

–  Block loops and pack data into vector types (float4, ushort16, etc). 
–  Replace scalar ops in loops with blocked loops and vector ops. 
–  Unroll loops, optimize indexing to match machine vector width 

float a[N], b[N], c[N]; 
for (i=0; i<N; i++) 
    c[i] = a[i]*b[i]; 
<<< the above becomes >>>> 
float4 a[N/4], b[N/4], c[N/4]; 
for (i=0; i<N/4; i++) 
     c[i] = a[i]*b[i]; 

Explicit SIMD data parallelism means you tune your code to the 
vector width and other properties of the compute device 
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•   2 algorithms from the Video Processing domain 
–  Color Enhancement 

»  Enhance the saturation (color strength) of individual colors 
•   Red, Green, Blue, Yellow, Cyan and Magenta 

–  Contrast Enhancement 
»   Improve extreme dark and bright images 

•   Video Frames 
–   Processed in YUV 4:2:0 planar color space 
–   10 bits per color component  

»  Contained in ushort (unsigned short) 
–   Fixed point arithmetic 
–  Structure of arrays (SOA) 

Video Processing Case Study 

Y1 Y2 Y3 Y4 Y5 Y6 

Y7 Y8 Y8 Y10 Y11 Y12 

U1 U2 U3 

V1 V2 V3 

YUV 4:2:0 Frame 
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* Results have been estimated based on internal Intel analysis and are provided for 
informational purposes only.  Any difference in system hardware or software design or 
configuration may affect actual performance. 

Explicit SIMD data parallelism: Case Study 

1 work-item per core + loops   

Vectorize (block loops, pack 
into ushort8 and ushort16)   

Optimize vector indexing   

Unroll loops   

Hand-tuned SSE + 
Multithreading   

40% 

186% 

23% 

% peak performance 

3 Ghz dual core CPU    
pre-release version of OpenCL 
Source: Intel Corp. 

5% 

•  Video contrast/color optimization kernel on a dual core CPU. 
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Good news: OpenCL code 95% of hand-tuned SSE/MT perf. 
Bad news: New platform, redo all those optimizations. 
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Towards “Portable” Performance 
•  The following C code is an 

example of a Bilateral 1D filter: 

•  Reminder: Bilateral filter is an 
edge preserving image 
processing algorithm.  

•  See more information here: 
http://scien.stanford.edu/class/
psych221/projects/06/imagescaling/
bilati.html 

void P4_Bilateral9 (int start, int end, float v) 
{ 
   int i, j, k; 
   float w[4], a[4], p[4]; 
   float inv_of_2v = -0.5 / v; 
   for (i = start; i < end; i++) { 
      float wt[4] = { 1.0f, 1.0f, 1.0f, 1.0f }; 
      for (k = 0; k < 4; k++) 
         a[k] = image[i][k]; 
      for (j = 1; j <= 4; j++) { 
         for (k = 0; k < 4; k++) 
            p[k] = image[i - j*SIZE][k] - image[i][k]; 
         for (k = 0; k < 4; k++) 
            w[k] = exp (p[k] * p[k] * inv_of_2v); 
         for (k = 0; k < 4; k++) { 
            wt[k] += w[k]; 
            a[k] += w[k] * image[i - j*SIZE][k]; 
         } 
      } 
      for (j = 1; j <= 4; j++) { 
         for (k = 0; k < 4; k++) 
            p[k] = image[i + j*SIZE][k] - image[i][k]; 
         for (k = 0; k < 4; k++; 
            w[k] = exp (p[k] * p[k] * inv_of_2v); 
         for (k = 0; k < 4; k++) { 
            wt[k] += w[k]; 
            a[k] += w[k] * image[i + j*SIZE][k]; 
         } 
      } 
      for (k = 0; k < 4; k++) { 
         image2[i][k] = a[k] / wt[k]; 
      } 
   } 
} 

Source: Intel Corp. 
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•  The following C code is an 
example of a Bilateral 1D filter: 

•  Reminder: Bilateral filter is an 
edge preserving image 
processing algorithm.  

•  See more information here: 
http://scien.stanford.edu/class/
psych221/projects/06/imagescaling/
bilati.html 

void P4_Bilateral9 (int start, int end, float v) 
{ 
   int i, j, k; 
   float w[4], a[4], p[4]; 
   float inv_of_2v = -0.5 / v; 
   for (i = start; i < end; i++) { 
      float wt[4] = { 1.0f, 1.0f, 1.0f, 1.0f }; 
      for (k = 0; k < 4; k++) 
         a[k] = image[i][k]; 
      for (j = 1; j <= 4; j++) { 
         for (k = 0; k < 4; k++) 
            p[k] = image[i - j*SIZE][k] - image[i][k]; 
         for (k = 0; k < 4; k++) 
            w[k] = exp (p[k] * p[k] * inv_of_2v); 
         for (k = 0; k < 4; k++) { 
            wt[k] += w[k]; 
            a[k] += w[k] * image[i - j*SIZE][k]; 
         } 
      } 
      for (j = 1; j <= 4; j++) { 
         for (k = 0; k < 4; k++) 
            p[k] = image[i + j*SIZE][k] - image[i][k]; 
         for (k = 0; k < 4; k++; 
            w[k] = exp (p[k] * p[k] * inv_of_2v); 
         for (k = 0; k < 4; k++) { 
            wt[k] += w[k]; 
            a[k] += w[k] * image[i + j*SIZE][k]; 
         } 
      } 
      for (k = 0; k < 4; k++) { 
         image2[i][k] = a[k] / wt[k]; 
      } 
   } 
} 

void P4_Bilateral9 (int start, int end, float v) 
{ 
   <<< Declarations >>> 
   for (i = start; i < end; i++) {  
      for (j = 1; j <= 4; j++) { 
      <<< a series of short loops >>>> 
       } 
      for (j = 1; j <= 4; j++) { 
       <<< a 2nd series of short loops >>> 
      } 
   } 
} 

Source: Intel Corp. 

Towards “Portable” Performance 
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“Implicit SIMD” data parallel code 

•  “outer” loop replaced 
by work-items running 
over an NDRange index 
set. 

•  NDRange 4*image size 
… since each workitem 
does a color for each 
pixel. 

•  Leave it to the 
compiler to map work-
items onto lanes of the 
vector units … 

__kernel void P4_Bilateral9 (__global float* inImage, __global float* outImage, float v) 
{ 
      const size_t myID     = get_global_id(0); 
      const float inv_of_2v = -0.5f / v; 
      const size_t myRow    = myID / IMAGE_WIDTH; 
            size_t maxDistance = min(DISTANCE, myRow); 
             maxDistance = min(maxDistance, IMAGE_HEIGHT - myRow); 
      float currentPixel, neighborPixel, newPixel; 
      float diff; 
      float accumulatedWeights, currentWeights; 
      newPixel = currentPixel = inImage[myID]; 
      accumulatedWeights = 1.0f; 
      for (size_t dist = 1; dist <= maxDistance; ++dist) 
      { 
              neighborPixel            = inImage[myID + dist*IMAGE_WIDTH]; 
              diff                           = neighborPixel - currentPixel; 
              currentWeights         = exp(diff * diff * inv_of_2v); 
              accumulatedWeights += currentWeights; 
              newPixel                   += neighborPixel * currentWeights; 
              neighborPixel              = inImage[myID - dist*IMAGE_WIDTH]; 
              diff                             = neighborPixel - currentPixel; 
              currentWeights           = exp(diff * diff * inv_of_2v); 
              accumulatedWeights += currentWeights; 
              newPixel                   + = neighborPixel * currentWeights; 
      } 
      outImage[myID] = newPixel / accumulatedWeights; 
} 

Source: Intel Corp. 
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•  “outer” loop replaced by 
work-items running over 
an NDRange index set. 

•  NDRange 4*image size … 
since each workitem does 
a color for each pixel. 

•  Leave it to the compiler 
to map work-items onto 
lanes of the vector units 
… 

“Implicit SIMD” data parallel code 
__kernel void P4_Bilateral9 (__global float* inImage, __global float* outImage, float v) 
{ 
      const size_t myID     = get_global_id(0); 
      const float inv_of_2v = -0.5f / v; 
      const size_t myRow    = myID / IMAGE_WIDTH; 
            size_t maxDistance = min(DISTANCE, myRow); 
             maxDistance = min(maxDistance, IMAGE_HEIGHT - myRow); 
      float currentPixel, neighborPixel, newPixel; 
      float diff; 
      float accumulatedWeights, currentWeights; 
      newPixel = currentPixel = inImage[myID]; 
      accumulatedWeights = 1.0f; 
      for (size_t dist = 1; dist <= maxDistance; ++dist) 
      { 
              neighborPixel            = inImage[myID + dist*IMAGE_WIDTH]; 
              diff                           = neighborPixel - currentPixel; 
              currentWeights         = exp(diff * diff * inv_of_2v); 
              accumulatedWeights += currentWeights; 
              newPixel                   += neighborPixel * currentWeights; 
              neighborPixel              = inImage[myID - dist*IMAGE_WIDTH]; 
              diff                             = neighborPixel - currentPixel; 
              currentWeights           = exp(diff * diff * inv_of_2v); 
              accumulatedWeights += currentWeights; 
              newPixel                   + = neighborPixel * currentWeights; 
      } 
      outImage[myID] = newPixel / accumulatedWeights; 
} 

__kernel void p4_bilateral9(__global float* inImage,  
                                        __global float* outImage, float v) 
{ 
      const size_t myID     = get_global_id(0); 
      <<< declarations >>> 
      for (size_t dist = 1; dist <= maxDistance; ++dist){ 
           neighborPixel     = inImage[myID +  
                                                 dist*IMAGE_WIDTH]; 
           diff                   = neighborPixel - currentPixel; 
           currentWeights  = exp(diff * diff * inv_of_2v); 
         << plus others to compute pixels, weights, etc >> 
           accumulatedWeights += currentWeights; 
      } 
      outImage[myID] = newPixel / accumulatedWeights; 
} 

Source: Intel Corp. 
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Portable Performance in OpenCL 
•  Implicit SIMD code … where the framework maps 

work-items onto the “lanes of the vector unit”  … 
creates the opportunity for portable code that 
performs well on full range of OpenCL compute 
devices. 

•  Requires mature OpenCL technology that “knows” how 
to do this: 

–  … But it is important to note …. we know this approach works since 
its based on the way shader compilers work today. 
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Task Parallelism Overview 
•  Think of a task as an asynchronous function call 

–  “Do X at some point in the future” 
–  Optionally “… after Y is done” 
–  Light weight, often in user space 

•  Strengths 
–  Copes well with heterogeneous workloads 
–  Doesn’t require 1000’s of strands 
–  Scales well with core count 

•  Limitations 
–  No automatic support for latency hiding 
–  Must explicitly write SIMD code 

X() 

Y() 

A natural fit to multi-core CPUs 
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Task Parallelism in OpenCL 
•  clEnqueueTask 

–  Imagine “sea of different tasks” executing concurrently 
–  A task “owns the core” (i.e., a workgroup size of 1) 

• Use tasks when algorithm… 
–  Benefits from large amount of local/private memory 
–  Has predictable global memory accesses 
–  Can be programmed using explicit vector style 
–  “Just doesn’t have 1000’s of identical things to do” 

• Use data-parallel kernels when algorithm… 
–  Does not benefit from large amounts of local/private memory  
–  Has unpredictable global memory accesses 
–  Needs to apply same operation across large number of data 

elements 
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Future Parallel Programming 
•  Real world applications contain data 

parallel parts as well as serial/sequential  
parts 

•  OpenCL addresses these Apps need by 
supporting Data Parallel & Task Parallel 

•  “Braided Parallelism” – composing Data 
Parallel & Task Parallel constructs in a 
single algorithm 

•  CPUs are ideal for Braided Parallelism   
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Future parallel programming: Larrabee 

•  Cores communicate on a wide ring bus 
–  Fast access to memory and fixed function blocks 
–  Fast access for cache coherency 

•  L2 cache is partitioned among the cores 
–  Provides high aggregate bandwidth 
–  Allows data replication & sharing 
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Processor Core Block Diagram 
•  Separate scalar and vector units 

with separate registers 
•  Vector unit: 16 32-bit ops/clock 
•  In-order instruction execution 
•  Short execution pipelines 
•  Fast access from L1 cache 
• Direct connection to each core’s 

subset of the L2 cache 
•  Prefetch instructions load L1 and 

L2 caches 

Instruction Decode 

Scalar 
Unit 

Vector 
Unit 

Scalar 
Registers 

Vector 
Registers 

L1 Icache & Dcache 

256KB L2 Cache 
Local Subset 

Ring 
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Key Differences from Typical GPUs 
•  Each Larrabee core is a complete Intel processor 

–  Context switching & pre-emptive multi-tasking 
–  Virtual memory and page swapping, even in texture logic 
–  Fully coherent caches at all levels of the hierarchy 

•  Efficient inter-block communication 
–  Ring bus for full inter-processor communication 
–  Low latency high bandwidth L1 and L2 caches 
–  Fast synchronization between cores and caches 

Larrabee is perfect for the braided parallelism  
in future applications 
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Conclusion 
•  OpenCL defines a platform-API/framework for 

heterogeneous computing … not just GPGPU or CPU-offload 
programming. 

•  OpenCL has the potential to deliver portably performant 
code; but only if its used correctly: 

–  Implicit SIMD data parallel code has the best chance of mapping 
onto a diverse range of hardware … once OpenCL implementation 
quality catches up with mature shader languages. 

•  The future is clear: 
–  Parallelism mixing task parallel and data parallel code in a single 

program … balancing the load among ALL OF the platform’s 
available resources. 

–  OpenCL can handle this … and emerging platforms (e.g Larrabee) 
will increasingly emphasize this model.  
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Agenda 
•  Ugly programming models and why they rule 
•  The origin of OpenCL 
•  A high level view of OpenCL 
•  OpenCL and the CPU 
•  An OpenCL “deep dive” 
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•  Host program 
–  Query compute devices 
–  Create contexts 
–  Create memory objects associated to contexts 
–  Compile and create kernel program objects 
–  Issue commands to command-queue 
–  Synchronization of commands 
–  Clean up OpenCL resources 

•  Kernels 
–  C code with some restrictions and extensions 

Basic OpenCL Program Structure 
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Example: Vector Addition 

• Compute c = a + b 
–  a, b, and c are vectors of length N 

• Basic OpenCL concepts 
– Simple kernel code 
– Basic context management 
– Memory allocation 
–  Kernel invocation 
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Platform Layer: Basic discovery 

•  Platform layer allows applications to query for platform specific 
features 

•  Querying platform info Querying devices 
–  clGetDeviceIDs() 

»  Find out what compute devices are on the system 
»  Device types include CPUs, GPUs, or Accelerators 

–  clGetDeviceInfo() 
»  Queries the capabilities of the discovered compute devices such 

as: 
•  Number of compute cores 
•  Maximum work-item and work-group size 
•  Sizes of the different memory spaces   
•  Maximum memory object size 
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Platform Layer: Contexts 

•  Creating contexts  
–  Contexts are used by the OpenCL runtime to manage objects and 

execute kernels on one or more devices 
–  Contexts are associated to one or more devices 

»  Multiple contexts could be associated to the same device 
–  clCreateContext() and clCreateContextFromType() returns a handle to 

the created contexts 
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Platform layer: Command-Queues 

•  Command-queues store a set of operations to 
perform 

•  Command-queues are associated to a context 
•  Multiple command-queues can be created to handle 

independent commands that don’t require 
synchronization 

•  Execution of the command-queue is guaranteed to 
be completed at sync points 
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VecAdd: Context, Devices, Queue 
// create the OpenCL context on a GPU device 
cl_context context = clCreateContextFromType(0, // (must be 0) 
                       CL_DEVICE_TYPE_GPU,  
                     NULL,  // error callback 

                       NULL,  // user data 
                       NULL); // error code  

// get the list of GPU devices associated with context 
size_t cb; 
clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, NULL, &cb); 
cl_device_id *devices = malloc(cb); 
clGetContextInfo(context, CL_CONTEXT_DEVICES, cb, devices, NULL); 

// create a command-queue 
cl_cmd_queue cmd_queue = clCreateCommandQueue(context,  
           devices[0],  0,     // default options 
                     NULL); // error code 
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Memory Objects 

•  Buffer objects 
–  One-dimensional collection of objects (like C arrays) 
–  Valid elements include scalar and vector types as well as user defined 

structures 
–  Buffer objects can be accessed via pointers in the kernel 

•  Image objects 
–  Two- or three-dimensional texture, frame-buffer, or images 
–  Must be addressed through built-in functions 

•  Sampler objects 
–  Describes how to sample an image in the kernel 

»  Addressing modes 
»  Filtering modes 
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Creating Memory Objects 

•  clCreateBuffer(), clCreateImage2D(), and clCreateImage3D() 
•  Memory objects are created with an associated context 
•  Memory can be created as read only, write only, or read-write 
•  Where objects are created in the platform memory space can be 

controlled 
–  Device memory 
–  Device memory with data copied from a host pointer 
–  Host memory 
–  Host memory associated with a pointer 

»  Memory at that pointer is guaranteed to be valid at synchronization 
points 
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Manipulating Object Data 

•  Object data can be copied to host memory, from host memory, or to other 
objects 

•  Memory commands are enqueued in the command buffer and processed 
when the command is executed 

–  clEnqueueReadBuffer(), clEnqueueReadImage() 
–  clEnqueueWriteBuffer(), clEnqueueWriteImage() 
–  clEnqueueCopyBuffer(), clEnqueueCopyImage() 

•  Data can be copied between Image and Buffer objects 
–  clEnqueueCopyImageToBuffer() 
–  clEnqueueCopyBufferToImage() 

•  Regions of the object data can be accessed by mapping into the host 
address space 

–  clEnqueueMapBuffer(), clEnqueueMapImage() 
–  clEnqueueUnmapMemObject() 
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VecAdd: Create Memory Objects 
cl_mem memobjs[3]; 
// allocate input buffer memory objects 
memobjs[0] = clCreateBuffer(context,  
                   CL_MEM_READ_ONLY |   // flags 

                   CL_MEM_COPY_HOST_PTR,   
                   sizeof(cl_float)*n,  // size 
                   srcA,                // host pointer 
                   NULL);               // error code 
memobjs[1] = clCreateBuffer(context, 
            CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,  
            sizeof(cl_float)*n, srcB, NULL); 

// allocate input buffer memory object 
memobjs[2] = clCreateBuffer(context, CL_MEM_WRITE_ONLY,  
                          sizeof(cl_float)*n, NULL, NULL); 
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Program Objects 
•  Program objects encapsulate: 

–  An associated context 
–  Program source or binary 
–  list of targeted devices, build options 
–  Number of attached kernel objects 

•  Build process 
1.  Create program object 

»  clCreateProgramWithSource() 
»  clCreateProgramWithBinary() 

2.  Build program executable 
»  Compile and link from source or binary for all devices or specific devices in 

the associated context 
»  clBuildProgram() 
»  Build options 

•  Preprocessor, float point behavior, optimizations, etc 
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Kernel Objects 

•  Kernel objects encapsulate 
–  Specific kernel functions declared in a program 
–  Argument values used for kernel execution 

•  Creating kernel objects 
–  clCreateKernel() - creates a kernel object for a single function in a program 

•  Setting arguments 
–  clSetKernelArg(<kernel>, <argument index>) 
–  Each argument data must be set for the kernel function 
–  Argument values copied and stored in the kernel object 

•  Kernel vs. program objects 
–  Kernels are related to program execution 
–  Programs are related to program source 



Tim Mattson OpenCL: 86 8/19/10 

VecAdd: Program and Kernel 
// create the program 
cl_program program = clCreateProgramWithSource( 
                context, 
                1,               // string count 
                &program_source, // program strings 
                NULL,            // string lengths 
                NULL);           // error code 

// build the program 
cl_int err = clBuildProgram(program,  
                0,     // num devices in device list 
                NULL,  // device list 
                NULL,  // options 
                NULL,  // notifier callback function ptr 
                NULL); // user data 
// create the kernel 
cl_kernel kernel = clCreateKernel(program, “vec_add”, NULL); 
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// set “a” vector argument 
err  = clSetKernelArg(kernel,               
               0,                   // argument index 
               (void *)&memobjs[0], // argument data 
               sizeof(cl_mem));     // argument data size 

// set “b” vector argument 
err |= clSetKernelArg(kernel, 1, (void *)&memobjs[1],  
                sizeof(cl_mem)); 

// set “c” vector argument 
err |= clSetKernelArg(kernel, 2, (void *)&memobjs[2], 
                sizeof(cl_mem)); 

VecAdd: Set Kernel Arguments 
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Kernel Execution 

•  A command to execute a kernel must be enqueued to the command-queue 
•  clEnqueueNDRangeKernel() 

–  Data-parallel execution model 
–  Describes the index space for kernel execution 
–  Requires information on NDRange dimensions and work-group size 

•  clEnqueueTask() 
–  Task-parallel execution model (multiple queued tasks) 
–  Kernel is executed on a single work-item 

•  clEnqueueNativeKernel() 
–  Task-parallel execution model 
–  Executes a native C/C++ function not compiled using the OpenCL compiler 
–  This mode does not use a kernel object so arguments must be passed in 
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Command-Queues 

•  Command-queue execution 
–  Execution model signals when commands are complete or data is 

ready 
–  Command-queue could be explicitly flushed to the device 
–  Command-queues execute in-order or out-of-order 

»  In-order - commands complete in the order queued and 
correct memory is consistent 

»  Out-of-order - no guarantee when commands are executed 
or memory is consistent without synchronization 
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Synchronization 

•  Synchronization 
–  Signals when commands are completed to the host or other commands in queue 
–  Blocking calls 

»  Commands that do not return until complete 
»  clEnqueueReadBuffer() can be called as blocking and will block until complete 

–  Event objects 
»  Tracks execution status of a command 
»  Some commands can be blocked until event objects signal a completion of 

previous command 
•  clEnqueueNDRangeKernel() can take an event object as an argument and wait until a previous 

command (e.g., clEnqueueWriteBuffer) is complete 

–  Queue barriers - queued commands that can block command execution 
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size_t global_work_size[1] = n; // set work-item dimensions 
// execute kernel 
err = clEnqueueNDRangeKernel(cmd_queue, kernel,  
                    1,         // Work dimensions 
                    NULL,      // must be NULL (work offset) 
                  global_work_size,  

                    NULL,      // automatic local work size 
                    0,         // no events to wait on 
                    NULL,      // event list 
                    NULL);     // event for this kernel 
// read output array 
err = clEnqueueReadBuffer( context, memobjs[2],  
                    CL_TRUE,            // blocking 
                    0,                  // offset 
                  n*sizeof(cl_float), // size 

                    dst,                // pointer 
                    0, NULL, NULL);     // events 

VecAdd: Invoke Kernel, Read Output 
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OpenCL C for Compute Kernels  
•  Derived from ISO C99 

–  A few restrictions: recursion, function pointers, functions in C99 standard headers ... 
–  Preprocessing directives defined by C99 are supported 

•  Built-in Data Types 
–  Scalar and vector data types, Pointers 
–  Data-type conversion functions: convert_type<_sat><_roundingmode>  
–  Image types: image2d_t, image3d_t and sampler_t 

•  Built-in Functions — Required 
–  work-item functions, math.h, read and write image 
–  Relational, geometric functions, synchronization functions 

•  Built-in Functions — Optional 
–  double precision, atomics to global and local memory 
–  selection of rounding mode, writes to image3d_t surface 
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OpenCL C Language Highlights 

•  Function qualifiers 
–  “__kernel” qualifier declares a function as a kernel 
–  Kernels can call other kernel functions 

•  Address space qualifiers 
–  __global, __local, __constant, __private 
–  Pointer kernel arguments must be declared with an address space qualifier 

•  Work-item functions 
–  Query work-item identifiers 

»  get_work_dim(),  get_global_id(), get_local_id(), get_group_id() 

•  Synchronization functions 
–  Barriers - all work-items within a work-group must execute the barrier function before 

any work-item can continue 
–  Memory fences - provides ordering between memory operations 
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OpenCL C Language Restrictions 

•  Pointers to functions are not allowed 
•  Pointers to pointers allowed within a kernel, but not as an argument 
•  Bit-fields are not supported 
•  Variable length arrays and structures are not supported 
•  Recursion is not supported 
• Writes to a pointer of types less than 32-bit are not supported 
• Double types are not supported, but reserved 
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Vector Addition Kernel 

__kernel void vec_add (__global const float *a, 
                       __global const float *b,  
                       __global       float *c) 
 { 
     int gid = get_global_id(0); 
     c[gid] = a[gid] + b[gid]; 
 } 
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Legal Disclaimer 
•  INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO 

LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL 
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS 
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, 
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF 
INTEL® PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A 
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR 
OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN 
MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.  

•  Intel may make changes to specifications and product descriptions at any time, without notice. 
•  All products, dates, and figures specified are preliminary based on current expectations, and are subject to 

change without notice. 
•  Intel, processors, chipsets, and desktop boards may contain design defects or errors known as errata, which 

may cause the product to deviate from published specifications. Current characterized errata are available on 
request. 

•  Larrabee and other code names featured are used internally within Intel to identify products that are in 
development and not yet publicly announced for release.  Customers, licensees and other third parties are 
not authorized by Intel to use code names in advertising, promotion or marketing of any product or services 
and any such use of Intel's internal code names is at the sole risk of the user  

•  Performance tests and ratings are measured using specific computer systems and/or components and reflect 
the approximate performance of Intel products as measured by those tests.  Any difference in system 
hardware or software design or configuration may affect actual performance.   

•  Intel, Intel Inside and the Intel logo are trademarks of Intel Corporation in the United States and other 
countries.   

•  *Other names and brands may be claimed as the property of others. 
•  Copyright © 2009 Intel Corporation. 
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Risk Factors 
This presentation contains forward-looking statements that involve a number of risks and uncertainties. These 
statements do not reflect the potential impact of any mergers, acquisitions, divestitures, investments or other 
similar transactions that may be completed in the future. The information presented is accurate only as of 
today’s date and will not be updated. In addition to any factors discussed in the presentation, the important 
factors that could cause actual results to differ materially include the following: Demand could be different from 
Intel's expectations due to factors including changes in business and economic conditions, including conditions in 
the credit market that could affect consumer confidence; customer acceptance of Intel’s and competitors’ 
products; changes in customer order patterns, including order cancellations; and changes in the level of inventory 
at customers. Intel’s results could be affected by the timing of closing of acquisitions and divestitures. Intel 
operates in intensely competitive industries that are characterized by a high percentage of costs that are fixed 
or difficult to reduce in the short term and product demand that is highly variable and difficult to forecast. 
Revenue and the gross margin percentage are affected by the timing of new Intel product introductions and the 
demand for and market acceptance of Intel's products; actions taken by Intel's competitors, including product 
offerings and introductions, marketing programs and pricing pressures and Intel’s response to such actions; 
Intel’s ability to respond quickly to technological developments and to incorporate new features into its products; 
and the availability of sufficient supply of  components from suppliers to meet demand. The gross margin 
percentage could vary significantly from expectations based on changes in revenue levels; product mix and 
pricing; capacity utilization; variations in inventory valuation, including variations related to the timing of 
qualifying products for sale; excess or obsolete inventory; manufacturing yields; changes in unit costs; 
impairments of long-lived assets, including manufacturing, assembly/test and intangible assets; and the timing 
and execution of the manufacturing ramp and associated costs, including start-up costs. Expenses, particularly 
certain marketing and compensation expenses, vary depending on the level of demand for Intel's products, the 
level of revenue and profits, and impairments of long-lived assets. Intel is in the midst of a structure and 
efficiency program that is resulting in several actions that could have an impact on expected expense levels and 
gross margin. Intel's results could be impacted by adverse economic, social, political and physical/infrastructure 
conditions in the countries in which Intel, its customers or its suppliers operate, including military conflict and 
other security risks,  natural disasters, infrastructure disruptions, health concerns and fluctuations in currency 
exchange rates. Intel's results could be affected by adverse effects associated with product defects and errata 
(deviations from published specifications), and by litigation or regulatory matters involving intellectual property, 
stockholder, consumer, antitrust and other issues, such as the litigation and regulatory matters described in 
Intel's SEC reports. A detailed discussion of these and other factors that could affect Intel’s results is included 
in Intel’s SEC filings, including the report on Form 10-Q for the quarter ended June 28, 2008. 


