
Hello World: Vector Addi/on 
// Compute sum of length‐N vectors: C = A + B 
void 
vecAdd (float* a, float* b, float* c, int N) { 
    for (int i = 0; i < N; i++) 
        c[i] = a[i] + b[i]; 
} 

int main () { 
    int N = ... ; 
    float *a, *b, *c; 
    a = new float[N]; 
  // ... allocate other arrays, fill with data 

    vecAdd (a, b, c, N); 
} 

1 

Hello World: Vector Addi/on 
// Compute sum of length‐N vectors: C = A + B 
void __global__ 
vecAdd (float* a, float* b, float* c, int N) { 
    int i = blockIdx.x * blockDim.x + threadIdx.x; 
    if (i < N) c[i] = a[i] + b[i]; 
} 

int main () { 
    int N = ... ; 
    float *a, *b, *c; 
    cudaMalloc (&a,  sizeof(float) * N); 
  // ... allocate other arrays, fill with data 

  // Use thread blocks with 256 threads each 
    vecAdd <<< (N+255)/256, 256 >>> (a, b, c, N); 
} 

2 

Cuda So7ware Environment 
•  nvcc compiler works much like icc or gcc: compiles C++ source 

code, generates binary executable 
•  Nvidia Cuda OS driver manages low‐level interac/on with device, 

provides API for C++ programs 
•  Nvidia Cuda SDK has many code samples demonstra/ng various 

Cuda func/onali/es 
•  Library support is con/nuously growing: 

–  CUBLAS for basic linear algebra 
–  CUFFT for Fourier Fransforms 
–  CULapack (3rd party proprietary) linear solvers, eigensolvers, ... 

•  OS‐Portable: Linux, Windows, Mac OS 
•  A lot of momentum in Industrial adop/on of Cuda! 

hYp://developer.nvidia.com/object/cuda_3_1_downloads.html 

3 

Agenda 
•  A Shameless self‐promo/on 

•  Introduc/on to GPGPUs and Cuda Programming Model 

•  The Cuda Thread Hierarchy 
•  The Cuda Memory Hierarchy 

•  Mapping Cuda to Nvidia GPUs 

•  As much of the OpenCL informa/on as I can get through 

4 

Nvidia Cuda GPU Architecture 
•  I'll discuss some details of Nvidia's GPU architecture 

simultaneously with discussing the Cuda Programming Model 
–  The Cuda Programming Model is a set of data‐parallel extensions to 

C, amenable to implementa/on on GPUs, CPUs, FPGAs, ... 

•  Cuda GPUs are a collec/on of “Streaming Mul/processors” 
–  Each SM is analogous to a core of a Mul/‐Core CPU 

•  Each SM is a collec/on of SIMD execu/on pipelines (Scalar 
Processors) that share control logic, register file, and L1 Cache  

5 

Cuda Thread Hierarchy 
•  Parallelism in the Cuda Programming Model is expressed as 

a 4‐level Hierarchy: 
•  A Stream is a list of Grids that 

execute in‐order. Fermi GPUs execute 
mul/ple Streams in parallel 

•  A Grid is a set of up to 232 Thread 
Blocks execu/ng the same kernel 

•  A Thread Block is a set of up to 1024 
[512 pre‐Fermi] Cuda Threads 

•  Each Cuda Thread is an independent, 
lightweight, scalar execu/on context 
•  Groups of 32 threads form Warps 

that execute in lockstep SIMD 
6 

What is a Cuda Thread? 
•  Logically, each Cuda Thread is its own very lightweight 

independent MIMD execu5on context 
–  Has its own control flow and PC, register file, call stack, ... 
–  Can access any GPU global memory address at any /me 

–  Iden/fiable uniquely within a grid by the five integers: 
threadIdx.{x,y,z}, blockIdx.{x,y} 

•  Very fine granularity: do not expect any single thread to do 
a substan/al frac/on of an expensive computa/on 
–  At full occupancy, each Thread has 21 32‐bit registers 
–  ... 1,536 Threads share a 64 KB L1 Cache / __shared__ mem 

–  GPU has no operand bypassing networks: func/onal unit 
latencies must be hidden by mul/threading or ILP (e.g. from 
loop unrolling) 

7 

Cuda Memory Hierarchy 

… 

… 

Per Device Global 
Memory 

•  Thread blocks in all Grids share access to a large pool of 
“Global” memory, separate from the Host CPU’s memory. 
–  Global memory holds the applica/on’s persistent state, while 
the thread‐local and block‐local memories are temporary 

–  Global memory is much more expensive than on‐chip 
memories: O(100)x latency, O(1/50)x (aggregate) bandwidth 

•  On Fermi, Global Memory is cached in a 768KB shared L2 

8 

Cuda Memory Hierarchy 
•  There are other read‐only components of the Memory 

Hierarchy that exist due to the Graphics heritage of Cuda 

•  The 64 KB Cuda Constant Memory  resides in the same 
DRAM as global memory, but is accessed via special read‐
only 8 KB per‐SM caches 

•  The Cuda Texture Memory also resides in DRAM and is 
accessed via small per‐SM read‐only caches, but also 
includes interpola/on hardware 
–  This hardware is crucial for graphics performance, but only 
occasionally is useful for general‐purpose workloads 

•  The behaviors of these caches are highly op/mized for their 
roles in graphics workloads.  

9 

Cuda Memory Hierarchy 

Host Memory 

Device 0 
Global Memory 

Device 1 
Global Memory 

cudaMemcpy() 

•  Each Cuda device in the system has its own Global memory, 
separate from the Host CPU memory 
–  Allocated via cudaMalloc()/cudaFree() and friends 

•  Host  Device memory transfers are via cudaMemcpy() 
over PCI‐E, and are extremely expensive 
–  microsecond latency, ~GB/s bandwidth 

•  Mul/ple Devices managed via mul/ple CPU threads 

10 

cudaMemcpy() 

Thread‐Block Synchroniza/on 
•  Intra‐block barrier instruc/on __syncthreads() for synchronizing 

accesses to __shared__ and global memory 
–  To guarantee correctness, must __syncthreads() before reading 

values wriYen by other threads 
–  All threads in a block must execute the same __syncthreads(), or 

the GPU will hang (not just the same number of barriers !) 
•  Addi/onal intrinsics worth men/oning here: 

–   int __syncthreads_count(int), int __syncthreads_and(int),  
int __syncthreads_or(int) 

extern __shared__ float T[]; 
__device__ void 
transpose (float* a, int lda){ 
    int i = threadIdx.x, j = threadIdx.y; 
    T[i + lda*j] = a[i + lda*j]; 
    __syncthreads(); 
    a[i + lda*j] = T[j + lda*i]; 
} 

11 

Using per‐block shared memory 

12 

Using per‐block shared memory 
•  Each SM has 64 KB of private memory, divided 16KB/48KB 

(or 48KB/16KB) into so7ware‐managed scratchpad and 
hardware‐managed, non‐coherent cache 
–  Pre‐Fermi, the SM memory is only 16 KB, and is usable only 
as so7ware‐managed scratchpad 

•  Unless data will be shared between Threads in a block, it 
should reside in registers 
–  On Fermi, the 128 KB Register file is twice as large, and 
accessible at higher bandwidth and lower latency  

–  Pre‐Fermi, register file is 64 KB and equally fast as scratchpad 

13 

Shared Memory Bank Conflicts 
•  Shared memory is banked: it consists of 32 (16, pre‐Fermi) 

independently addressable 4‐byte wide memories 
–  Addresses interleave: float *p points to a float in bank k, p+1 
points to a float in bank (k+1) mod 32 

•  Each bank can sa/sfy a single 4‐byte access per cycle. 
–   A bank conflict occurs when two threads (in the same warp) 
try to access the same bank in a given cycle.  

–  The GPU hardware will execute the two accesses serially, and 
the warp's instruc/on will take an extra cycle to execute. 

•  Bank conflicts are a second‐order performance effect: even 
serialized accesses to on‐chip shared memory is faster than 
accesses to off‐chip DRAM   

14 

Shared Memory Bank Conflicts 

•  Figure G‐2 from Cuda C 
Programming Gude 3.1 

•  Unit‐Stride access is conflict‐free 
•  Stride‐2 access: thread n conflicts 

with thread 16+n 

•  Stride‐3 access is conflict‐free 

15 

Shared Memory Bank Conflicts 

•  Three more cases of conflict‐
free access 
–  Figure G‐3 from Cuda C 
Programming Gude 3.1 

•  Permua/ons within a 32‐float 
block are OK 

•  Mul/ple threads reading the 
same memory address 

•  All threads reading the same 
memory address is a 
broadcast 

16 

Atomic Memory Opera/ons 
•  Cuda provides a set of instruc/ons which execute 

atomically with respect to each other 
–  Allow non‐read‐only access to variables shared between 
threads in shared or global memory 

–  Substan/ally more expensive than standard load/stores 

–  Wth voluntary consistency, can implement e.g. spin locks! 

int atomicAdd (int*,int), float atomicAdd (float*, float), ... 
... 
int atomicMin (int*,int), 
... 
int atomicExch (int*,int), float atomicExch (float*,float), ... 
int atomicCAS (int*, int compare, int val), ...  

17 

Voluntary Memory Consistency 
•  By default, you cannot assume memory accesses are occur in the 

same order specified by the program 
–  Although a thread's own accesses appear to that thread to occur in 

program order 

•  To enforce ordering, use memory fence instruc/ons 
–  __threadfence_block(): make all previous memory accesses 

visible to all other threads within the thread block 
–  __threadfence(): make previous global memory accesses visible 

to all other threads on the device 

•  Frequently must also use the volatile type qualifier 
–  Has same behavior as CPU C/C++: the compiler is forbidden from 

register‐promo/ng values in vola/le memory 
–  Ensures that pointer dereferences produce load/store instruc/ons 
–  Declared as volatile float *p; *p must produce a memory ref. 

18 

Tim Mattson
Microprocessor and Programming Research Lab

Intel Corp.

Introduction to OpenCL

OpenCL: 20

Agenda
•  Ugly programming models and why they rule
•  The origin of OpenCL
•  A high level view of OpenCL
•  OpenCL and the CPU
•  An OpenCL “deep dive”

Heterogeneous computing
•  A modern platform has:

–  Multi-core CPU(s)
–  A GPU
–  DSP processors
–  … other?

•  The goal should NOT be to “off-load" the CPU. We need
to make the best use of all the available resources from
within a single program:

–  One program that runs well (i.e. reasonably close to “hand-tuned”
performance) on a heterogeneous mixture of processors.

OpenCL: 21

GMCH GPU

ICH

CPU CPU

DRAM

GMCH = graphics memory control hub, ICH = Input/output control hub

Heterogeneous many core processors

OpenCL: 22

Intel Dual Core CPU

3rd party names are the property of their owners.

The mass market hardware landscape has never been so chaotic … and its only
going to get worse.

The many-core challenge
•  We have arrived at many-core solutions not

because of the success of our parallel software
but because of our failure to keep increasing
CPU frequency.

•  Result: a fundamental and dangerous mismatch
–  Parallel hardware is ubiquitous.
–  Parallel software is rare

OpenCL: 23

Our challenge … make parallel software as
routine as our parallel hardware.

Tim Mattson OpenCL: 24 8/19/10

Patterns and Frameworks
•  In the long run, we will provide high level

frameworks/scripting-languages that will meet
the needs of the domain-expert, application
programmers (we hope).

–  Design patterns will guide us to the right framework
designs.

•  But even in a frameworks world, you need to
support the framework programmers

–  (also known as efficiency programmers, technology
programmers, socially mal-adjusted performance hackers, etc)

•  How do we support these low-level “performance
obsessed” programmers?

Tim Mattson OpenCL: 25 8/19/10

Solution: Find A Good parallel programming model, right?
ABCPL
ACE
ACT++
Active messages
Adl
Adsmith
ADDAP
AFAPI
ALWAN
AM
AMDC
AppLeS
Amoeba
ARTS
Athapascan-0b
Aurora
Automap
bb_threads
Blaze
BSP
BlockComm
C*.
"C* in C
C**
CarlOS
Cashmere
C4
CC++
Chu
Charlotte
Charm
Charm++
Cid
Cilk
CM-Fortran
Converse
Code
COOL

CORRELATE
CPS
CRL
CSP
Cthreads
CUMULVS
DAGGER
DAPPLE
Data Parallel C
DC++
DCE++
DDD
DICE.
DIPC
DOLIB
DOME
DOSMOS.
DRL
DSM-Threads
Ease .
ECO
Eiffel
Eilean
Emerald
EPL
Excalibur
Express
Falcon
Filaments
FM
FLASH
The FORCE
Fork
Fortran-M
FX
GA
GAMMA
Glenda

GLU
GUARD
HAsL.
Haskell
HPC++
JAVAR.
HORUS
HPC
IMPACT
ISIS.
JAVAR
JADE
Java RMI
javaPG
JavaSpace
JIDL
Joyce
Khoros
Karma
KOAN/Fortran-S
LAM
Lilac
Linda
JADA
WWWinda
ISETL-Linda
ParLin
Eilean
P4-Linda
POSYBL
Objective-Linda
LiPS
Locust
Lparx
Lucid
Maisie
Manifold

Mentat
Legion
Meta Chaos
Midway
Millipede
CparPar
Mirage
MpC
MOSIX
Modula-P
Modula-2*
Multipol
MPI
MPC++
Munin
Nano-Threads
NESL
NetClasses++
Nexus
Nimrod
NOW
Objective Linda
Occam
Omega
OpenMP
Orca
OOF90
P++
P3L
Pablo
PADE
PADRE
Panda
Papers
AFAPI.
 Para++
Paradigm

Parafrase2
Paralation
Parallel-C++
Parallaxis
ParC
ParLib++
ParLin
Parmacs
Parti
pC
PCN
PCP:
PH
PEACE
PCU
PET
PENNY
Phosphorus
POET.
Polaris
POOMA
POOL-T
PRESTO
P-RIO
Prospero
Proteus
QPC++
PVM
PSI
PSDM
Quake
Quark
Quick Threads
Sage++
SCANDAL
 SAM

pC++
SCHEDULE
SciTL
SDDA.
SHMEM
SIMPLE
Sina
SISAL.
distributed smalltalk
SMI.
SONiC
Split-C.
SR
Sthreads
Strand.
SUIF.
Synergy
Telegrphos
SuperPascal
TCGMSG.
Threads.h++.
TreadMarks
TRAPPER
uC++
UNITY
UC
V
ViC*
Visifold V-NUS
VPE
Win32 threads
WinPar
XENOOPS
XPC
Zounds
ZPL

Third party names are the property of their owners.

Models from the golden age of parallel programming

Tim Mattson OpenCL: 26 8/19/10

The only thing sillier than creating too many models
is using too many

ABCPL
ACE
ACT++
Active messages
Adl
Adsmith
ADDAP
AFAPI
ALWAN
AM
AMDC
AppLeS
Amoeba
ARTS
Athapascan-0b
Aurora
Automap
bb_threads
Blaze
BSP
BlockComm
C*.
"C* in C
C**
CarlOS
Cashmere
C4
CC++
Chu
Charlotte
Charm
Charm++
Cid
Cilk
CM-Fortran
Converse
Code
COOL

CORRELATE
CPS
CRL
CSP
Cthreads
CUMULVS
DAGGER
DAPPLE
Data Parallel C
DC++
DCE++
DDD
DICE.
DIPC
DOLIB
DOME
DOSMOS.
DRL
DSM-Threads
Ease .
ECO
Eiffel
Eilean
Emerald
EPL
Excalibur
Express
Falcon
Filaments
FM
FLASH
The FORCE
Fork
Fortran-M
FX
GA
GAMMA
Glenda

GLU
GUARD
HAsL.
Haskell
HPC++
JAVAR.
HORUS
HPC
IMPACT
ISIS.
JAVAR
JADE
Java RMI
javaPG
JavaSpace
JIDL
Joyce
Khoros
Karma
KOAN/Fortran-S
LAM
Lilac
Linda
JADA
WWWinda
ISETL-Linda
ParLin
Eilean
P4-Linda
POSYBL
Objective-Linda
LiPS
Locust
Lparx
Lucid
Maisie
Manifold

Mentat
Legion
Meta Chaos
Midway
Millipede
CparPar
Mirage
MpC
MOSIX
Modula-P
Modula-2*
Multipol
MPI
MPC++
Munin
Nano-Threads
NESL
NetClasses++
Nexus
Nimrod
NOW
Objective Linda
Occam
Omega
OpenMP
Orca
OOF90
P++
P3L
Pablo
PADE
PADRE
Panda
Papers
AFAPI.
 Para++
Paradigm

Parafrase2
Paralation
Parallel-C++
Parallaxis
ParC
ParLib++
ParLin
Parmacs
Parti
pC
PCN
PCP:
PH
PEACE
PCU
PET
PENNY
Phosphorus
POET.
Polaris
POOMA
POOL-T
PRESTO
P-RIO
Prospero
Proteus
QPC++
PVM
PSI
PSDM
Quake
Quark
Quick Threads
Sage++
SCANDAL
 SAM

pC++
SCHEDULE
SciTL
SDDA.
SHMEM
SIMPLE
Sina
SISAL.
distributed smalltalk
SMI.
SONiC
Split-C.
SR
Sthreads
Strand.
SUIF.
Synergy
Telegrphos
SuperPascal
TCGMSG.
Threads.h++.
TreadMarks
TRAPPER
uC++
UNITY
UC
V
ViC*
Visifold V-NUS
VPE
Win32 threads
WinPar
XENOOPS
XPC
Zounds
ZPL

Programming models I’ve worked with.

Tim Mattson OpenCL: 27 8/19/10

There is nothing new under the sun
•  Message passing models:

–  MPI PVM
•  Data Parallel programming models

–  C* HPF NESL CMFortran
•  Virtual Shared Memory models

–  Linda GA
•  Functional Languages

–  Haskell SISAL
•  Formal compositional models

–  CC++ PCN
•  Shared address space … threads

–  OpenMP Cilk
•  Parallel object Oriented programming

–  Mentat CHARM++ POOMA TBB

Parallel programming …
“been there, done that”
Will we be wise enough
to learn from the past?

OpenCL: 28

Lesson 1: computer scientists are
easily seduced by beauty
•  A beautiful programming model:

–  Safe: its hard to do bad things
–  Expressive: focus on the intent of the algorithm.
–  Abstract: Hides hardware details
–  Novel: New ideas and fresh perspectives

To the computer scientist … There is no problem that
can’t be solved by adding another layer of
abstraction.
The history of parallel programming can be viewed as
computer scientists chasing after an elusive ideal of
beauty

OpenCL: 29

Lesson 2: Software vendors (not
academics and not hardware vendors)
choose the winning programming models

•  What software developers need:
–  Portability: recompile to run on

every platform the market
demands

– Stability: program life times
measured in decades.

–  Predictability: the ability to
build code that adapts to
hardware details for
predictable performance.

Industry standards with
minimal HW constraints

Established prog. Envs.
from long term, trusted
sources

HW details exposed so SW
can adapt

OpenCL: 30

Ugly programming models win!
•  Software developers only weakly care

about beauty in a programming model …
pragmatism wins.

•  History supports ugly programming models
… with all the elegant abstractions for
parallelism that have been created, what is
actually used:
– MPI
– Explicit thread libraries
– Compiler directives

OpenCL is truly ugly … and to support our framework developers facing
heterogenous many core platforms, its exactly what we need!

OpenCL: 31

Math Functions
gentype acos (gentype)
gentype acosh (gentype)
gentype acospi (gentype x)
gentype asin (gentype)
gentype asinh (gentype)
gentype asinpi (gentype x)
gentype atan (gentype y_over_x)
gentype atan2 (gentype y, gentype x)
gentype atanh (gentype)
gentype atanpi (gentype x)
gentype atan2pi (gentype y, gentype x)
gentype cbrt (gentype)
gentype ceil (gentype)
gentype copysign (gentype x, gentype y)
gentype cos (gentype)
gentype cosh (gentype)
gentype cospi (gentype x)
gentype erfc (gentype)
gentype erf (gentype)
gentype exp (gentype x)
gentype exp2 (gentype)
gentype exp10 (gentype)
gentype expm1 (gentype x)
gentype fabs (gentype)
gentype fdim (gentype x, gentype y)
gentype floor (gentype)
gentype fma (gentype a, gentype b, gentype c)
gentype fmax (gentype x, gentype y)
gentype fmax (gentype x, float y)
gentype fmin (gentype x, gentype y)
gentype fmin (gentype x, float y)
gentype fmod (gentype x, gentype y)
gentype fract (gentype x, gentype *iptr)
gentype frexp (gentype x, intn *exp)
gentype hypot (gentype x, gentype y)
intn ilogb (gentype x)
gentype ldexp (gentype x, intn n)
gentype ldexp (gentype x, int n)
gentype lgamma (gentype x)
gentype lgamma_r (gentype x, intn *signp)
gentype log (gentype)
gentype log2 (gentype)
gentype log10 (gentype)
gentype log1p (gentype x)
gentype logb (gentype x)
gentype mad (gentype a, gentype b, gentype c)
gentype modf (gentype x, gentype *iptr)
gentype nan (uintn nancode)
gentype nextafter (gentype x, gentype y)

gentype pow (gentype x, gentype y)
gentype pown (gentype x, intn y)
gentype powr (gentype x, gentype y)
gentype remainder (gentype x, gentype y)
gentype remquo (gentype x, gentype y, intn *quo)
gentype rint (gentype)
gentype rootn (gentype x, intn y)
gentype round (gentype x)
gentype rsqrt (gentype)
gentype sin (gentype)
gentype sincos (gentype x, gentype *cosval)
gentype sinh (gentype)
gentype sinpi (gentype x)
gentype sqrt (gentype)
gentype tan (gentype)
gentype tanh (gentype)
gentype tanpi (gentype x)
gentype tgamma (gentype)
gentype trunc (gentype)
Integer Ops
ugentype abs (gentype x)
ugentype abs_diff (gentype x, gentype y)
gentype add_sat (gentype x, gentype y)
gentype hadd (gentype x, gentype y)
gentype rhadd (gentype x, gentype y)
gentype clz (gentype x)
gentype mad_hi (gentype a, gentype b, gentype c)
gentype mad_sat (gentype a, gentype b, gentype c)
gentype max (gentype x, gentype y)
gentype min (gentype x, gentype y)
gentype mul_hi (gentype x, gentype y)
gentype rotate (gentype v, gentype i)
gentype sub_sat (gentype x, gentype y)
shortn upsample (intn hi, uintn lo)
ushortn upsample (uintn hi, uintn lo)
intn upsample (intn hi, uintn lo)
uintn upsample (uintn hi, uintn lo)
longn upsample (intn hi, uintn lo)
ulongnn upsample (uintn hi, uintn lo)
gentype mad24 (gentype x, gentype y, gentype z)
gentype mul24 (gentype x, gentype y)
Common Functions
gentype clamp (gentype x, gentype minval, gentype maxval)
gentype clamp (gentype x, float minval, float maxval)
gentype degrees (gentype radians)
gentype max (gentype x, gentype y)
gentype max (gentype x, float y)
gentype min (gentype x, gentype y)
gentype min (gentype x, float y)

gentype mix (gentype x, gentype y, gentype a)
gentype mix (gentype x, gentype y, float a)
gentype radians (gentype degrees)
gentype sign (gentype x)
Geometric Functions
float4 cross (float4 p0, float4 p1)
float dot (gentype p0, gentype p1)
float distance (gentype p0, gentype p1)
float length (gentype p)
float fast_distance (gentype p0, gentype p1)
float fast_length (gentype p)
gentype fast_normalize (gentype p)
Relational Ops
int isequal (float x, float y)
intn isequal (floatn x, floatn y)
int isnotequal (float x, float y)
intn isnotequal (floatn x, floatn y)
int isgreater (float x, float y)
intn isgreater (floatn x, floatn y)
int isgreaterequal (float x, float y)
intn isgreaterequal (floatn x, floatn y)
int isless (float x, float y)
intn isless (floatn x, floatn y)
int islessequal (float x, float y)
intn islessequal (floatn x, floatn y)
int islessgreater (float x, float y)
intn islessgreater (floatn x, floatn y)
int isfinite (float)
intn isfinite (floatn)
int isnan (float)
intn isnan (floatn)
int isnormal (float)
intn isnormal (floatn)
int isordered (float x, float y)
intn isordered (floatn x, floatn y)
int isunordered (float x, float y)
intn isunordered (floatn x, floatn y)
int signbit (float)
intn signbit (floatn)
int any (igentype x)
int all (igentype x)
gentype bitselect (gentype a, gentype b, gentype c)
gentype select (gentype a, gentype b,igentype c)
gentype select (gentype a, gentype b,ugentype c)
Vector Loads/Store Functions
gentypen vloadn (size_t offset, const global gentype *p)
gentypen vloadn (size_t offset, const __local gentype *p)
gentypen vloadn (size_t offset, const __constant gentype *p)
gentypen vloadn (size_t offset, const __private gentype *p)

void vstoren (gentypen data, size_t offset, global gentype *p)
void vstoren (gentypen data, size_t offset, __local gentype *p)
void vstoren (gentypen data, size_t offset, __private gentype *p)
void vstore_half (float data, size_t offset, global half *p)
void vstore_half_rte (float data, size_t offset, global half *p)
void vstore_half_rtz (float data, size_t offset, global half *p)
void vstore_half_rtp (float data, size_t offset, global half *p)
void vstore_half_rtn (float data, size_t offset, global half *p)
void vstore_half (float data, size_t offset, __local half *p)
void vstore_half_rte (float data, size_t offset, __local half *p)
void vstore_half_rtz (float data, size_t offset, __local half *p)
void vstore_half_rtp (float data, size_t offset, __local half *p)
void vstore_half_rtn (float data, size_t offset, __local half *p)
void vstore_half (float data, size_t offset, __private half *p)
void vstore_half_rte (float data, size_t offset, __private half *p)
void vstore_half_rtz (float data, size_t offset, __private half *p)
void vstore_half_rtp (float data, size_t offset, __private half *p)
void vstore_half_rtn (float data, size_t offset, global half *p)
void vstore_halfn (floatn data, size_t offset, global half *p)
void vstore_halfn_rte (floatn data, size_t offset, global half *p)
void vstore_halfn_rtz (floatn data, size_t offset, global half *p)
void vstore_halfn_rtp (floatn data, size_t offset, global half *p)
void vstore_halfn_rtn (floatn data, size_t offset, global half *p)
void vstore_halfn (floatn data, size_t offset, __local half *p)
void vstore_halfn_rte (floatn data, size_t offset, __local half *p)
void vstore_halfn_rtz (floatn data, size_t offset, __local half *p)
void vstore_halfn_rtp (floatn data, size_t offset, __local half *p)
void vstore_halfn_rtn (floatn data, size_t offset, __local half *p)
void vstore_halfn (floatn data, size_t offset, __private half *p)
void vstore_halfn_rte (floatn data, size_t offset, __private half *p)
void vstore_halfn_rtz (floatn data, size_t offset, __private half *p)
void vstore_halfn_rtp (floatn data, size_t offset, __private half *p)
void vstore_halfn_rtn (floatn data, size_t offset, __private half *p)
void vstorea_halfn (floatn data, size_t offset, global half *p)
void vstorea_halfn_rte (floatn data, size_t offset, global half *p)
void vstorea_halfn_rtz (floatn data, size_t offset, global half *p)
void vstorea_halfn_rtp (floatn data, size_t offset, global half *p)
void vstorea_halfn_rtn (floatn data, size_t offset, global half *p)
void vstorea_halfn (floatn data, size_t offset, __local half *p)
void vstorea_halfn_rte (floatn data, size_t offset, __local half *p)
void vstorea_halfn_rtz (floatn data, size_t offset, __local half *p)
void vstorea_halfn_rtp (floatn data, size_t offset, __local half *p)
void vstorea_halfn_rtn (floatn data, size_t offset, __local half *p)
void vstorea_halfn (floatn data, size_t offset, __private half *p)
void vstorea_halfn_rte (floatn data, size_t offset, __private half *p)
void vstorea_halfn_rtz (floatn data, size_t offset, __private half *p)
void vstorea_halfn_rtp (floatn data, size_t offset, __private half *p)
void vstorea_halfn_rtn (floatn data, size_t offset, __private half *p)

… just look at all the built-in fuctions we had to define to make this thing work?

OpenCL: 32

Agenda
•  Ugly programming models and why they rule
•  The origin of OpenCL
•  A high level view of OpenCL
•  OpenCL and the CPU
•  An OpenCL “deep dive”

OpenCL: 33

OpenCL … the ugliest programming model in
existence

CPUs
Multiple cores driving
performance
increases

GPUs
Increasingly general
data-parallel
computing

Graphics APIs
and Shading
Languages

Multi-processor
programming –
e.g. OpenMP

OpenCL
Heterogenous
Computing

OpenCL – Open Computing Language
Open standard for portable programming of heterogeneous
platforms (CPUs, GPUs, and other processors)

OpenCL: 34

Consider the historical precedent with
OpenMP …

SGI

Cray

Merged,
needed
commonality
across
products

KAI ISV - needed
larger market

was tired of
recoding for
SMPs. Forced
vendors to
standardize.

ASCI

Wrote a
rough draft
straw man
SMP API

DEC

IBM

Intel

HP

Other vendors
invited to join

1997 Third party names are the property of their owners.

OpenCL: 35

OpenCL: Can history repeat itself?

AMD

ATI

Merged,
needed
commonality
across
products

Nvidia
GPU vendor -
wants to steel mkt
share from CPU

Intel
CPU vendor -
wants to steal mkt
share from GPU

Wrote a
rough draft
straw man
API

was tired of recoding
for many core, GPUs.
Pushed vendors to
standardize.

Apple

Ericsson

Sony

Blizzard

Nokia

Khronos
Compute
group formed

Freescale

TI

IBM

+ many
more

As ASCI did for OpenMP, Apple is doing for GPU/CPU with
OpenCL

Dec 2008
CL 

Third party names are the property of their owners.

OpenCL: 36

OpenCL Working Group

• Designed with real users (Apple + ISVs) to solve their
problems.

• Used Khronos to make it an industry standard.

OpenCL: 37

OpenCL Timeline

•  Six months from proposal to released specification
•  Commercial support:

–  Apple’s Mac OS X Snow Leopard (9’2009) will include OpenCL.
–  Nvidia OpenCL beta release on CUDA.
–  AMD rleased a CPU OpenCL SIGGRAPH’09
–  Intel actively promotes OpenCL, but we have not announced our product strategy for

OpenCL yet.

Apple, AMD, Intel,
NVIDIA write draft
proposal

Khronos working
group starts work on
OepenCL

Working Group
submits OpenCL for
Ratification

Khronos releases
OpenCL
specification

Khronos releases
conformance tests

Jun08 Oct08
Dec08

May09

OpenCL: 38

OpenCL 1.0 Embedded Profile
•  Enables OpenCL on mobile and

embedded silicon
– Relaxes some data type

and precision requirements
– Avoids the need for a

separate “ES” specification
•  Khronos APIs provide

computing support for imaging
& graphics

– Enabling advanced
applications in, e.g.,
Augmented Reality

• OpenCL will enable parallel
computing in new markets

– Mobile phones, cars,
avionics

38

A camera phone with GPS
processes images to recognize
buildings and landmarks and
provides relevant data from internet Source: Kari Pulli, Nokia

OpenCL: 39

Agenda
•  Ugly programming models and why they rule
•  The origin of OpenCL
•  A high level view of OpenCL
•  OpenCL and the CPU
•  An OpenCL “deep dive”

OpenCL: 40

OpenCL: high level view
•  OpenCL applications:

–  A host program running on the PC
–  One or more Kernels that are queued up to run on CPUs, GPUs,

and “other processors”.

•  OpenCL is understood in terms of these models
–  Platform model
–  Execution model
–  Memory model
–  Programming model

OpenCL: 41

OpenCL Platform model
The basic platform is a host and one or more
compute devices.

OpenCL: 42

Execution Model
•  Host defines a command queue and associates it with a context

(devices, kernels, memory, etc).
•  Host enqueues commands to the command queue

Gy

Gx

(wx, wy)

(wxSx + sx, wySy + sy)

(sx, sy) = (0,0)

(wxSx + sx, wySy + sy)

(sx, sy) = (Sx-1,0)

(wxSx + sx, wySy + sy)

(sx, sy) = (0, Sy-1)

(wxSx + sx, wySy + sy)

(sx, sy) = (Sx-1, Sy- 1)

Index Space

Work items execute together as a work-group.

A (Gy by Gx)
index space

OpenCL: 43

OpenCL Memory model
•  Implements a relaxed consistency, shared memory model

Global
memory:
visible to host
and compute
devices

Private
memory:
Local to
each work-
item

Local
memory:
Shared
within a
work
group

OpenCL: 44

OpenCL programming model
•  Data Parallel, SPMD

–  Work-items in a work-group run the same program
–  Update data structures in parallel using the work-item ID to select

data and guide execution.
•  Task Parallel

–  One work-item per work group … for coarse grained task-level
parallelism.

–  Native function interface: trap-door to run arbitrary code from an
OpenCL command-queue.

OpenCL: 45

Programming Kernels: OpenCL C
Language

• Derived from ISO C99
– No standard C99 headers, function pointers, recursion, variable length arrays, and bit

fields

• Additions to the language for parallelism
– Work-items and workgroups
– Vector types
– Synchronization

• Address space qualifiers
• Optimized image access
• Built-in functions

Acknowledgement: Aaftab Munshi of Apple

OpenCL: 46

• Scalar data types
– char , uchar, short, ushort, int, uint, long, ulong
– bool, intptr_t, ptrdiff_t, size_t, uintptr_t, void, half (storage)

•  Image types
–  image2d_t, image3d_t, sampler_t

• Vector data types

Acknowledgement: Aaftab Munshi of Apple

OpenCL: 47

• Portable
• Vector length of 2, 4, 8, and 16
• char2, ushort4, int8, float16, …
• Endian safe
• Aligned at vector length
• Vector operations and built-in functions

Acknowledgement: Aaftab Munshi of Apple

OpenCL: 48

• Vector literal

• Vector components

• Vector ops

2 3 -7 -7

-7 -7 -7 -7 int4 vi0 = (int4) -7;

0 1 2 3 int4 vi1 = (int4)(0, 1, 2, 3);

vi0.lo = vi1.hi;

int8 v8 = (int8)(vi0, vi1.s01, vi1.odd); 2 3 -7 -7 0 1 1 3

0 1 2 3

2 4 -5 -4

+ vi0 += vi1;

vi0 = abs(vi0); 2 4 5 4

2 3 -7 -7

Acknowledgement: Aaftab Munshi of Apple

OpenCL: 49

OpenCL Software Stack
•  Platform Layer:

–  query and select compute devices
–  create contexts and command-queues

•  Runtime
–  Coordinate between host and Compute

devices
–  resource management
–  execute kernels

•  Compiler
–  Implements kernel code on Target Device
–  ISO C99 subset + a few language additions
–  Builds executables online or offline

Application

OpenCL Framework

Host

GPU Device

Back-End
Compiler

Runtime
(common) Front End

Compiler
Platform
layer

Runtime

IR IR IR

OCL

“Bin
”

CPU Device

Back-End
Compiler

Runtime

“Bin
”

…

OpenCL: 50

Example: vector addition
•  The “hello world” program of data parallel

programming is a program to add two vectors

C[i] = A[i] + B[i] for i=1 to N

•  For the OpenCl solution, there are two parts
–  Kernel code
–  Host code

OpenCL: 51

Vector Addition - Kernel

__kernel void vec_add (__global const float *a,
 __global const float *b,
 __global float *c)
 {
 int gid = get_global_id(0);
 c[gid] = a[gid] + b[gid];
}

OpenCL: 52

Vector Addition - Host Program
// create the OpenCL context on a GPU device
cl_context = clCreateContextFromType(0,

CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);

// get the list of GPU devices associated with context
clGetContextInfo(context, CL_CONTEXT_DEVICES, 0,
 NULL, &cb);
devices = malloc(cb);
clGetContextInfo(context, CL_CONTEXT_DEVICES, cb,

devices, NULL);

// create a command-queue
cmd_queue = clCreateCommandQueue(context, devices[0],

0, NULL);

// allocate the buffer memory objects
memobjs[0] = clCreateBuffer(context, CL_MEM_READ_ONLY |

CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcA,
 NULL);}

memobjs[1] = clCreateBuffer(context,CL_MEM_READ_ONLY |
CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcB,
 NULL);

memobjs[2] = clCreateBuffer(context,CL_MEM_WRITE_ONLY,
 sizeof(cl_float)*n, NULL,

 NULL);
// create the program
program = clCreateProgramWithSource(context, 1,

&program_source, NULL, NULL);

// build the program
err = clBuildProgram(program, 0, NULL, NULL, NULL,

 NULL);

// create the kernel
kernel = clCreateKernel(program, “vec_add”, NULL);

// set the args values
err = clSetKernelArg(kernel, 0, (void *) &memobjs[0],
 sizeof(cl_mem));
err |= clSetKernelArg(kernel, 1, (void *)&memobjs[1],
 sizeof(cl_mem));
err |= clSetKernelArg(kernel, 2, (void *)&memobjs[2],
 sizeof(cl_mem));
// set work-item dimensions
global_work_size[0] = n;

// execute kernel
err = clEnqueueNDRangeKernel(cmd_queue, kernel, 1,

NULL, global_work_size, NULL, 0, NULL, NULL);

// read output array
err = clEnqueueReadBuffer(context, memobjs[2], CL_TRUE,

0, n*sizeof(cl_float), dst, 0, NULL, NULL);

The host program is ugly … but its not too hard to
understand (details with readable font in back-up slides)

OpenCL: 53

Vector Addition - Host Program
// create the OpenCL context on a GPU device
cl_context = clCreateContextFromType(0,

CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);

// get the list of GPU devices associated with context
clGetContextInfo(context, CL_CONTEXT_DEVICES, 0,
 NULL, &cb);
devices = malloc(cb);
clGetContextInfo(context, CL_CONTEXT_DEVICES, cb,

devices, NULL);

// create a command-queue
cmd_queue = clCreateCommandQueue(context, devices[0],

0, NULL);

// allocate the buffer memory objects
memobjs[0] = clCreateBuffer(context, CL_MEM_READ_ONLY |

CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcA,
NULL);}

memobjs[1] = clCreateBuffer(context,CL_MEM_READ_ONLY |
CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcB,
NULL);

memobjs[2] = clCreateBuffer(context,CL_MEM_WRITE_ONLY,
 sizeof(cl_float)*n, NULL,

NULL);
// create the program
program = clCreateProgramWithSource(context, 1,

&program_source, NULL, NULL);

// build the program
err = clBuildProgram(program, 0, NULL, NULL, NULL,

NULL);

// create the kernel
kernel = clCreateKernel(program, “vec_add”, NULL);

// set the args values
err = clSetKernelArg(kernel, 0, (void *) &memobjs[0],
 sizeof(cl_mem));
err |= clSetKernelArg(kernel, 1, (void *)&memobjs[1],
 sizeof(cl_mem));
err |= clSetKernelArg(kernel, 2, (void *)&memobjs[2],
 sizeof(cl_mem));
// set work-item dimensions
global_work_size[0] = n;

// execute kernel
err = clEnqueueNDRangeKernel(cmd_queue, kernel, 1,

NULL, global_work_size, NULL, 0, NULL, NULL);

// read output array
err = clEnqueueReadBuffer(context, memobjs[2], CL_TRUE,

0, n*sizeof(cl_float), dst, 0, NULL, NULL);

OpenCL: 54

Agenda
•  Ugly programming models and why they rule
•  The origin of OpenCL
•  A high level view of OpenCL
•  OpenCL and the CPU
•  An OpenCL “deep dive”

OpenCL: 55

OpenCL’s Two Styles of Data-Parallelism
•  Explicit SIMD data parallelism:

–  The kernel defines one stream of instructions
–  Parallelism from using wide vector types
–  Size vector types to match native HW width
–  Combine with task parallelism to exploit multiple cores.

•  Implicit SIMD data parallelism (i.e. shader-style):
–  Write the kernel as a “scalar program”
–  Use vector data types sized naturally to the algorithm
–  Kernel automatically mapped to SIMD-compute-resources and cores by

the compiler/runtime/hardware.

Both approaches are viable CPU options

OpenCL: 56

Data-Parallelism: options on IA processors

•  Explicit SIMD data parallelism
–  Programmer chooses vector data type (width)
–  Compiler hints using attributes

»  vec_type_hint(typen)

•  Implicit SIMD Data parallel
–  Map onto CPUs, GPUs, Larrabee, …

»  SSE/AVX/LRBni: 4/8/16 workitems in parallel

• Hybrid use of the two methods
»  AVX: can run two 4-wide workitems in parallel
»  LRBni: can run four 4-wide workitems in parallel

OpenCL: 57

Explicit SIMD data parallelism
•  OpenCL as a portable interface to vector instruction sets.

–  Block loops and pack data into vector types (float4, ushort16, etc).
–  Replace scalar ops in loops with blocked loops and vector ops.
–  Unroll loops, optimize indexing to match machine vector width

float a[N], b[N], c[N];
for (i=0; i<N; i++)
 c[i] = a[i]*b[i];
<<< the above becomes >>>>
float4 a[N/4], b[N/4], c[N/4];
for (i=0; i<N/4; i++)
 c[i] = a[i]*b[i];

Explicit SIMD data parallelism means you tune your code to the
vector width and other properties of the compute device

OpenCL: 58

•  2 algorithms from the Video Processing domain
–  Color Enhancement

»  Enhance the saturation (color strength) of individual colors
•  Red, Green, Blue, Yellow, Cyan and Magenta

–  Contrast Enhancement
»  Improve extreme dark and bright images

•  Video Frames
–  Processed in YUV 4:2:0 planar color space
–  10 bits per color component

»  Contained in ushort (unsigned short)
–  Fixed point arithmetic
–  Structure of arrays (SOA)

Video Processing Case Study

Y1 Y2 Y3 Y4 Y5 Y6

Y7 Y8 Y8 Y10 Y11 Y12

U1 U2 U3

V1 V2 V3

YUV 4:2:0 Frame

OpenCL: 59
* Results have been estimated based on internal Intel analysis and are provided for
informational purposes only. Any difference in system hardware or software design or
configuration may affect actual performance.

Explicit SIMD data parallelism: Case Study

1 work-item per core + loops

Vectorize (block loops, pack
into ushort8 and ushort16)

Optimize vector indexing

Unroll loops

Hand-tuned SSE +
Multithreading

40%

186%

23%

% peak performance

3 Ghz dual core CPU
pre-release version of OpenCL
Source: Intel Corp.

5%

•  Video contrast/color optimization kernel on a dual core CPU.

100% 20%

S
u

cc
e
ss

iv
e
 i
m

p
ro

v
e
m

e
n

t

Good news: OpenCL code 95% of hand-tuned SSE/MT perf.
Bad news: New platform, redo all those optimizations.

OpenCL: 60

Towards “Portable” Performance
•  The following C code is an

example of a Bilateral 1D filter:

•  Reminder: Bilateral filter is an
edge preserving image
processing algorithm.

•  See more information here:
http://scien.stanford.edu/class/
psych221/projects/06/imagescaling/
bilati.html

void P4_Bilateral9 (int start, int end, float v)
{
 int i, j, k;
 float w[4], a[4], p[4];
 float inv_of_2v = -0.5 / v;
 for (i = start; i < end; i++) {
 float wt[4] = { 1.0f, 1.0f, 1.0f, 1.0f };
 for (k = 0; k < 4; k++)
 a[k] = image[i][k];
 for (j = 1; j <= 4; j++) {
 for (k = 0; k < 4; k++)
 p[k] = image[i - j*SIZE][k] - image[i][k];
 for (k = 0; k < 4; k++)
 w[k] = exp (p[k] * p[k] * inv_of_2v);
 for (k = 0; k < 4; k++) {
 wt[k] += w[k];
 a[k] += w[k] * image[i - j*SIZE][k];
 }
 }
 for (j = 1; j <= 4; j++) {
 for (k = 0; k < 4; k++)
 p[k] = image[i + j*SIZE][k] - image[i][k];
 for (k = 0; k < 4; k++;
 w[k] = exp (p[k] * p[k] * inv_of_2v);
 for (k = 0; k < 4; k++) {
 wt[k] += w[k];
 a[k] += w[k] * image[i + j*SIZE][k];
 }
 }
 for (k = 0; k < 4; k++) {
 image2[i][k] = a[k] / wt[k];
 }
 }
}

Source: Intel Corp.

OpenCL: 61

•  The following C code is an
example of a Bilateral 1D filter:

•  Reminder: Bilateral filter is an
edge preserving image
processing algorithm.

•  See more information here:
http://scien.stanford.edu/class/
psych221/projects/06/imagescaling/
bilati.html

void P4_Bilateral9 (int start, int end, float v)
{
 int i, j, k;
 float w[4], a[4], p[4];
 float inv_of_2v = -0.5 / v;
 for (i = start; i < end; i++) {
 float wt[4] = { 1.0f, 1.0f, 1.0f, 1.0f };
 for (k = 0; k < 4; k++)
 a[k] = image[i][k];
 for (j = 1; j <= 4; j++) {
 for (k = 0; k < 4; k++)
 p[k] = image[i - j*SIZE][k] - image[i][k];
 for (k = 0; k < 4; k++)
 w[k] = exp (p[k] * p[k] * inv_of_2v);
 for (k = 0; k < 4; k++) {
 wt[k] += w[k];
 a[k] += w[k] * image[i - j*SIZE][k];
 }
 }
 for (j = 1; j <= 4; j++) {
 for (k = 0; k < 4; k++)
 p[k] = image[i + j*SIZE][k] - image[i][k];
 for (k = 0; k < 4; k++;
 w[k] = exp (p[k] * p[k] * inv_of_2v);
 for (k = 0; k < 4; k++) {
 wt[k] += w[k];
 a[k] += w[k] * image[i + j*SIZE][k];
 }
 }
 for (k = 0; k < 4; k++) {
 image2[i][k] = a[k] / wt[k];
 }
 }
}

void P4_Bilateral9 (int start, int end, float v)
{
 <<< Declarations >>>
 for (i = start; i < end; i++) {
 for (j = 1; j <= 4; j++) {
 <<< a series of short loops >>>>
 }
 for (j = 1; j <= 4; j++) {
 <<< a 2nd series of short loops >>>
 }
 }
}

Source: Intel Corp.

Towards “Portable” Performance

OpenCL: 62

“Implicit SIMD” data parallel code

•  “outer” loop replaced
by work-items running
over an NDRange index
set.

•  NDRange 4*image size
… since each workitem
does a color for each
pixel.

•  Leave it to the
compiler to map work-
items onto lanes of the
vector units …

__kernel void P4_Bilateral9 (__global float* inImage, __global float* outImage, float v)
{
 const size_t myID = get_global_id(0);
 const float inv_of_2v = -0.5f / v;
 const size_t myRow = myID / IMAGE_WIDTH;
 size_t maxDistance = min(DISTANCE, myRow);
 maxDistance = min(maxDistance, IMAGE_HEIGHT - myRow);
 float currentPixel, neighborPixel, newPixel;
 float diff;
 float accumulatedWeights, currentWeights;
 newPixel = currentPixel = inImage[myID];
 accumulatedWeights = 1.0f;
 for (size_t dist = 1; dist <= maxDistance; ++dist)
 {
 neighborPixel = inImage[myID + dist*IMAGE_WIDTH];
 diff = neighborPixel - currentPixel;
 currentWeights = exp(diff * diff * inv_of_2v);
 accumulatedWeights += currentWeights;
 newPixel += neighborPixel * currentWeights;
 neighborPixel = inImage[myID - dist*IMAGE_WIDTH];
 diff = neighborPixel - currentPixel;
 currentWeights = exp(diff * diff * inv_of_2v);
 accumulatedWeights += currentWeights;
 newPixel + = neighborPixel * currentWeights;
 }
 outImage[myID] = newPixel / accumulatedWeights;
}

Source: Intel Corp.

OpenCL: 63

•  “outer” loop replaced by
work-items running over
an NDRange index set.

•  NDRange 4*image size …
since each workitem does
a color for each pixel.

•  Leave it to the compiler
to map work-items onto
lanes of the vector units
…

“Implicit SIMD” data parallel code
__kernel void P4_Bilateral9 (__global float* inImage, __global float* outImage, float v)
{
 const size_t myID = get_global_id(0);
 const float inv_of_2v = -0.5f / v;
 const size_t myRow = myID / IMAGE_WIDTH;
 size_t maxDistance = min(DISTANCE, myRow);
 maxDistance = min(maxDistance, IMAGE_HEIGHT - myRow);
 float currentPixel, neighborPixel, newPixel;
 float diff;
 float accumulatedWeights, currentWeights;
 newPixel = currentPixel = inImage[myID];
 accumulatedWeights = 1.0f;
 for (size_t dist = 1; dist <= maxDistance; ++dist)
 {
 neighborPixel = inImage[myID + dist*IMAGE_WIDTH];
 diff = neighborPixel - currentPixel;
 currentWeights = exp(diff * diff * inv_of_2v);
 accumulatedWeights += currentWeights;
 newPixel += neighborPixel * currentWeights;
 neighborPixel = inImage[myID - dist*IMAGE_WIDTH];
 diff = neighborPixel - currentPixel;
 currentWeights = exp(diff * diff * inv_of_2v);
 accumulatedWeights += currentWeights;
 newPixel + = neighborPixel * currentWeights;
 }
 outImage[myID] = newPixel / accumulatedWeights;
}

__kernel void p4_bilateral9(__global float* inImage,
 __global float* outImage, float v)
{
 const size_t myID = get_global_id(0);
 <<< declarations >>>
 for (size_t dist = 1; dist <= maxDistance; ++dist){
 neighborPixel = inImage[myID +
 dist*IMAGE_WIDTH];
 diff = neighborPixel - currentPixel;
 currentWeights = exp(diff * diff * inv_of_2v);
 << plus others to compute pixels, weights, etc >>
 accumulatedWeights += currentWeights;
 }
 outImage[myID] = newPixel / accumulatedWeights;
}

Source: Intel Corp.

OpenCL: 64

Portable Performance in OpenCL
•  Implicit SIMD code … where the framework maps

work-items onto the “lanes of the vector unit” …
creates the opportunity for portable code that
performs well on full range of OpenCL compute
devices.

•  Requires mature OpenCL technology that “knows” how
to do this:

–  … But it is important to note …. we know this approach works since
its based on the way shader compilers work today.

OpenCL: 65

Task Parallelism Overview
•  Think of a task as an asynchronous function call

–  “Do X at some point in the future”
–  Optionally “… after Y is done”
–  Light weight, often in user space

•  Strengths
–  Copes well with heterogeneous workloads
–  Doesn’t require 1000’s of strands
–  Scales well with core count

•  Limitations
–  No automatic support for latency hiding
–  Must explicitly write SIMD code

X()

Y()

A natural fit to multi-core CPUs

OpenCL: 66

Task Parallelism in OpenCL
•  clEnqueueTask

–  Imagine “sea of different tasks” executing concurrently
–  A task “owns the core” (i.e., a workgroup size of 1)

• Use tasks when algorithm…
–  Benefits from large amount of local/private memory
–  Has predictable global memory accesses
–  Can be programmed using explicit vector style
–  “Just doesn’t have 1000’s of identical things to do”

• Use data-parallel kernels when algorithm…
–  Does not benefit from large amounts of local/private memory
–  Has unpredictable global memory accesses
–  Needs to apply same operation across large number of data

elements

OpenCL: 67

Future Parallel Programming
•  Real world applications contain data

parallel parts as well as serial/sequential
parts

•  OpenCL addresses these Apps need by
supporting Data Parallel & Task Parallel

•  “Braided Parallelism” – composing Data
Parallel & Task Parallel constructs in a
single algorithm

•  CPUs are ideal for Braided Parallelism

OpenCL: 68

Future parallel programming: Larrabee

•  Cores communicate on a wide ring bus
–  Fast access to memory and fixed function blocks
–  Fast access for cache coherency

•  L2 cache is partitioned among the cores
–  Provides high aggregate bandwidth
–  Allows data replication & sharing

M
em

or
y

C
on

tr
ol

le
r

Multi-
Threaded

Wide SIMD

Multi-
Threaded

Wide SIMD

Multi-
Threaded

Wide SIMD

Multi-
Threaded

Wide SIMD

Fi
xe

d
Fu

nc
tio

n
Te

xt
ur

e
Lo

gi
c

M
em

or
y

C
on

tr
ol

le
r

M
em

or
y

C
on

tr
ol

le
r

D
is

pl
ay

 In
te

rf
ac

e
Sy

st
em

 In
te

rf
ac

e

D$ I$

Multi-Threaded
Wide SIMD

D$ I$

Multi-Threaded
Wide SIMD

D$ I$

Multi-Threaded
Wide SIMD

D$ I$

Multi-Threaded
Wide SIMD

L2 Cache

. . .

. . .

OpenCL: 69

Processor Core Block Diagram
•  Separate scalar and vector units

with separate registers
•  Vector unit: 16 32-bit ops/clock
•  In-order instruction execution
•  Short execution pipelines
•  Fast access from L1 cache
• Direct connection to each core’s

subset of the L2 cache
•  Prefetch instructions load L1 and

L2 caches

Instruction Decode

Scalar
Unit

Vector
Unit

Scalar
Registers

Vector
Registers

L1 Icache & Dcache

256KB L2 Cache
Local Subset

Ring

OpenCL: 70

Key Differences from Typical GPUs
•  Each Larrabee core is a complete Intel processor

–  Context switching & pre-emptive multi-tasking
–  Virtual memory and page swapping, even in texture logic
–  Fully coherent caches at all levels of the hierarchy

•  Efficient inter-block communication
–  Ring bus for full inter-processor communication
–  Low latency high bandwidth L1 and L2 caches
–  Fast synchronization between cores and caches

Larrabee is perfect for the braided parallelism
in future applications

OpenCL: 71

Conclusion
•  OpenCL defines a platform-API/framework for

heterogeneous computing … not just GPGPU or CPU-offload
programming.

•  OpenCL has the potential to deliver portably performant
code; but only if its used correctly:

–  Implicit SIMD data parallel code has the best chance of mapping
onto a diverse range of hardware … once OpenCL implementation
quality catches up with mature shader languages.

•  The future is clear:
–  Parallelism mixing task parallel and data parallel code in a single

program … balancing the load among ALL OF the platform’s
available resources.

–  OpenCL can handle this … and emerging platforms (e.g Larrabee)
will increasingly emphasize this model.

Tim Mattson OpenCL: 72 8/19/10

References

•  s09.idav.ucdavis.edu for slides from a Siggraph2009 course
titled “Beyond Programmable Shading”

•  Seiler, L., Carmean, D., et al. 2008. Larrabee: A many-core x86
architecture for visual computing. SIGGRAPH ’08: ACM
SIGGRAPH 2008 Papers, ACM Press, New York, NY

•  Fatahalian, K., Houston, M., “GPUs: a closer look”, Communications
of the ACM October 2008, vol 51 #10. graphics.stanford.edu/
~kayvonf/papers/fatahalianCACM.pdf

Tim Mattson OpenCL: 73 8/19/10

Agenda
•  Ugly programming models and why they rule
•  The origin of OpenCL
•  A high level view of OpenCL
•  OpenCL and the CPU
•  An OpenCL “deep dive”

Tim Mattson OpenCL: 74 8/19/10

•  Host program
–  Query compute devices
–  Create contexts
–  Create memory objects associated to contexts
–  Compile and create kernel program objects
–  Issue commands to command-queue
–  Synchronization of commands
–  Clean up OpenCL resources

•  Kernels
–  C code with some restrictions and extensions

Basic OpenCL Program Structure

Tim Mattson OpenCL: 75 8/19/10

Example: Vector Addition

• Compute c = a + b
–  a, b, and c are vectors of length N

• Basic OpenCL concepts
– Simple kernel code
– Basic context management
– Memory allocation
–  Kernel invocation

Tim Mattson OpenCL: 76 8/19/10

Platform Layer: Basic discovery

•  Platform layer allows applications to query for platform specific
features

•  Querying platform info Querying devices
–  clGetDeviceIDs()

»  Find out what compute devices are on the system
»  Device types include CPUs, GPUs, or Accelerators

–  clGetDeviceInfo()
»  Queries the capabilities of the discovered compute devices such

as:
•  Number of compute cores
•  Maximum work-item and work-group size
•  Sizes of the different memory spaces
•  Maximum memory object size

Tim Mattson OpenCL: 77 8/19/10

Platform Layer: Contexts

•  Creating contexts
–  Contexts are used by the OpenCL runtime to manage objects and

execute kernels on one or more devices
–  Contexts are associated to one or more devices

»  Multiple contexts could be associated to the same device
–  clCreateContext() and clCreateContextFromType() returns a handle to

the created contexts

Tim Mattson OpenCL: 78 8/19/10

Platform layer: Command-Queues

•  Command-queues store a set of operations to
perform

•  Command-queues are associated to a context
•  Multiple command-queues can be created to handle

independent commands that don’t require
synchronization

•  Execution of the command-queue is guaranteed to
be completed at sync points

Tim Mattson OpenCL: 79 8/19/10

VecAdd: Context, Devices, Queue
// create the OpenCL context on a GPU device
cl_context context = clCreateContextFromType(0, // (must be 0)
 CL_DEVICE_TYPE_GPU,
 NULL, // error callback

 NULL, // user data
 NULL); // error code

// get the list of GPU devices associated with context
size_t cb;
clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, NULL, &cb);
cl_device_id *devices = malloc(cb);
clGetContextInfo(context, CL_CONTEXT_DEVICES, cb, devices, NULL);

// create a command-queue
cl_cmd_queue cmd_queue = clCreateCommandQueue(context,
 devices[0], 0, // default options
 NULL); // error code

Tim Mattson OpenCL: 80 8/19/10

Memory Objects

•  Buffer objects
–  One-dimensional collection of objects (like C arrays)
–  Valid elements include scalar and vector types as well as user defined

structures
–  Buffer objects can be accessed via pointers in the kernel

•  Image objects
–  Two- or three-dimensional texture, frame-buffer, or images
–  Must be addressed through built-in functions

•  Sampler objects
–  Describes how to sample an image in the kernel

»  Addressing modes
»  Filtering modes

Tim Mattson OpenCL: 81 8/19/10

Creating Memory Objects

•  clCreateBuffer(), clCreateImage2D(), and clCreateImage3D()
•  Memory objects are created with an associated context
•  Memory can be created as read only, write only, or read-write
•  Where objects are created in the platform memory space can be

controlled
–  Device memory
–  Device memory with data copied from a host pointer
–  Host memory
–  Host memory associated with a pointer

»  Memory at that pointer is guaranteed to be valid at synchronization
points

Tim Mattson OpenCL: 82 8/19/10

Manipulating Object Data

•  Object data can be copied to host memory, from host memory, or to other
objects

•  Memory commands are enqueued in the command buffer and processed
when the command is executed

–  clEnqueueReadBuffer(), clEnqueueReadImage()
–  clEnqueueWriteBuffer(), clEnqueueWriteImage()
–  clEnqueueCopyBuffer(), clEnqueueCopyImage()

•  Data can be copied between Image and Buffer objects
–  clEnqueueCopyImageToBuffer()
–  clEnqueueCopyBufferToImage()

•  Regions of the object data can be accessed by mapping into the host
address space

–  clEnqueueMapBuffer(), clEnqueueMapImage()
–  clEnqueueUnmapMemObject()

Tim Mattson OpenCL: 83 8/19/10

VecAdd: Create Memory Objects
cl_mem memobjs[3];
// allocate input buffer memory objects
memobjs[0] = clCreateBuffer(context,
 CL_MEM_READ_ONLY | // flags

 CL_MEM_COPY_HOST_PTR,
 sizeof(cl_float)*n, // size
 srcA, // host pointer
 NULL); // error code
memobjs[1] = clCreateBuffer(context,
 CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
 sizeof(cl_float)*n, srcB, NULL);

// allocate input buffer memory object
memobjs[2] = clCreateBuffer(context, CL_MEM_WRITE_ONLY,
 sizeof(cl_float)*n, NULL, NULL);

Tim Mattson OpenCL: 84 8/19/10

Program Objects
•  Program objects encapsulate:

–  An associated context
–  Program source or binary
–  list of targeted devices, build options
–  Number of attached kernel objects

•  Build process
1.  Create program object

»  clCreateProgramWithSource()
»  clCreateProgramWithBinary()

2.  Build program executable
»  Compile and link from source or binary for all devices or specific devices in

the associated context
»  clBuildProgram()
»  Build options

•  Preprocessor, float point behavior, optimizations, etc

Tim Mattson OpenCL: 85 8/19/10

Kernel Objects

•  Kernel objects encapsulate
–  Specific kernel functions declared in a program
–  Argument values used for kernel execution

•  Creating kernel objects
–  clCreateKernel() - creates a kernel object for a single function in a program

•  Setting arguments
–  clSetKernelArg(<kernel>, <argument index>)
–  Each argument data must be set for the kernel function
–  Argument values copied and stored in the kernel object

•  Kernel vs. program objects
–  Kernels are related to program execution
–  Programs are related to program source

Tim Mattson OpenCL: 86 8/19/10

VecAdd: Program and Kernel
// create the program
cl_program program = clCreateProgramWithSource(
 context,
 1, // string count
 &program_source, // program strings
 NULL, // string lengths
 NULL); // error code

// build the program
cl_int err = clBuildProgram(program,
 0, // num devices in device list
 NULL, // device list
 NULL, // options
 NULL, // notifier callback function ptr
 NULL); // user data
// create the kernel
cl_kernel kernel = clCreateKernel(program, “vec_add”, NULL);

Tim Mattson OpenCL: 87 8/19/10

// set “a” vector argument
err = clSetKernelArg(kernel,
 0, // argument index
 (void *)&memobjs[0], // argument data
 sizeof(cl_mem)); // argument data size

// set “b” vector argument
err |= clSetKernelArg(kernel, 1, (void *)&memobjs[1],
 sizeof(cl_mem));

// set “c” vector argument
err |= clSetKernelArg(kernel, 2, (void *)&memobjs[2],
 sizeof(cl_mem));

VecAdd: Set Kernel Arguments

Tim Mattson OpenCL: 88 8/19/10

Kernel Execution

•  A command to execute a kernel must be enqueued to the command-queue
•  clEnqueueNDRangeKernel()

–  Data-parallel execution model
–  Describes the index space for kernel execution
–  Requires information on NDRange dimensions and work-group size

•  clEnqueueTask()
–  Task-parallel execution model (multiple queued tasks)
–  Kernel is executed on a single work-item

•  clEnqueueNativeKernel()
–  Task-parallel execution model
–  Executes a native C/C++ function not compiled using the OpenCL compiler
–  This mode does not use a kernel object so arguments must be passed in

Tim Mattson OpenCL: 89 8/19/10

Command-Queues

•  Command-queue execution
–  Execution model signals when commands are complete or data is

ready
–  Command-queue could be explicitly flushed to the device
–  Command-queues execute in-order or out-of-order

»  In-order - commands complete in the order queued and
correct memory is consistent

»  Out-of-order - no guarantee when commands are executed
or memory is consistent without synchronization

Tim Mattson OpenCL: 90 8/19/10

Synchronization

•  Synchronization
–  Signals when commands are completed to the host or other commands in queue
–  Blocking calls

»  Commands that do not return until complete
»  clEnqueueReadBuffer() can be called as blocking and will block until complete

–  Event objects
»  Tracks execution status of a command
»  Some commands can be blocked until event objects signal a completion of

previous command
•  clEnqueueNDRangeKernel() can take an event object as an argument and wait until a previous

command (e.g., clEnqueueWriteBuffer) is complete

–  Queue barriers - queued commands that can block command execution

Tim Mattson OpenCL: 91 8/19/10

size_t global_work_size[1] = n; // set work-item dimensions
// execute kernel
err = clEnqueueNDRangeKernel(cmd_queue, kernel,
 1, // Work dimensions
 NULL, // must be NULL (work offset)
 global_work_size,

 NULL, // automatic local work size
 0, // no events to wait on
 NULL, // event list
 NULL); // event for this kernel
// read output array
err = clEnqueueReadBuffer(context, memobjs[2],
 CL_TRUE, // blocking
 0, // offset
 n*sizeof(cl_float), // size

 dst, // pointer
 0, NULL, NULL); // events

VecAdd: Invoke Kernel, Read Output

Tim Mattson OpenCL: 92 8/19/10

OpenCL C for Compute Kernels
•  Derived from ISO C99

–  A few restrictions: recursion, function pointers, functions in C99 standard headers ...
–  Preprocessing directives defined by C99 are supported

•  Built-in Data Types
–  Scalar and vector data types, Pointers
–  Data-type conversion functions: convert_type<_sat><_roundingmode>
–  Image types: image2d_t, image3d_t and sampler_t

•  Built-in Functions — Required
–  work-item functions, math.h, read and write image
–  Relational, geometric functions, synchronization functions

•  Built-in Functions — Optional
–  double precision, atomics to global and local memory
–  selection of rounding mode, writes to image3d_t surface

Tim Mattson OpenCL: 93 8/19/10

OpenCL C Language Highlights

•  Function qualifiers
–  “__kernel” qualifier declares a function as a kernel
–  Kernels can call other kernel functions

•  Address space qualifiers
–  __global, __local, __constant, __private
–  Pointer kernel arguments must be declared with an address space qualifier

•  Work-item functions
–  Query work-item identifiers

»  get_work_dim(), get_global_id(), get_local_id(), get_group_id()

•  Synchronization functions
–  Barriers - all work-items within a work-group must execute the barrier function before

any work-item can continue
–  Memory fences - provides ordering between memory operations

Tim Mattson OpenCL: 94 8/19/10

OpenCL C Language Restrictions

•  Pointers to functions are not allowed
•  Pointers to pointers allowed within a kernel, but not as an argument
•  Bit-fields are not supported
•  Variable length arrays and structures are not supported
•  Recursion is not supported
• Writes to a pointer of types less than 32-bit are not supported
• Double types are not supported, but reserved

Tim Mattson OpenCL: 95 8/19/10

Vector Addition Kernel

__kernel void vec_add (__global const float *a,
 __global const float *b,
 __global float *c)
 {
 int gid = get_global_id(0);
 c[gid] = a[gid] + b[gid];
 }

Tim Mattson OpenCL: 96 8/19/10

Legal Disclaimer
•  INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO

LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER,
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF
INTEL® PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN
MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.

•  Intel may make changes to specifications and product descriptions at any time, without notice.
•  All products, dates, and figures specified are preliminary based on current expectations, and are subject to

change without notice.
•  Intel, processors, chipsets, and desktop boards may contain design defects or errors known as errata, which

may cause the product to deviate from published specifications. Current characterized errata are available on
request.

•  Larrabee and other code names featured are used internally within Intel to identify products that are in
development and not yet publicly announced for release. Customers, licensees and other third parties are
not authorized by Intel to use code names in advertising, promotion or marketing of any product or services
and any such use of Intel's internal code names is at the sole risk of the user

•  Performance tests and ratings are measured using specific computer systems and/or components and reflect
the approximate performance of Intel products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

•  Intel, Intel Inside and the Intel logo are trademarks of Intel Corporation in the United States and other
countries.

•  *Other names and brands may be claimed as the property of others.
•  Copyright © 2009 Intel Corporation.

Tim Mattson OpenCL: 97 8/19/10

Risk Factors
This presentation contains forward-looking statements that involve a number of risks and uncertainties. These
statements do not reflect the potential impact of any mergers, acquisitions, divestitures, investments or other
similar transactions that may be completed in the future. The information presented is accurate only as of
today’s date and will not be updated. In addition to any factors discussed in the presentation, the important
factors that could cause actual results to differ materially include the following: Demand could be different from
Intel's expectations due to factors including changes in business and economic conditions, including conditions in
the credit market that could affect consumer confidence; customer acceptance of Intel’s and competitors’
products; changes in customer order patterns, including order cancellations; and changes in the level of inventory
at customers. Intel’s results could be affected by the timing of closing of acquisitions and divestitures. Intel
operates in intensely competitive industries that are characterized by a high percentage of costs that are fixed
or difficult to reduce in the short term and product demand that is highly variable and difficult to forecast.
Revenue and the gross margin percentage are affected by the timing of new Intel product introductions and the
demand for and market acceptance of Intel's products; actions taken by Intel's competitors, including product
offerings and introductions, marketing programs and pricing pressures and Intel’s response to such actions;
Intel’s ability to respond quickly to technological developments and to incorporate new features into its products;
and the availability of sufficient supply of components from suppliers to meet demand. The gross margin
percentage could vary significantly from expectations based on changes in revenue levels; product mix and
pricing; capacity utilization; variations in inventory valuation, including variations related to the timing of
qualifying products for sale; excess or obsolete inventory; manufacturing yields; changes in unit costs;
impairments of long-lived assets, including manufacturing, assembly/test and intangible assets; and the timing
and execution of the manufacturing ramp and associated costs, including start-up costs. Expenses, particularly
certain marketing and compensation expenses, vary depending on the level of demand for Intel's products, the
level of revenue and profits, and impairments of long-lived assets. Intel is in the midst of a structure and
efficiency program that is resulting in several actions that could have an impact on expected expense levels and
gross margin. Intel's results could be impacted by adverse economic, social, political and physical/infrastructure
conditions in the countries in which Intel, its customers or its suppliers operate, including military conflict and
other security risks, natural disasters, infrastructure disruptions, health concerns and fluctuations in currency
exchange rates. Intel's results could be affected by adverse effects associated with product defects and errata
(deviations from published specifications), and by litigation or regulatory matters involving intellectual property,
stockholder, consumer, antitrust and other issues, such as the litigation and regulatory matters described in
Intel's SEC reports. A detailed discussion of these and other factors that could affect Intel’s results is included
in Intel’s SEC filings, including the report on Form 10-Q for the quarter ended June 28, 2008.

