
PARLab Parallel Boot Camp

Testing and Debugging Parallel Programs

Jacob Burnim

Electrical Engineering and Computer Sciences

University of California, Berkeley

Parallel Correctness Challenges

•! Parallel programming presents a number of
new challenges to writing correct software.
–!New kinds of bugs: data races, deadlocks, etc.

–!More difficult to test programs and find bugs.

–!More difficult to reproduce errors.

•! Key Difficulty: Potential non-determinism.
–!Order in which threads execute can change

from run to run.

–!Some runs are correct while others hit bugs.

Jacob Burnim Testing & Debugging: 2 8/17/10

Parallel Correctness Challenges

•! For sequential programs, we typically
expect that same input ==> same output:

Jacob Burnim Testing & Debugging: 3 8/17/10

x=0.7
y=0.3
…
!=5.0

Program P

•! But for parallel programs, threads can be
scheduled differently each run:

Parallel Correctness Challenges

Jacob Burnim Testing & Debugging: 4 8/17/10

x=0.7
y=0.3
…
!=5.0

.!

.!

.!

•! But for parallel programs, threads can be
scheduled differently each run:

Parallel Correctness Challenges

Jacob Burnim Testing & Debugging: 5 8/17/10

x=0.7
y=0.3
…
!=5.0

.!

.!

.!

•! But for parallel programs, threads can be
scheduled differently each run.

•! A bug may occur under only rare schedules.
–! In 1 run in 1000 or 10,000 or …

•! May occur only under some configurations:
–! Particular OS scheduler.

–!When machine is under heavy load.

–!Only when debugging/logging is turned off!

Parallel Correctness Challenges

Jacob Burnim Testing & Debugging: 6 8/17/10

“Heisenbugs”

Testing Parallel Programs

•! For sequential programs:
–!Create several test inputs with known answers.

–!Run the code on each test input.

–! If all tests give correct input, have some
confidence in the program.

–!Have intuition about which “edge cases” to test.

•! But for parallel programs:
–!Each run tests only a single schedule.

–!How can we test many different schedules?

–!How confident can we be when our tests pass?

Jacob Burnim Testing & Debugging: 7 8/17/10

Outline

•! Challenges for parallel testing.

•! Random testing of parallel programs.

•! Detecting and predicting parallel bugs.

•! Active Random Testing of parallel programs.

•! Conclusions.

Jacob Burnim Testing & Debugging: 8 8/17/10

Testing Parallel Programs

•! Possible Idea: Can we just run each test
thousands of times?

•! Problem: Often not much randomness in
OS scheduling.
–!May waste much effort, but test few

different schedules.

–!Recall: Some schedules tend to occur only under
certain configurations – hardware, OS, etc.

–!One easy parameter to change: load on machine.

Jacob Burnim Testing & Debugging: 9 8/17/10

Stress Testing

•! Idea: Test parallel program while
oversubscribing the machine.
–!On a 4-core system, run with 8 or 16 threads.

–!Run several instances of the program at a time.

–! Increase size to overflow cache/memory.

–!Effect: Timing of threads will change, giving
different thread schedules.

•! Pro: Very simple idea, easy to implement.
–!And often works!

Jacob Burnim Testing & Debugging: 10 8/17/10

Noise Making / Random Scheduling

•! Idea: Run with random thread schedules.
–!E.g., insert code like:

 if (rand() < 0.01) usleep(100);

 if (rand() < 0.01) yield();

–!Can add to only “suspicious” or “tricky” code.

–!Or use tool to seize control of thread scheduling.

•! Pros: Still fairly simple and often effective.
–!Explores different schedules than stress testing.

–!Many tools can perform this automatically.

Jacob Burnim Testing & Debugging: 11 8/17/10

Noise Making / Random Scheduling

•! IBM’s ConTest: Noise-making for Java.
–!Clever heuristics about where to insert delays.

•! Berkeley’s Thrille (C + pthreads) and
CalFuzzer (Java) do simple random scheduling.
–!Extensible: Write testing scheduler for your app.

•! Microsoft Research’s Cuzz (for .NET).
–!New random scheduling algorithm with

probabilistic guarantees for finding bugs.

–!Available soon.

•! Many of these tools provide replay –
same random number seed ==> same schedule.

Jacob Burnim Testing & Debugging: 12 8/17/10

Limitations of Random Scheduling

•! Parallel programs have huge number of
schedules – exponential in length of a run.

Jacob Burnim Testing & Debugging: 13 8/17/10

Possible
thread

schedules.

Explored by
repeated execution.

Explored by some
stress test.

Limitations of Random Scheduling

•! Parallel programs have huge number of
schedules – exponential in length of a run.

Jacob Burnim Testing & Debugging: 14 8/17/10

Possible
thread

schedules.

Random
schedules.

Vast majority of schedules will never be tested.

Limitations of Random Scheduling

•! Parallel programs have huge number of
schedules – exponential in length of a run.

Jacob Burnim Testing & Debugging: 15 8/17/10

Possible
thread

schedules.

Random
schedules.

Vast majority of schedules will never be tested.

Can we find parallel errors without explicitly
testing a schedule in which the error occurs?

Outline

•! Challenges for parallel testing.

•! Random testing of parallel programs.

•! Detecting and predicting parallel bugs.

•! Active Random Testing of parallel programs.

•! Conclusions.

Jacob Burnim Testing & Debugging: 16 8/17/10

Detecting/Predicting Parallel Bugs

•! Say we observe a test run of a parallel
program that doesn’t obviously fail.

•! Key Question: Can we find possible
parallel bugs by examining the execution?

Jacob Burnim Testing & Debugging: 17 8/17/10

Detecting/Predicting Parallel Bugs

•! Say we observe a test run of a parallel
program that doesn’t obviously fail.

•! Key Question: Can we find possible
parallel bugs by examining the execution?

Jacob Burnim Testing & Debugging: 18 8/17/10

Program Run. Trace

Race Detector:
Did a race occur
in this execution?

Race Predictor:
Could a race occur in
a similar execution?

Detecting/Predicting Parallel Bugs

•! Techniques/tools exist for:
–!Data races.

–!Atomicity violations.

–!Deadlocks.

–!Memory consistency errors.

Jacob Burnim Testing & Debugging: 19 8/17/10

Program Run. Trace

Dynamic
Detection.

Dynamic
Prediction.

Data Race Detection/Prediction

•! Recall: A data race occurs when two
threads concurrently access the same
memory, and a least one is a write.

Jacob Burnim Testing & Debugging: 20 8/17/10

 int x = 0;!

 Thread 1: Thread 2:!

 t1 = x; t2 = x;!

 x = t1 + 1; x = t2 + 1;!

Data race between two writes
causes lost update – x is
incorrectly 1 instead of 2.

Data race between two writes
causes lost update – x can

incorrectly be 1 instead of 2.

Data Race Detection/Prediction

•! 20+ years of research on race detection.

•! Happens-Before Race Detection [Schonberg ’89]:
–!Do two accesses to a variable occur, at least one a

write, with no intervening synchronization?

–!No false warnings.

•! Lockset Race Prediction [Savage, et al., ’97]:
–!Does every access to a variable hold a common lock?

–!Efficient, but many false warnings.

•! Hybrid Race Prediction [O’Callahan, Choi, 03]:
–!Combines Lockset with Happens-Before for better

performance and fewer false warnings vs. Lockset.

Jacob Burnim Testing & Debugging: 21 8/17/10

Coverage vs. False Warnings

•! False Warning: Tool reports a data race,
but the race cannot happen in a real run.

•! Coverage: How many of the real data races
does a tool report?

•! Hybrid race prediction:
–!Better coverage but more false warnings.

•! Happens-Before race detection:
–!Fewer false warnings (still some, in practice)

and less coverage.

Jacob Burnim Testing & Debugging: 22 8/17/10

Data Race Example I

Jacob Burnim Testing & Debugging: 23 8/17/10

x = 1;

lock(L);

y = 1;

unlock(L);

lock(L);

y = 2;

unlock(L);

if (x == 0) ERROR

Thread 1: Thread 2:

Write(x) happens-before
Read(x), so H-B detector

reports no race.

Write(x) and Read(x) do
not hold a common lock,

so Lockset/Hybrid
predicts a data race.

Data Race Example II

Jacob Burnim Testing & Debugging: 24 8/17/10

x = 1;

lock(L);

y = 1;

unlock(L);

lock(L);

if (y == 1)

if (x == 0) ERROR

unlock(L);

Thread 1: Thread 2:

Write(x) happens-before
Read(x), so H-B detector

reports no race.

Write(x) and Read(x) do
not hold a common lock,

so Lockset/Hybrid
predicts a data race.

False warning!

Dynamic Data Race Tools

•! Intel Thread Checker for C + pthreads.
–!Happens-Before race detection.

•! Valgrind-based tools for C + pthreads.
–!Helgrind and DRD (Happens-Before).

–!ThreadSanitizer (Hybrid).

•! CHESS performs race detection for .NET

•! CalFuzzer and Thrille: hybrid race
detection for Java and C + pthreads.

Jacob Burnim Testing & Debugging: 25 8/17/10

Atomicity Detection/Prediction

•! Dynamic detection and prediction tools exist
for atomicity bugs, too.

–! Parallel calls to deposit
intended to happen all-
at-once (atomically).

–!No data races because
of lock L.

–!But deposit can be
wrongly interrupted.

Jacob Burnim Testing & Debugging: 26 8/17/10

 int balance = 0;!

 lock L;!

 @atomic !

 void deposit(int a) {!

 lock(L);!

 int t = balance;!

 unlock(L);!

 lock(L);!

 balance = t + a;!

 unlock(L);!

 }!

Atomicity Detection/Prediction

•! CalFuzzer predicts atomicity bugs for Java.
(Not yet implemented in Thrille.)

–!User must specify which methods or other blocks
of code are intended to be atomic.

–!Or CalFuzzer can guess – e.g. synchronized
methods, bodies of parallel loops, etc.

•! Large body of research on detecting/
predicting atomicity violations, but few
publicly available tools.

Jacob Burnim Testing & Debugging: 27 8/17/10

Deadlock Prediction

•! CalFuzzer also predicts deadlocks for Java.
(Not yet implemented in Thrille.)

Jacob Burnim Testing & Debugging: 28 8/17/10

 lock L1, L2;!

 Thread 1: Thread 2:!

 !

 lock(L1); lock(L2);!

 !

 lock(L2); lock(L1);!

Aside: Static Analysis

•! Have only discussed dynamic analyses.
–!Examine a real run/trace of a program.

•! Static analyses predict data races,
deadlocks, etc., without running a program.
–!Only examine the source code.

–!Area of active research for ~20 years.

–! Potentially much better coverage than dynamic
analysis – examines all possible runs.

–!But typically also more false warnings.

•! CHORD: static race and deadlock
prediction for Java.

Jacob Burnim Testing & Debugging: 29 8/17/10

Outline

•! Challenges for parallel testing.

•! Random testing of parallel programs.

•! Detecting and predicting parallel bugs.

•! Active Random Testing of parallel programs.

•! Conclusions.

Jacob Burnim Testing & Debugging: 30 8/17/10

Active Random Testing Overview

•! Problem: Random testing can be very
effective for parallel programs, but can
miss many potential bugs.

•! Problem: Predictive analyses find many
bugs, but can have false warnings.
–!Time consuming and difficult to examine

reported bugs and determine whether or not
they are real.

•! Key Idea: Combine them – use predictive
analysis to find potential bugs, then biased
random testing to actually create each bug.

Jacob Burnim Testing & Debugging: 31 8/17/10

Active Random Testing Overview

•! Key Idea: Use predictive analysis to find
potential bugs, then biased random testing
to try to actually create each bug.

Jacob Burnim Testing & Debugging: 32 8/17/10

Program Predict

Race 1:
(14, 19)

Race N:
(87, 92)

Potential
Data Races:

...

Can lines 14 and
19 really race?

Active Random Testing Overview

•! Key Idea: Use predictive analysis to find
potential bugs, then biased random testing
to try to actually create each bug.

Jacob Burnim Testing & Debugging: 33 8/17/10

Race 1:
(14, 19)

Race N:
(87, 92)

Potential
Data Races:

...

Can lines 14 and
19 really race?

100 random
schedules

Biased to make
it likely for lines
14 and 19 to race.

Only report
data race to
user if we
see it in a
real run.

Active Random Testing

•! CalFuzzer is our extensible, open-source
tool for active testing of Java programs.
–!For data races, atomicity bugs, and deadlocks.

–!RaceFuzzer is the active testing algorithm for
data races – will show by example.

•! Thrille for C + pthreads.
–!For data races.

•! And UPC-Thrille for Unified Parallel C.
–! Part of the Berkeley UPC system by year’s end.

Jacob Burnim Testing & Debugging: 34 8/17/10

RACEFUZZER using an example

Thread1

foo(o1);

sync foo(C x) {

 s1: g1();

 s2: g2();

 s3: g3();

 s4: g4();

 s5: x.f = 1;

}

Thread2

bar(o1);

bar(C y) {

 s6: if (y.f==1)

 s7: ERROR;

}

Thread3

foo(o2);

Run Predictive Analysis: Statement pair (s5,s6) are in race

Jacob Burnim Testing & Debugging: 35 8/17/10

RACEFUZZER using an example

Thread1

foo(o1);

sync foo(C x) {

 s1: g1();

 s2: g2();

 s3: g3();

 s4: g4();

 s5: x.f = 1;

}

Thread2

bar(o1);

bar(C y) {

 s6: if (y.f==1)

 s7: ERROR;

}

Thread3

foo(o2);

Run Predictive Analysis: Statement pair (s5,s6) are in race

Jacob Burnim Testing & Debugging: 36 8/17/10

RACEFUZZER using an example

Thread1

foo(o1);

sync foo(C x) {

 s1: g1();

 s2: g2();

 s3: g3();

 s4: g4();

 s5: x.f = 1;

}

Thread2

bar(o1);

bar(C y) {

 s6: if (y.f==1)

 s7: ERROR;

}

Thread3

foo(o2);

(s5,s6) in race

Goal: Create a trace exhibiting the race

Jacob Burnim Testing & Debugging: 37 8/17/10

RACEFUZZER using an example

Thread1

foo(o1);

sync foo(C x) {

 s1: g1();

 s2: g2();

 s3: g3();

 s4: g4();

 s5: x.f = 1;

}

Thread2

bar(o1);

bar(C y) {

 s6: if (y.f==1)

 s7: ERROR;

}

Thread3

foo(o2);

 Example Trace:

 s1: g1();

 s2: g2();

 s3: g3();

 s1: g1();

 s2: g2();

 s3: g3();

 s4: g4();

 s5: o1.f = 1;

 s6: if (o1.f==1)

 s7: ERROR;

 s4: g4();

 s5: o2.f = 1;

Racing Statements
Temporally Adjacent

(s5,s6) in race

Goal: Create a trace exhibiting the race

Jacob Burnim Testing & Debugging: 38 8/17/10

RACEFUZZER using an example

Thread1

foo(o1);

sync foo(C x) {

 s1: g1();

 s2: g2();

 s3: g3();

 s4: g4();

 s5: x.f = 1;

}

Thread2

bar(o1);

bar(C y) {

 s6: if (y.f==1)

 s7: ERROR;

}

Thread3

foo(o2);

Execution:

(s5,s6) in race

Jacob Burnim Testing & Debugging: 39 8/17/10

RACEFUZZER using an example

Thread1

foo(o1);

sync foo(C x) {

 s1: g1();

 s2: g2();

 s3: g3();

 s4: g4();

 s5: x.f = 1;

}

Thread2

bar(o1);

bar(C y) {

 s6: if (y.f==1)

 s7: ERROR;

}

Thread3

foo(o2);

Execution:

 s1: g1();

(s5,s6) in race

Jacob Burnim Testing & Debugging: 40 8/17/10

RACEFUZZER using an example

Thread1

foo(o1);

sync foo(C x) {

 s1: g1();

 s2: g2();

 s3: g3();

 s4: g4();

 s5: x.f = 1;

}

Thread2

bar(o1);

bar(C y) {

 s6: if (y.f==1)

 s7: ERROR;

}

Thread3

foo(o2);

Execution:

 s1: g1();

(s5,s6) in race

Jacob Burnim Testing & Debugging: 41 8/17/10

RACEFUZZER using an example

Thread1

foo(o1);

sync foo(C x) {

 s1: g1()

 s2: g2();

 s3: g3();

 s4: g4();

 s5: x.f = 1;

}

Thread2

bar(o1);

bar(C y) {

 s6: if (y.f==1)

 s7: ERROR;

}

Thread3

foo(o2);

Execution:

 s1: g1();

 s1: g1();

(s5,s6) in race

Jacob Burnim Testing & Debugging: 42 8/17/10

RACEFUZZER using an example

Thread1

foo(o1);

sync foo(C x) {

 s1: g1()

 s2: g2();

 s3: g3();

 s4: g4();

 s5: x.f = 1;

}

Thread2

bar(o1);

bar(C y) {

 s6: if (y.f==1)

 s7: ERROR;

}

Thread3

foo(o2);

Execution:

 s1: g1();

 s1: g1();

(s5,s6) in race

Jacob Burnim Testing & Debugging: 43 8/17/10

RACEFUZZER using an example

Thread1

foo(o1);

sync foo(C x) {

 s1: g1()

 s2: g2();

 s3: g3();

 s4: g4();

 s5: x.f = 1;

}

Thread2

bar(o1);

bar(C y) {

 s6: if (y.f==1)

 s7: ERROR;

}

Thread3

foo(o2);

Execution:

 s1: g1();

 s1: g1();

 s6: if (o1.f==1)

(s5,s6) in race

Jacob Burnim Testing & Debugging: 44 8/17/10

RACEFUZZER using an example

Thread1

foo(o1);

sync foo(C x) {

 s1: g1()

 s2: g2();

 s3: g3();

 s4: g4();

 s5: x.f = 1;

}

Thread2

bar(o1);

bar(C y) {

 s6: if (y.f==1)

 s7: ERROR;

}

Thread3

foo(o2);

Execution:

 s1: g1();

 s1: g1();

 s6: if (o1.f==1)

(s5,s6) in race

Jacob Burnim Testing & Debugging: 45 8/17/10

RACEFUZZER using an example

Thread1

foo(o1);

sync foo(C x) {

 s1: g1()

 s2: g2();

 s3: g3();

 s4: g4();

 s5: x.f = 1;

}

Thread2

bar(o1);

bar(C y) {

 s6: if (y.f==1)

 s7: ERROR;

}

Thread3

foo(o2);

Execution:

 s1: g1();

 s1: g1();

 s6: if (o1.f==1)

(s5,s6) in race

Postponed = { }

Jacob Burnim Testing & Debugging: 46 8/17/10

RACEFUZZER using an example

Thread1

foo(o1);

sync foo(C x) {

 s1: g1()

 s2: g2();

 s3: g3();

 s4: g4();

 s5: x.f = 1;

}

Thread2

bar(o1);

bar(C y) {

 s6: if (y.f==1)

 s7: ERROR;

}

Thread3

foo(o2);

Execution:

 s1: g1();

 s1: g1();

(s5,s6) in race

Postponed = { } s6: if (o1.f==1)

s6: if (o1.f==1)

Do not postpone
if there is a deadlock

Jacob Burnim Testing & Debugging: 47 8/17/10

RACEFUZZER using an example

Thread1

foo(o1);

sync foo(C x) {

 s1: g1()

 s2: g2();

 s3: g3();

 s4: g4();

 s5: x.f = 1;

}

Thread2

bar(o1);

bar(C y) {

 s6: if (y.f==1)

 s7: ERROR;

}

Thread3

foo(o2);

Execution:

 s1: g1();

 s1: g1();

(s5,s6) in race

Jacob Burnim Testing & Debugging: 48 8/17/10

Postponed = {s6: if (o1.f==1) }

RACEFUZZER using an example

Thread1

foo(o1);

sync foo(C x) {

 s1: g1()

 s2: g2();

 s3: g3();

 s4: g4();

 s5: x.f = 1;

}

Thread2

bar(o1);

bar(C y) {

 s6: if (y.f==1)

 s7: ERROR;

}

Thread3

foo(o2);

Execution:

 s1: g1();

 s1: g1();

 s2: g2();

(s5,s6) in race

Postponed = {s6: if (o1.f==1) }

Jacob Burnim Testing & Debugging: 49 8/17/10

RACEFUZZER using an example

Thread1

foo(o1);

sync foo(C x) {

 s1: g1()

 s2: g2();

 s3: g3();

 s4: g4();

 s5: x.f = 1;

}

Thread2

bar(o1);

bar(C y) {

 s6: if (y.f==1)

 s7: ERROR;

}

Thread3

foo(o2);

Execution:

 s1: g1();

 s1: g1();

 s2: g2();

(s5,s6) in race

Postponed = {s6: if (o1.f==1) }

Jacob Burnim Testing & Debugging: 50 8/17/10

RACEFUZZER using an example

Thread1

foo(o1);

sync foo(C x) {

 s1: g1()

 s2: g2();

 s3: g3();

 s4: g4();

 s5: x.f = 1;

}

Thread2

bar(o1);

bar(C y) {

 s6: if (y.f==1)

 s7: ERROR;

}

Thread3

foo(o2);

Execution:

 s1: g1();

 s1: g1();

 s2: g2();

 s2: g2();

 s3: g3();

 s3: g3();

 s4: g4();

 s5: o2.f = 1;

(s5,s6) in race

Postponed = {s6: if (o1.f==1) }

Jacob Burnim Testing & Debugging: 51 8/17/10

RACEFUZZER using an example

Thread1

foo(o1);

sync foo(C x) {

 s1: g1()

 s2: g2();

 s3: g3();

 s4: g4();

 s5: x.f = 1;

}

Thread2

bar(o1);

bar(C y) {

 s6: if (y.f==1)

 s7: ERROR;

}

Thread3

foo(o2);

Execution:

 s1: g1();

 s1: g1();

 s2: g2();

 s2: g2();

 s3: g3();

 s3: g3();

 s4: g4();

 s5: o2.f = 1;

(s5,s6) in race

Postponed = {s6: if (o1.f==1) }

Jacob Burnim Testing & Debugging: 52 8/17/10

RACEFUZZER using an example

Thread1

foo(o1);

sync foo(C x) {

 s1: g1()

 s2: g2();

 s3: g3();

 s4: g4();

 s5: x.f = 1;

}

Thread2

bar(o1);

bar(C y) {

 s6: if (y.f==1)

 s7: ERROR;

}

Thread3

foo(o2);

Execution:

 s1: g1();

 s1: g1();

 s2: g2();

 s2: g2();

 s3: g3();

 s3: g3();

 s4: g4();

 s5: o2.f = 1;

(s5,s6) in race

Postponed = {s6: if (o1.f==1) }

Race?

Jacob Burnim Testing & Debugging: 53 8/17/10

RACEFUZZER using an example

Thread1

foo(o1);

sync foo(C x) {

 s1: g1()

 s2: g2();

 s3: g3();

 s4: g4();

 s5: x.f = 1;

}

Thread2

bar(o1);

bar(C y) {

 s6: if (y.f==1)

 s7: ERROR;

}

Thread3

foo(o2);

Execution:

 s1: g1();

 s1: g1();

 s2: g2();

 s2: g2();

 s3: g3();

 s3: g3();

 s4: g4();

 s5: o2.f = 1;

(s5,s6) in race

Postponed = {s6: if (o1.f==1) }

Race?
NO

o1.f " o2.f

Jacob Burnim Testing & Debugging: 54 8/17/10

RACEFUZZER using an example

Thread1

foo(o1);

sync foo(C x) {

 s1: g1()

 s2: g2();

 s3: g3();

 s4: g4();

 s5: x.f = 1;

}

Thread2

bar(o1);

bar(C y) {

 s6: if (y.f==1)

 s7: ERROR;

}

Thread3

foo(o2);

Execution:

 s1: g1();

 s1: g1();

 s2: g2();

 s2: g2();

 s3: g3();

 s3: g3();

 s4: g4();

(s5,s6) in race

Postponed = {s6: if (o1.f==1), } s5: o2.f = 1;

 s5: o2.f = 1;

Jacob Burnim Testing & Debugging: 55 8/17/10

RACEFUZZER using an example

Thread1

foo(o1);

sync foo(C x) {

 s1: g1()

 s2: g2();

 s3: g3();

 s4: g4();

 s5: x.f = 1;

}

Thread2

bar(o1);

bar(C y) {

 s6: if (y.f==1)

 s7: ERROR;

}

Thread3

foo(o2);

Execution:

 s1: g1();

 s1: g1();

 s2: g2();

 s2: g2();

 s3: g3();

 s3: g3();

 s4: g4();

(s5,s6) in race

Postponed = {s6: if (o1.f==1), s5: o2.f = 1; }

Jacob Burnim Testing & Debugging: 56 8/17/10

RACEFUZZER using an example

Thread1

foo(o1);

sync foo(C x) {

 s1: g1()

 s2: g2();

 s3: g3();

 s4: g4();

 s5: x.f = 1;

}

Thread2

bar(o1);

bar(C y) {

 s6: if (y.f==1)

 s7: ERROR;

}

Thread3

foo(o2);

Execution:

 s1: g1();

 s1: g1();

 s2: g2();

 s2: g2();

 s3: g3();

 s3: g3();

 s4: g4();

 s4: g4();

(s5,s6) in race

Postponed = {s6: if (o1.f==1), s5: o2.f = 1; }

Jacob Burnim Testing & Debugging: 57 8/17/10

RACEFUZZER using an example

Thread1

foo(o1);

sync foo(C x) {

 s1: g1()

 s2: g2();

 s3: g3();

 s4: g4();

 s5: x.f = 1;

}

Thread2

bar(o1);

bar(C y) {

 s6: if (y.f==1)

 s7: ERROR;

}

Thread3

foo(o2);

Execution:

 s1: g1();

 s1: g1();

 s2: g2();

 s2: g2();

 s3: g3();

 s3: g3();

 s4: g4();

 s4: g4();

 s5: o1.f = 1;

(s5,s6) in race

Postponed = {s6: if (o1.f==1), s5: o2.f = 1; }

Jacob Burnim Testing & Debugging: 58 8/17/10

RACEFUZZER using an example

Thread1

foo(o1);

sync foo(C x) {

 s1: g1()

 s2: g2();

 s3: g3();

 s4: g4();

 s5: x.f = 1;

}

Thread2

bar(o1);

bar(C y) {

 s6: if (y.f==1)

 s7: ERROR;

}

Thread3

foo(o2);

Execution:

 s1: g1();

 s1: g1();

 s2: g2();

 s2: g2();

 s3: g3();

 s3: g3();

 s4: g4();

 s4: g4();

 s5: o1.f = 1;

(s5,s6) in race

Postponed = {s6: if (o1.f==1), s5: o2.f = 1; }

Jacob Burnim Testing & Debugging: 59 8/17/10

RACEFUZZER using an example

Thread1

foo(o1);

sync foo(C x) {

 s1: g1()

 s2: g2();

 s3: g3();

 s4: g4();

 s5: x.f = 1;

}

Thread2

bar(o1);

bar(C y) {

 s6: if (y.f==1)

 s7: ERROR;

}

Thread3

foo(o2);

Execution:

 s1: g1();

 s1: g1();

 s2: g2();

 s2: g2();

 s3: g3();

 s3: g3();

 s4: g4();

 s4: g4();

 s5: o1.f = 1;

(s5,s6) in race

Postponed = {s6: if (o1.f==1), s5: o2.f = 1; }

Race?
YES
o1.f = o1.f

Jacob Burnim Testing & Debugging: 60 8/17/10

RACEFUZZER using an example

Thread1

foo(o1);

sync foo(C x) {

 s1: g1()

 s2: g2();

 s3: g3();

 s4: g4();

 s5: x.f = 1;

}

Thread2

bar(o1);

bar(C y) {

 s6: if (y.f==1)

 s7: ERROR;

}

Thread3

foo(o2);

Execution:

 s1: g1();

 s1: g1();

 s2: g2();

 s2: g2();

 s3: g3();

 s3: g3();

 s4: g4();

 s4: g4();

(s5,s6) in race

Postponed = {s5: o2.f = 1; }

s6: if (o1.f==1) s5: o1.f = 1;

Jacob Burnim Testing & Debugging: 61 8/17/10

RACEFUZZER using an example

Thread1

foo(o1);

sync foo(C x) {

 s1: g1()

 s2: g2();

 s3: g3();

 s4: g4();

 s5: x.f = 1;

}

Thread2

bar(o1);

bar(C y) {

 s6: if (y.f==1)

 s7: ERROR;

}

Thread3

foo(o2);

Execution:

 s1: g1();

 s1: g1();

 s2: g2();

 s2: g2();

 s3: g3();

 s3: g3();

 s4: g4();

 s4: g4();

 s5: o1.f = 1;

 s6: if (o1.f==1)

(s5,s6) in race

Postponed = {s5: o2.f = 1; }

Jacob Burnim Testing & Debugging: 62 8/17/10

RACEFUZZER using an example

Thread1

foo(o1);

sync foo(C x) {

 s1: g1()

 s2: g2();

 s3: g3();

 s4: g4();

 s5: x.f = 1;

}

Thread2

bar(o1);

bar(C y) {

 s6: if (y.f==1)

 s7: ERROR;

}

Thread3

foo(o2);

Execution:

 s1: g1();

 s1: g1();

 s2: g2();

 s2: g2();

 s3: g3();

 s3: g3();

 s4: g4();

 s4: g4();

 s5: o1.f = 1;

 s6: if (o1.f==1)

(s5,s6) in race

Postponed = {s5: o2.f = 1; }

Racing Statements
Temporally Adjacent

Jacob Burnim Testing & Debugging: 63 8/17/10

RACEFUZZER using an example

Thread1

foo(o1);

sync foo(C x) {

 s1: g1()

 s2: g2();

 s3: g3();

 s4: g4();

 s5: x.f = 1;

}

Thread2

bar(o1);

bar(C y) {

 s6: if (y.f==1)

 s7: ERROR;

}

Thread3

foo(o2);

Execution:

 s1: g1();

 s1: g1();

 s2: g2();

 s2: g2();

 s3: g3();

 s3: g3();

 s4: g4();

 s4: g4();

 s5: o1.f = 1;

 s6: if (o1.f==1)

 s7: ERROR;

(s5,s6) in race

Postponed = {s5: o2.f = 1; }

Racing Statements
Temporally Adjacent

Jacob Burnim Testing & Debugging: 64 8/17/10

RACEFUZZER using an example

Thread1

foo(o1);

sync foo(C x) {

 s1: g1()

 s2: g2();

 s3: g3();

 s4: g4();

 s5: x.f = 1;

}

Thread2

bar(o1);

bar(C y) {

 s6: if (y.f==1)

 s7: ERROR;

}

Thread3

foo(o2);

Execution:

 s1: g1();

 s1: g1();

 s2: g2();

 s2: g2();

 s3: g3();

 s3: g3();

 s4: g4();

 s4: g4();

 s5: o1.f = 1;

 s6: if (o1.f==1)

 s7: ERROR;

 s5: o2.f = 1;

(s5,s6) in race

Postponed = { }

Racing Statements
Temporally Adjacent

Jacob Burnim Testing & Debugging: 65 8/17/10

Another RACEFUZZER Example

Thread1{

1: lock(L);

2: f1();

3: f2();

4: f3();

5: f4();

6: f5();

7: unlock(L);

8: if (x==0)

9: ERROR;

}

Thread2{

10: x = 1;

11: lock(L);

12: f6();

13: unlock(L);

}

Jacob Burnim Testing & Debugging: 66 8/17/10

Another RACEFUZZER Example

Thread1{

1: lock(L);

2: f1();

3: f2();

4: f3();

5: f4();

6: f5();

7: unlock(L);

8: if (x==0)

9: ERROR;

}

Thread2{

10: x = 1;

11: lock(L);

12: f6();

13: unlock(L);

}

Race

Racing Pair: (8,10)
Jacob Burnim Testing & Debugging: 67 8/17/10

This race would occur
rarely under a normal or
naively-random execution.

RaceFuzzer creates the
race with high probability.

Another RACEFUZZER Example

Thread1{

1: lock(L);

2: f1();

3: f2();

4: f3();

5: f4();

6: f5();

7: unlock(L);

8: if (x==0)

9: ERROR;

}

Thread2{

10: x = 1;

11: lock(L);

12: f6();

13: unlock(L);

}

Racing Pair: (8,10) Postponed Set = {Thread2}
Jacob Burnim Testing & Debugging: 68 8/17/10

Another RACEFUZZER Example

Thread1{

1: lock(L);

2: f1();

3: f2();

4: f3();

5: f4();

6: f5();

7: unlock(L);

8: if (x==0)

9: ERROR;

}

Thread2{

10: x = 1;

11: lock(L);

12: f6();

13: unlock(L);

}

Jacob Burnim Testing & Debugging: 69 8/17/10

Another RACEFUZZER Example

Thread1{

1: lock(L);

2: f1();

3: f2();

4: f3();

5: f4();

6: f5();

7: unlock(L);

8: if (x==0)

9: ERROR;

}

Thread2{

10: x = 1;

11: lock(L);

12: f6();

13: unlock(L);

}

Jacob Burnim Testing & Debugging: 70 8/17/10

Another RACEFUZZER Example

Thread1{

1: lock(L);

2: f1();

3: f2();

4: f3();

5: f4();

6: f5();

7: unlock(L);

8: if (x==0)

9: ERROR;

}

Thread2{

10: x = 1;

11: lock(L);

12: f6();

13: unlock(L);

}

Hit error with 0.5 probability

Jacob Burnim Testing & Debugging: 71 8/17/10

Implementation

•! RaceFuzzer: Part of CalFuzzer
tool suite

•! Instrument source using
SOOT compiler framework

•! Instrumentations are used to
“hijack” the scheduler

–! Implement a custom
scheduler

–! Run one thread at a time

–! Use semaphores to control
threads

•! Deadlock detector
–! Because we cannot instrument

native method calls

ins_lock(L1);
lock(L1);
ins_write(&X);
X=1;
unlock(L1);
ins_unlock(L1);

ins_lock(L1);
lock(L2);
Y=2;
unlock(L2);
ins_unlock(L1);

Custom
Scheduler

Jacob Burnim Testing & Debugging: 72 8/17/10

Experimental Results

Jacob Burnim Testing & Debugging: 73 8/17/10

Active Testing: Useful Features

•! Classify real races from false alarms.
–!No false warnings.

•! Inexpensive replay of a concurrent
execution exhibiting a real race or other
parallel bug

•! Separate some harmful data races from
benign races – i.e. whether or not the race
leads to a crash or wrong output.

•! Embarrassingly parallel.
–!Test different potential races / other bugs at

the same time.

Jacob Burnim Testing & Debugging: 74 8/17/10

Active Testing: Limitations

•! Not complete: can miss a real race.
–!Can only detect races that happen on the given

test suite on some schedule.

•! May not be able to separate all real races
from false warnings.
–!Random scheduling may fail to create real race.

•! May not be able to separate harmful races
from benign races.
–!If error behavior not seen in random runs.

•! Program is run sequentially during testing.

Jacob Burnim Testing & Debugging: 75 8/17/10

Active Testing Summary

•! Combines benefits of random testing and
predictive analysis.
–!Random testing amazingly effective in practice.

–!Even more so when biased with information
about predicted bugs.

–!Can replay executions for debugging.

•! Available now for Java (CalFuzzer) and
Thrille (C + pthreads).

•! UPC-Thrille for Unified Parallel C.
–! Part of the Berkeley UPC system by year’s end.

Jacob Burnim Testing & Debugging: 76 8/17/10

Outline

•! Challenges for parallel testing.

•! Random testing of parallel programs.

•! Detecting and predicting parallel bugs.

•! Active Random Testing of parallel programs.

•! Conclusions.

Jacob Burnim Testing & Debugging: 77 8/17/10

Conclusions

•! Many tools available right now to help
find bugs in parallel software.
–!Data races, atomicity violations, deadlocks.

•! But no silver bullet.
–!Have to carefully design how an application

threads will coordinate and share/protect data.

–!Tools will help catch mistakes when the design
is accidentally not followed.

–!Ad hoc parallelization likely to never be
correct, even with these tools.

Jacob Burnim Testing & Debugging: 78 8/17/10

ANY QUESTIONS?

Pointers to Tools I

•! IBM ConTest (Noise-Making for Java):
https://www.research.ibm.com/haifa/projects/
verification/contest/index.html

•! Cuzz (Random scheduling for C++/.NET):
http://research.microsoft.com/en-us/projects/cuzz/

Jacob Burnim Testing & Debugging: 80 8/17/10

Pointers to Tools II

•! Intel Thread Checker and Parallel Inspector (C/C++):
http://software.intel.com/en-us/intel-thread-checker/
http://software.intel.com/en-us/intel-parallel-
inspector/

•! Helgrind, DRD, ThreadSanitizer
(Dynamic Data Race Detection/Prediction for C/C++):
http://valgrind.org/docs/manual/hg-manual.html
http://valgrind.org/docs/manual/drd-manual.html
http://code.google.com/p/data-race-test/

•! CHORD (Static Race/Deadlock Detection for Java):
http://code.google.com/p/jchord/

Jacob Burnim Testing & Debugging: 81 8/17/10

Pointers to Tools III

•! CalFuzzer (Java):
 http://srl.cs.berkeley.edu/~ksen/calfuzzer/

•! Thrille (C):
 http://github.com/nicholasjalbert/Thrille

•! CHESS (C++/.NET Model Checking, Race Detection):
http://research.microsoft.com/en-us/projects/chess/
default.aspx

•! Java Path Finder (Model Checking for Java):
 http://babelfish.arc.nasa.gov/trac/jpf

Jacob Burnim Testing & Debugging: 82 8/17/10

