Par Lab Parallel Boot Camp

Performance Tools

Karl Fuerlinger

fuerling@eecs.berkeley.edu

e Motivation

e Concepts and Definitions

— Instrumentation, monitoring, analysis

e Specific examples and their functionality
— PAPI — access to hardware performance counters
— ompP — profiling OpenMP code
— IPM — monitoring message passing applications

8/18/2010 Performance Tools: 2

" Motivatio
N

e Performance analysis is important

— For HPC: computer systems are large
investments

» Procurement: O($40 Mio)
» Operational costs: ~S5 Mio per year
» Power: 1 MW/year ~S1 Mio

— Goals:
» Solve larger problems (new science)
» Solve problems faster (turn-around time)

» Improve error bounds on solutions
(confidence)

e Same is true on smaller scale, down to a
handheld devices as well: Parallelism
enables new kinds of applications but
need to take full advantage of resources

8/18/2010 Performance Tools: 3

I._\d Definitions

e The typical performance optimization cycle

Code Development

Functionally
complete and
correct program

Modify / Tune

Complete, cor-
rect and well-
performing
program

Usage / Production

8/18/2010 Performance Tools: 4

| " iRstrumentation

8/18/2010

Instrumentation := adding

ser-level abstractions
problem domain

measurement probes to the / »
code in order to observe its // , source code |- r instrumentation T
execution ¥
// [preprocessor} ------------ T instrumentation T
Can be done on several levels I/ source code
and different techniques for | . . _
different levels , compiler === T Instrumentation T
/
: object code || libraries 1~ instrumentation
Different overheads and levels
of accuracy with each technique ‘\
\\ executable {------ t instrumentation T
No application instrumentation ; : |
needed: run in a simulator. E.g., \\ Instrumentation T
Valgrind, SIMICS, etc..lc?ut \ runtime image 1"t instrumentation T
slowdown and scalability are \ —
issues performance 'EVM ------- + instrumentation T
data

Performance Tools: 5

| NRSEUmEntation — Examples (1)

e Dynamic Library Interposition

— Standard technique for dynamically linked executables

— No changes to the application required

e LD PRELOAD=timewarp.so ./myapp

A gettimeofday() l } 1999-08-18, 14:30

gettimeofday() 2010-08-18, 14:30 timewarp.so

l T 2010-08-18, 14:30

v

e Used in practice for MPI, File-1/O, GPU (CUDA) monitoring

8/18/2010 Performance Tools: 6

| NRSErGmEntation — Examples (2)

e MPI Library Instrumentation:

N N\
[Call MPI_Send |- MPI_Send MPI_Send

PMPI_Send

[Call MPI_Bcast | MPI_Bcast
Interposition {

User Program \ Library \ MPI Library

e MPI library interposition
— All functions are available under two names: MPI_Xxx and PMPI_Xxx,
— MPI_Xxx symbols are weak, can be over-written by interposition library

— Measurement code in the interposition library measures begin, end, transmitted data, etc...
and calls corresponding PMPI routine.

— Not all MPI functions need to be implemented in the interpostion library
— Works for statically linked applications too

8/18/2010 Performance Tools: 7

| NRSEUmERtation — Examples (3)

e Preprocessor Instrumentation

— Example: Instrumenting OpenMP constructs with Opari

— Preprocessor operation

R (instr
source code

e Example: Instrumentation of a parallel region

I HELT,
} /* user code in parallel region */

8/18/2010

This approach is used for OpenMP
instrumentation by most vendor-
independent tools. Examples:
TAU/Kojak/Scalasca/ompP

Performance Tools: 8

| NRSEUmERtation — Examples (4)

e Source code instrumentation
— User-added time measurement, etc. (e.g., print£f(), gettimeofday())

— Think twice before you roll your own solution, many tools expose mechanisms for source code
instrumentation in addition to automatic instrumentation facilities they offer

— Instrument program phases:
» Initialization
» main loop iteration 1,2,3,4,...
» data post-processing

— Pragma and pre-processor based, e.g., Opari

#pragma pomp inst begin (foo)
/ application code

#pragma pomp inst end(foo)

— MPI_Pcontrol based, e.g., IPM

MPI Pcontrol (1, "name") ;
// @pplication code

MPI Pcontrol(-1,'"name");

8/18/2010 Performance Tools: 9

e Profiling vs. Tracing

B 1PI_Barrier

B 1PI_Sendrecy

B vP1_Gather
MPI_Brast

W 1PI_Comm_rank
MPI_Camm_size

e Profiling
— Summary statistics of performance metrics
» Number of times a routine was invoked
» Exclusive, inclusive time
» Hardware performance statistics
» Number of child routines invoked, etc.
» Call tree, call graph

e Tracing

— Record when and where events took place along a
global timeline

» Time-stamped log of events
» Large volume of performance data
» Individual sends, receives are tracked

8/18/2010 Performance Tools: 10

| " INigastrement: Profiling

e Profiling
— Helps to expose performance bottlenecks and hotspots
— 80/20 —rule or Pareto principle: often 80% of the execution time in 20%
of your application

— Optimize what matters, don’t waste time optimizing things that have
negligible overall influence on performance

e Implementation
— Sampling: periodic OS interrupts or hardware counter traps
» Build a histogram of sampled program counter (PC) values
» Hotspots will show up as regions with many hits
» Examples gprof, HPCtoolkit
— Measurement: direct insertion of measurement code

» Measure at start and end of regions of interests, compute
difference

8/18/2010 Performance Tools: 11

] L L n
I EEIEVE Vs, Exclusive Time

int main() /* takes 100 secs */
{
f1(); /* takes 20 secs */
/* other work */
f2(); /* takes 50 secs */
f1(); /* takes 20 secs */
/* other work */
}
o
r

8/18/2010

Inclusive time for main
- 100 sec.

Exclusive time for main
— 100-20-50-20=10 sec.

Exclusive time sometimes called “self”
time

Similar definitions for
inclusive/exclusive time for f1() and f2()

Similar for other metrics, such as
hardware performance counters, etc

Performance Tools: 12

O : :
I _ple: Instrumentation, Monitor, Trace

Event definitions

Process A:
) 1 | master
void master {
trace(ENTER, 1); 2 | slave

3

trace(SEND, B);
send(B, tag, buf); timestamp 5
\ l . location event gntext
time I i

trace(EXIT, 1); J/
} N[/
ﬁ
MONITOR 58 | A | ENTER 1
Process B: 60 | B | ENTER 2
void slave { 62 | A | SEND B
trace(ENTER, 2); 6al| A | ExiT 1
recv(A, tag, buf); 68 | B | RECV A
trace(RECV, A);
69| B | EXIT 2
trace(EXIT, 2);
}

8/18/2010 Performance Tools: 13

] . . . L
| EEEEEERElife Visualization

8/18/2010

1 | master

2 | slave

3
58| A| ENTER | 1
60| B | ENTER | 2
62| A | SEND B
64| A | EXIT 1
68| B | RECV A
69| B | EXIT 2

" main
B mast

B siave

er

o

58 60 62 64 66 68 7

0

Performance Tools: 14

| IPErformance Data Analysis

e Draw conclusions from measured performance data

e Manual analysis
— Visualization
— Interactive exploration
— Statistical analysis
— Modeling

e Automated analysis

— Try to cope with huge amounts of performance by automation
— Examples: Paradyn, KOJAK, Scalasca, Periscope

8/18/2010 Performance Tools: 15

. [] [] []
| AEEEEEEilE Visualization
e Vampir: timeline view

= T —— r—— | — Similar other tools: Jumpshot,
Paraver, Intel Trace Analyzer

Process H rP1
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process | | | |
Process 13 L

Process 14 | Vampir=-imeline
Process
Process 16, | 2,500 =
Process

M ipplication

Proness 18, il | 1 Prossss L M HP1
Process Process 2
Process Process §
Process Process 4
ﬁr‘ncess Process &
FOCESs Fruvess 6
Process Process 7
Process Process 8
Prucess Procsse 8
=

Process 27 | Process
Process 28, Process

= Process
Process
Frucess
Process
Process

Process 0
Process 1
Process 2
Process 3
Process 4
&
B
T
g

Process
Process
Frocess
Process
Process
Frouocess
Process
Process
Procecoz
Process
Process
Process
Process
Process
Praress
Process
Process
Process
Process
Mrocess
Process
Process
Procoaz
Process

8/18/2010 Performance Tools: 16

g tion

e Vampir/IPM: message communication statistics

[#] VAMFIR - Message Statistics

587 .78213501 MB
470, 22070501 MB
392.66928101 NB
235.11265400 MB
11755642700 ME
000000000 MB

OO EmEm

HPI_Rank

934,141 K

o —
50—
& —

=3
L)
HPI_Rank

o
10
20 1

8/18/2010 Performance Tools: 17

‘ lII 3D performance data exploration /,,\J;h\\

e Paraprof viewer (from the TAU toolset)

8/18/2010 Performance Tools: 18

] o
P IAURSmatedIPerformance Analysis

e Reason for Automation
— Size of systems: several tens of thousand of processors

— LLNL Sequoia: 1.6 million cores
— Trend towards multicore, manycore, accelerators

e Large amounts of performance data when tracing

— Several gigabytes or even terabytes

e Not all programmers are performance experts
— Scientists want to focus on their domain
— Need to keep up with new machines

e Automation can solve some of ... i —— ————————————
theseissues - et (o g [l e 6T

MPI_allraduce

SR O OO | ENNONE (N NN I N ONRNORNIN | 1 1 OO NI I
Ll

rrrrrrrr
ssssssss

ssssssss

rrrrrrrr
I 0o RN

rrrrrrrrr

e
N N S 0N —
lllllllll | mel_allreduce
SN AN A 7401711 ——
Process 13 MPL_Allreduce
B NI AT TS 3195410 A
lllllllll mei_allreduce
i —— AN 01 .
Process 18 Allred:
A - VN s L i s)15 ————
§§§§§§§§ 6 mei_Allreduce

8/18/2010 Performance Tools: 19

| MAEemation - Example

B 1300000000000 VAMPIR — Global Timeline (32:32:iziizizianinininianinnznas: o O X

S,BSI? H S,BSIB H S,BSIB H S,BSIB H S,BSIB H S,BSIB H S,BSIS H

e This pattern can be
detected automatically
by analyzing the trace

8/18/2010 Performance Tools: 20

e Motivation

e Concepts and Definitions

— Instrumentation, monitoring, analysis

e Some tools and their functionality
— PAPI — access to hardware performance counters
— ompP — profiling OpenMP code
— IPM — monitoring message passing applications

8/18/2010 Performance Tools: 21

]
| AAIErEErEIPE formance Counters

8/18/2010

HW counters are specialized hardware registers to
measure the performance of various aspects of a
microprocessor

Originally and still used for chip verification purposes

Can provide very detailed insight into:
— Cache behavior
— Branching behavior
— Memory and resource contention and access patterns
— Pipeline stalls
— Floating point efficiency
— Instructions per cycle

Counters vs. events
— Usually a large number of countable events (several hundred)
— On a small number of counters (4-18)
— Restrictions on what can be counted simultaneously
— PAPI handles multiplexing if required

Performance Tools: 22

| What is PAPI
e Middleware that provides a consistent and efficient

programming interface for the performance counter
hardware found in most major microprocessors.

e Countable events are defined in two ways:

— Platform-neutral Preset Events (e.g., PAPI_TOT _INS)
— Platform-dependent Native Events (e.g., L3 _CACHE_MISS)

e Preset Events can be derived from multiple Native Events
(e.g. PAPI_L1 _TCM might be the sum of L1 Data Misses
and L1 Instruction Misses on a given platform)

e Preset events are defined in a best effort manner
— No guarantees of semantics portably

— Figuring out what a counter actually counts and if it does so correctly can
be difficult

8/18/2010 Performance Tools: 23

| " IPAPIHardware Events

e Preset Events

— Standard set of over 100 events for application performance tuning

— Mapped to either single or linear combinations of native events on each
platform

— Use papi_avail to see what preset events are available on a given
platform

e Native Events

— Any event countable by the CPU
— Same interface as for preset events

— Use papi_native_avail utility to see all available native events

e Use papi_event_chooser utility to select a compatible set
of events

8/18/2010 Performance Tools: 24

]
| "R IPAPICoUnter Interfaces

e PAPI provides 3 interfaces to the
underlying counter hardware:

3rd Party and GUI Tools

Low Level High Level

— Alow level APl manages hardware events User API User API
(preset and native) in user-defined groups
called EventSets.

Meant for experienced application
programmers wanting fine-grained

PAPI PORTABLE LAYER

measurements.
- A hlgh level API provides the ablllty to start, PAPI HARDWARE SPECIFIC
stop and read the counters for a specified list LAYER

Kernel Extension

of events (preset only).
Meant for programmers wanting simple event
measurements.

Operating System

Perf Counter Hardware

— Graphical and end-user tools

8/18/2010 Performance Tools: 25

| " IPAPI High Level Calls

8/18/2010

PAPI_num_counters()
— get the number of hardware counters available on the system
PAPI_flips (float *rtime, float *ptime, long long *flpins, float *mflips)

— simplified call to get Mflips/s (floating point instruction rate), real and processor time
PAPI_flops (float *rtime, float *ptime, long long *flpops, float *mflops)
— simplified call to get Mflops/s (floating point operation rate), real and processor time
PAPI_ipc (float *rtime, float *ptime, long long *ins, float *ipc)

— getsinstructions per cycle, real and processor time

PAPI_accum_counters (long long *values, int array_len)

— add current counts to array and reset counters

PAPI_read_counters (long long *values, int array_len)

— copy current counts to array and reset counters

PAPI_start_counters (int *events, int array_len)

— start counting hardware events

PAPI_stop_counters (long long *values, int array_len)

— stop counters and return current counts

Performance Tools: 26

IIMLOW Level API Usage

8/18/2010

#include "papi.h”

#define NUM_EVENTS 2

int Events[NUM EVENTS]={PAPI FP OPS,PAPI TOT CYC},
int EventSet;

long long values[NUM EVENTS] ;

/* Initialize the Library */

retval = PAPI library init (PAPI_VER CURRENT) ;

/* Allocate space for the new eventset and do setup */
retval = PAPI create eventset (&EventSet);

/* Add Flops and total cycles to the eventset */
retval = PAPI add events (&EventSet,Events,NUM EVENTS) ;

/* Start the counters */
retval = PAPI start (EventSet);

do work(); /* What we want to monitor*/

/*Stop counters and store results in values */
retval = PAPI stop (EventSet,values);

Performance Tools: 27

| s IUSiRg PAPI through tools

e You can use PAPI directly in your application, but most people use it
through tools

e Tool might have a predfined set of counters or lets you select
counters through a configuration file/environment variable, etc.

— E.g., export IPM_HPM=PAPI_FP_OPS

e Tools using PAPI
— TAU (UO)
— PerfSuite (NCSA)
— HPCToolkit (Rice)
— KOIJAK, Scalasca (FZ Juelich, UTK)
— Open|Speedshop (SGI)
— ompP (LBL, UCB)
— IPM (LBL)

8/18/2010 Performance Tools: 28

e Motivation

e Concepts and Definitions

— Instrumentation, monitoring, analysis

e Some tools and their functionality
— PAPI — access to hardware performance counters
— ompP — profiling OpenMP code
— IPM — monitoring message passing applications

8/18/2010 Performance Tools: 29

I._erformance Analysis with ompP

e ompP: Profiling tool for OpenMP

— Based on source code instrumentation

TECHNISCHE
UNIVERSITAT

— Independent of the compiler and runtime used SR N CHEN
— Tested and supported: Linux, Solaris, AIX and Intel,
Pathscale, PGI, IBM, gcc, SUN studio compilers BefkéTéy
— Supports HW counters through PAPI -
— Uses source code instrumenter Opari from ,m i;}
the KOJAK/SCALASCA toolset '_\H

— Available for download (GPL): http://www.ompp-tool.com

Source Code Automatic instrumentgtiop of OpenMP_
u constructs, manual region instrumentation

ompP library | =——> ExecutabIeJ

Settings (env. Vars) 1
HW Counters, Execution on Profiling Report
output format, ... parallel machine
Vot =

8/18/2010 Performance Tools: 30

| "#IGmpP’s Profiling Report

e Header

— Date, time, duration of the run, number of threads, used hardware counters,...

e Region Overview

— Number of OpenMP regions (constructs) and their source-code locations

e Flat Region Profile

— Inclusive times, counts, hardware counter data

e Callgraph

e Callgraph Profiles

— With Inclusive and exclusive times

e QOverhead Analysis Report
— Four overhead categories
— Per-parallel region breakdown
— Absolute times and percentages

8/18/2010 Performance Tools: 31

e Example profiling data

e Components:

8/18/2010

Source code location and type of region

Timing data and execution counts, depending on the particular
construct

One line per thread, last line sums over all threads

Hardware counter data (if PAPI is available and HW counters are
selected)

Data is “exact” (measured, not based on sampling)

Performance Tools: 32

| IFiaERegion Profile (2) /4,\?2-{,1\\

e Times and counts reported by ompP for various OpenMP constructs

main | enter body barr | exit Ends with T: time

nC

Ends with C: count

execT
execC
enterT
startupT
bodyT
sectionT
sectio
singleT
singleC
exitBarT
exitT
shutdwnT

construct

MASTER

ATOMIC

BARRIER

FLUSH

USER REGION
CRITICAL

LOCK

LOCOP

WORKSHARE
SECTIONS

SINGLE

PARALLEL

PARALLEL LOOP
PARALLEL SECTIOQONS
PARALLEL WORKSHARE

Main =
enter +
body +
barr +

o exit

8/18/2010 Performance Tools: 33

| I6Verheads Analysis (1)

e Certain timing categories reported by ompP can be classified as
overheads:

— Example: exitBarT: time wasted by threads idling at the exit barrier of work-
sharing constructs. Reason is most likely an imbalanced amount of work

e Four overhead categories are defined in ompP:

— Imbalance: waiting time incurred due to an imbalanced amount of work in a
worksharing or parallel region

— Synchronization: overhead that arises due to threads having to synchronize their
activity, e.g. barrier call

— Limited Parallelism: idle threads due not enough parallelism being exposed by the
program

— Thread management: overhead for the creation and destruction of threads, and
for signaling critical sections, locks as available

8/18/2010 Performance Tools: 34

| |II Overhead Analysis (2)

main enter body barr exit
B = | o B =
o, gl ga|e |o e o
e = o|lo| o | @ © =
= | O e P = A | m - S,
3 O ® G | 2 | 2| ' | ' P P P
) 4] L o] < &) Q fw e s - pm)
o o = P o D o |-+ ~ ™ o <
construct @ o 5 % Q| n|la|n | ® S o %)
MASTER ° o
ATOMIC «(S) | o
BARRIER o(S) | e
FLUSH o(S) [e
USER REGION o o
CRITICAL o | o | oS . o(M)
LOCK ° ° Q(S) °
LOOP o o o o(])
WORKSHARE o | o . o(I)
SECTIONS o | o o | o o(1/L)
SINGLE o o o | o o(L)
PARALLEL .) ° o(I)
PARALLEL LOOP ° o o(])
PARALLEL SECTIONS ° o o | o o(I/1)
PARALLEL WORKSHARE o ° ° o(])
S: Synchronization overhead I: Imbalance overhead

M: Thread management overhead L: Limited Parallelism overhead

8/18/2010 Performance Tools: 35

Total runtime (wallclock) : 172.64 sec [32 threads]

Number of parallel regions : 12
Parallel coverage : 134.83 sec (78.10%) \Nur_nber Of threads, para”el
regions, parallel coverage

Parallel regions sorted by wallclock time:

Type Location Wallclock (%)
R00011 PARALL mgrid.F (360-384) 55.75 (32.29)
R00019 PARALL mgrid.F (403-427) 23.02 (13.34)
RO0009 PARALL mgrid.F (204-217) 11.94 (6.92)

Wallclock time * number of threads - 134.83 (78.10)
1 Overhead percentages wrt. this
particular parallel region

Overheads wrt. each individual pa region:

Total Ovhds (%) = Synch (%) + Imbal (%) + Limpar (%) + Mgmt (%)
R0O0011 1783.95 337.26 (18.91) 0.00 (0.00) 305.75 (17.14) 0.00 (0.00) 31.51 (1.77)
RO0019 736.80 129.95 (17.64) 0.00 (0.00) 104.28 (14.15) 0.00 (0.00) 25.66 (3.48)
RO0009 382.15 183.14 (47.92) 0.00 (0.00) 96.47 (25.24) 0.00 (0.00) 86.67 (22.68)
RO0015 276.11 68.85 (24.94) 0.00 (0.00) 51.15 (18.52) 0.00 (0.00) 17.70 (6.41)

Overhead percentages wrt. whole
program

Overheads wrt. whole program:

Total Ovhds (%) = ynch (%) + Imbal (%) + Limpar (%) + Mgmt (%)

RO0011 1783.95 337.26 (6.10) 0.00 (0.00) 305.75 (5.53) 0.00 (0.00) 31.51 (0.57)
R00009 382.15 183.14 (3.32) 0.00 (0.00) 96.47 (1.75) 0.00 (0.00) 86.67 (1.57)
R0O0005 264.16 164.90 (2.98) 0.00 (0.00) 63.92 (1.16) 0.00 (0.00) 100.98 (1.83)
R0O0007 230.63 151.91 (2.75) 0.00 (0.00) 68.58 (1.24) 0.00 (0.00) 83.33 (1.51)
SUM 4314.62 1277.89 (23.13) 0.00 (0.00) 872.92 (15.80) 0.00 (0.00) 404.97 (7.33)

8/18/2010 Performance Tools: 36

I._ability Analysis

e Methodology

8/18/2010

Classify execution time into “Work” and four overhead categories: “Thread Management”,
“Limited Parallelism”, “Imbalance”, “Synchronization”

Analyze how overheads behave for increasing thread counts
Graphs show accumulated runtime over all threads for fixed workload (strong scaling)
Horizontal line = perfect (linear) scalability

Wallclock time Accumulated time Imperfect scaling

A A

T |— Perfect (linear)

| scaling
1 2 3 4

Super-linear scaling

[[

1 2 3 4 VThreadCount
Thread Count

Performance Tools: 37

e Example
— NAS Parallel Benchmarks
— Class C, SGI Altix machine (ltanium 2, 1.6 GHz, 6MB L3 Cache)

ovhds EFP.C.dat hds .5P.C.dat
as0 _ gooe o e td
400 [| | T
a0 oot Limpar
u M Inbal
L e
g R 1 Wark
3000 —
200
150 2000 —
100
1000 —
50
o - o -
1 2 4 & 1z 16 20 24 P 3z 1 2 4 g 17 16 20 24 28 32

8/18/2010 Performance Tools: 38

| ISPECIOpEnVIP Benchmarks (2)

e Application 316.applu

— Super-linear speedup

— Only one parallel region (ssor.f 138-209) shows super-linear speedup, contributes 80% of

accumulated total execution time

— Most likely reason for super-linear speedup: increased overall cache size

3000 _316.0ovhds.dat
B wgmt
2500 — Limp
~ Im
2000 4 m
|
1500 —
1000 —
500 —
ﬂ —_—

8/18/2010

L3_MISSES

16000000000

14000000000 -
12000000000 -
10000000000 -
8000000000 -

I 6000000000 -
4000000000 -
2000000000 -

0 4

L3_MISSES

8 12

Number of Threads

16 20 24 28 32

Performance Tools: 39

| ISPECIOpEnVIP Benchmarks (3)

e Application 313.swim

8/18/2010

Dominating source of inefficiency is thread management overhead
Main source: reduction of three scalar variables in a small parallel loop in swim.f 116-126.

At 128 threads more than 6 percent of the total accumulated runtime is spent in the
reduction operation

Time for the reduction operation is larger than time spent in the body of the parallel region

12000 _313.ovhds.dat
B Mgmt

10000 Limpar
© Imbal

8000 1 W
0w

6000 —

4000 —

2000 —

32 48 64 80 96 112 128

Performance Tools: 40

e Motivation

e Concepts and Definitions

— Instrumentation, monitoring, analysis

e Some tools and their functionality
— PAPI — access to hardware performance counters
— ompP — profiling OpenMP code
— IPM — monitoring message passing applications

8/18/2010 Performance Tools: 41

e |PM implements a thin measurement layer
— Sitting between the application and the runtime/OS

e Goals
— Efficient gathering of high-level performance metrics
— Event inventorization

— Determination of resource requirements and first order identification of
performance problems

— Less focus on drill-down into application
» Currently no automatic function-level instrumentation
» Manual region instrumentation supported

8/18/2010 Performance Tools: 42

8/18/2010

eBanner on stderr
eDetailed profiling log file
(XML format)
eProfiling report
(HTML format)

“Flip of a switch”
monitoring

— Resource consumption
(used virtual memory, hw
counter data)

— Application execution
event statistics

Using /proc, other OS
services, and PAPI for the
measuring resource
consumption

Efficient collection of event
statistics in a hash table

Performance Tools: 43

| " IPMV: Methodology

e MPI_Init()

— Initialize monitoring environment, allocate memory

e For each MPI call

— Compute hash key from
» Type of call (send/recv/bcast/...)
» Buffer size
» Communication partner rank
» Call-site, region or phase identifier, ...
— Store / update value in hash table with timing data
» Number of invocations

» Minimum duration, maximum duration, summed time

e MPI_Finalize()
— Aggregate, banner report to stdout, write XML log file

8/18/2010 Performance Tools: 44

| "M NPVIEvent Hash Keys

e |PM uses 128 bit hash keys
— 64 bit context key (where, what)

— 64 bit resource key (buffer sizes, comm. partners, ...)

0 0 0 0
01234567890123456789012345678901
Event ID Region ID Thread ID
Callsite ID Res. Select Resvd
Buffer/Message Size
Partner ID

e Table holds event statistics

— Event count 01010....... 101101 Signature | #events, tmin, tmax, tavg
128 bit Event Signature

— Minimum duration

— Average duration Hash Function

Performance Data Hash Table

8/18/2010 Performance Tools: 45

the Event Signatures

e The hash table of event signatures contains a lot of interesting data

{1 Gather Communication time
MPI_Scatteru per type Of MPI Ca”

MPI_Alltoally
MPI_Bcast
MPI_Waitall
MPI_Wait
MPI_Barrier
MPI_Recw
MPI_Allreduce
MPI_Izend
MPI_Irecw

MPT A11tnall

CDF of time per MPI call over message sizes

100 -4 =]

g0 MPI_Gathery
MPI_Scattery

MPI_Alltoally

131.48 MB
105.19 MB
78.89 MB
52.59 MB
26.29 MB
0.00 MB

MPI_Bcast
MPI_Recy
MPI_Allreduce
MPI_
MPI_Irecy
MPI_Alltoall
MPI_Send
MPI_Allgather

Izend

MPI Rank
OO0 D0 mEm

4 O @ C 0@ a8

% of conn tine <= Buffer size

20

Pairwise com-
]_::5' munication volume o 4 —

T T T T - T 4 16 =23 256 1KE 4kE 16KE gdkE 256KB 1MB 4ME 16ME
S & o =» g w© (comm.topology) Buffer size (hytes)
MPI_Rank

8/18/2010 Performance Tools: 46

| ' Using IPM

e Do “module load ipm”, then run normally (e.g., on franklin)
— Uses LD_PRELOAD

— Re-linking required for static binaries (franklin: include SIPM on link line)

e Upon completion you get :

HHTPM2 bbb 30303033 3 3 38 3 3 3 o 3 SR HHH R R R R R AR AR AR AR AR AR AR AR A BB B BB BB BB H B H 4

command : ./a.out

start : Sun Mar 14 16:55:39 2010 host : nid01829

stop : Sun Mar 14 17:04:33 2010 wallclock : 533.12

mpi tasks : 2048 on 1024 nodes %comm : 29.41

omp thrds : 6 %omp : 50.63

files : 12 %i/o : 12.09

mem [GB] : 2774.44 gflop/sec : 418.58

FHEH

e Environment variables
— IPM_HPM for PAPI counters
— IPM_REPORT = full | terse | none
— IPM_LOG = full | terse | none

8/18/2010 Performance Tools: 47

|~ aisreidetails with IPM_REPORT=full

#HIPM2AHHHHH RS S H SRR R R R R R R R

command : ./a.out

start : Sun Mar 14 16:55:39 2010 host : nid01829

stop : Sun Mar 14 17:04:33 2010 wallclock : 533.12

mpi tasks : 2048 on 1024 nodes %comm : 29.41

omp thrds : 6 $omp : 50.63

files : 12 %$i/o : 12.09

mem [GB] : 2774.44 gflop/sec : 418.58

#

: [total] <avg> min max

wallclock : 1091671.57 533.04 532.99 533.12 e Statistics of h|gh
MPI 321034.43 156.76 109.03 239.23 .

1/0 131947.08 64.43 11.83 113.87 level metrics across
OMP 552665.28 269.86 205.07 305.36 tasks

OMP idle 48262.98 e 57 21 .30 27.40

swall

MPI 29.41 20.45 44 .88

oMmP 50.63 38.47 Ny

0T 12.09 2.22 21.36

#calls

MPI 76235998 37224 37223 37320

mem [GB] 2774 .44 1358 e 4 1.36

#

[time] [count] <$wall> .

OMP PARALLEL 552665.28 131439989 50.63 * Details of the

MPI Allreduce 247648.04 14438400 22.69 contribution of
g fread 69813.27 5488640 6.40 individual events
SIS IS IIEESS TSI EE 3

8/18/2010 Performance Tools: 48

| PVIIETVAL Profiling Report

e jpm_parse generates HTML profiling report

) IPM profile for 5478299.nid00003 - Mozilla Firefox = o) x|
gt e rem mes we e | e« (Contents of the webpage:
G |+ @ X o |5t smemenersc.goviprojects/SDsa erkioad Neemmic_to22/ 7D - |'_I'| ocd P -
|j Remember Password |j Get YouTube video - B a n n e r
J 1% IPM profile for 5478299.nid00003 - - . . .
. — Communication time breakdown
5478299 nid00003 command: /su3_rmd_ipm -
® [oas Dalancs codename: unknown | state: tunning —_ Load balance by task graph
® Communication Balznce
: Messaze Bur Sizes username: unknown | group: unknown
Communicstion Topolo: — . .
s Sompeten wd00192| — Communication balance by task graph
Alemmeory Ussza host . tmpi_tasks: 1024 on 512 hosts
® Erecurhle Inp (x86_64_Linux)
® Host List . .
3 o start: 07/31/08/10:22:15 | wallclock: 1.01934+03 sec — Communication topology graph
r— stop: 07/31/08/10:39:14 | %scomm: 223665512120588
245 K
© total memory: §9.7124393999995 total gllop/sec: 996.231781348717 o —————— Htpmitad
ghytes N it
switch(send): 0 gbytes |switch(rec): 0 ghytes w : :::g :2
Computation Communication g) E . e
LI 5 O 29MB
Event Count Pop % of MPI Time . = O ooome
IPAPI_FP_OPS 1015498895269727| * W
[PAPI TOT_CYC 2304745952383680 * B HPI_Allreduce
[PAPI_TOT_INS 1938008453032501 = W 1 uait
- — - Sp10% " W rPI_Trecy
PAP]_VEC_INS 416352019563617 WL sort i
W HPI_Con_rank
MPI_Barrier |
MPI_Beast ® I P M tO CU B E = L 0 L 6 | L) B0] = e
W MPI_Conm_size = B 7
=
Dane [I 4

8/18/2010 Performance Tools: 49

| B IABBiieation Assessment with IPM

e Provide high level performance numbers with small
overhead
— To get an initial read on application runtimes

— For allocation/reporting
— To check the performance weather on systems with high variability

e What’s going on overall in my code?

— How much comp, comm, 1/O?
— Where to start with optimization?

e How is my load balance?
— Domain decomposition vs. concurrency (M work on N tasks)

8/18/2010 Performance Tools: 50

| " IWRaE's wrong here?

Communication
% of MPI Time
B vPI_Allreduce
B MPI_Comm_rank
M MPI_wait
MPI_Izzend
B HPI_Ecast
MPI_Irecw
MPI_Comm_zize
B HPI_Barrier
Communication Event Statistics (100.00% detail)
Buffer Size Ncalls Total Time Min Time Max Time 2% MPI % Wall
MPI_Allreduce 8 3278848 | 124132.547 0.000 114.920| 59.35 16.88
MPI_Comm_rank 0| 35173439489 43439.102 0.000 41.961, 20.77 5.91
MPI_Wait 98304 13221888 15710.953 0.000 3.586 7.51 2.14
MPI_ Wait 196608 13221888 5331.236 0.000 5.716 2.55 0.72
MPI_ Wait 589824 206848 5166.272 0.000 7.265 2.47 0.70

8/18/2010 Performance Tools: 51

e Performance montioring concepts
— Instrument, measure, analyze
— Profiling and tracing,
— Sampling and direct (instrumentation based) measurment

e Tools
— PAPI, ompP, IPM as examples

e |ots of other tools

— Vendor tools: Cray PAT, Oracle (nee Sun) Studio, Intel Thread Profiler,
Intel Vtune, Intel PTU,...

— Independent, portable tools: TAU, Perfsuite, Paradyn, HPCToolkit, Kojak,
Scalasca, Vampir, oprofile, gprof, ...

Thank you for your attention!

8/18/2010 Performance Tools: 52

