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| |II Parallelism and Locality in Simulatio;ﬁ.ﬁ,\

* Parallelism and data locality both critical to performance
- Moving data most expensive operation

* Real world problems have parallelism and locality:
- Many objects operate independently of others.
- Objects often depend much more on nearby than distant objects.
- Dependence on distant objects can often be simplified.
» Example of all three: particles moving under gravity

» Scientific models may introduce more parallelism:

- When a continuous problem is discretized, tfime dependencies are
generally limited to adjacent time steps.

» Helps limit dependence to nearby objects (eg collisions)
- Far-field effects may be ignored or approximated in many cases.

* Many problems exhibit parallelism at multiple levels



| |Il Basic Kinds of Simulation M

Discrete Event Systems
- "Game of Life", Manufacturing Systems, Finance, Circuits, Pacman ...

Particle Systems
- Billiard balls, Galaxies, Atoms, Circuits, Pinball ...

Lumped Systems (Ordinary Differential Eqns - ODEs)

- Structural Mechanics, Chemical kinetics, Circuits,
Star Wars: The Force Unleashed

Continuous Systems (Partial Differential Eqns - PDEs)

- Heat, Elasticity, Electrostatics, Finance, Circuits,
Medical Image Analysis, Terminator 3: Rise of the Machines

» A given phenomenon can be modeled at multiple levels
* Many simulations combine multiple techniques

* For more on simulation in games, see
- www.cs.berkeley.edu/b-cam/Papers/Parker-2009-RTD




| III Example: Circuit Simulation

» Circuits are simulated at many different levels

Discrete
Event

v

Lumped
Systems

Continuous
Systems

Level Primitives Examples
Instruction level Instructions SimO|S, SPIM
Cycle level Functional units 1 VIRAM-p
Register Transfer | Register, counter, | VHDL
Level (RTL) MUX
Gate Level Gate, flip-flop, Thor

memory cell
Switch level Ideal transistor Cosmos
Circuit level Resistors, Spice
capacitors, etc.
Device level Electrons, silicon




I III Outline

Discrete event systems
- Time and space are discrete

Particle systems
- Important special case of lumped systems

Lumped systems (ODEs)

- Location/entities are discrete, time is continuous

Continuous systems (PDEs)
- Time and space are continuous

Identify common problems and solutions

discrete

continuous



|'# Model Problem: Sharks and Fish M\

* Tllustrates parallelization of these simulations

» Basic idea: sharks and fish living in an ocean
- rules for movement (discrete and continuous)
- breeding, eating, and death
- forces in the ocean
- forces between sea creatures

- 6 different versions

- Different sets of rules, to illustrate different simulations
* Available in many languages

- Matlab, pThreads, MPI, OpenMP, Split-C, Titanium, CMF, ...

- See bottom of www.cs.berkeley.edu/~demmel/cs267_Spri10/
- One (or a few) will be used as lab assignments

- See bottom of www.cs.berkeley.edu/~agearh/cs267.sp10
- Rest available for your own classes!



I ||'7 Dwarfs™ of High Performance Computing~

» Phil Colella (LBL) identified 7 kernels of which most
simulation and data-analysis programs are composed:

1. Dense Linear Algebra

« Ex: Solve Ax=b or Ax = Ax where A is a dense matrix
2. Sparse Linear Algebra

« Ex: Solve Ax=b or Ax = AX where A is a sparse matrix (mostly zero)
3. Operations on Structured Grids

. Ex: A, (i) = 4%A(i.)) - Ai-1,)) - AGi+1,j) - Ai.j-1) - A(i,j+1)
4. Operations on Unstructured Grids

« Ex: Similar, but list of neighbors varies from entry to entry
5. Spectral Methods

« Ex: Fast Fourier Transform (FFT)
6. Particle Methods

« Ex: Compute electrostatic forces on n particles, move them
7. Monte Carlo

« Ex: Many independent simulations using different inputs



DISCRETE EVENT SYSTEMS
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I IIl Discrete Event Systems M

-+ Systems are represented as:
- finite set of variables.
- the set of all variable values at a given time is called the state.

- each variable is updated by computing a transition function
depending on the other variables.

+ System may be:

- synchronous: at each discrete timestep evaluate all transition
functions; also called a state machine.

- asynchronous: transition functions are evaluated only if the
inputs change, based on an "event” from another part of the
system; also called event driven simulation.

+ Example: The "game of life:"
- Space divided into cells, rules govern cell contents at each step
- Also available as Sharks and Fish #3 (S&F 3)



| |II Parallelism in Game of Life M

» The simulation is synchronous
- use two copies of the grid (old and new).

- the value of each new grid cell depends only on 9 cells (itself plus 8
heighbors) in old grid.

- simulation proceeds in tfimesteps-- each cell is updated at every step.
Easy to parallelize by dividing physical domain: Domain Decomposition

P1 | P2 | P3| Repeat
P4 | P5 | P6 compute locally to update local system

p7 | pg | P9 barrier()
exchange state info with neighbors

until done simulating

* Locality is achieved by using large patches of the ocean
- Only boundary values from neighboring patches are needed.

How to pick shapes of domains?



| IIl Regular Meshes

» Suppose graph is nxn mesh with connection NSEW neighbors
* Which partition has less communication? (n=18, p=9)

* Minimizing communication on mesh =
minimizing “surface to volume ratio” of partition

n*(p-1) 2*n*(pl/2 -1)
edge crossings - edge crossings
I
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I l'ISynchr'onous Circuit Simulation

Circuit is a graph made up of subcircuits connected by wires
- Component simulations need to interact if they share a wire.
- Data structure is (irregular) graph of subcircuits.
- Parallel algorithm is timing-driven or synchronous:
» Evaluate all components at every timestep (determined by known circuit delay)

* Graph partitioning assigns subgraphs to processors
- Determines parallelism and locality.

- Goal 1 is to evenly distribute subgraphs to nodes (load balance).
- Goal 2 is to minimize edge crossings (minimize communication).
- Easy for meshes, NP-hard in general, so we will approximate (tools availablel!)
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* Parallelization: each processor gets a set of ponds with roughly
equal total area

-work is proportional to area, not number of creatures

* One pond can affect another (through streams) but infrequently

8/20/10 Jim Demmel Sources: 13



| lII Asynchronous Simulation M

* Synchronous simulations may waste time:
- Simulates even when the inputs do not change,.

» Asynchronous (event-driven) simulations update only when
an event arrives from another component:
- No global time steps, but individual events contain time stamps.

- Example: Game of life in loosely connected ponds (don't simulate empty
ponds).

- Example: Circuit simulation with delays (events are gates changing).
- Example: Traffic simulation (events are cars changing lanes, etc.).

» Asynchronous is more efficient, but harder to parallelize

- With message passing, events are naturally implemented as messages,
but how do you know when to execute a "receive"?



| ||l$cheduling Asynchronous Circuit Simulatio

- Conservative:
- Only simulate up to (and including) the minimum time stamp of inpufts.
- Need deadlock detection if there are cycles in graph
» Example on next slide
- Example: Pthor circuit simulator in Splashl from Stanford.

- Speculative (or Optimistic):
- Assume no new inputs will arrive and keep simulating.
- May need to backup if assumption wrong, using timestamps
- Example: Timewarp [D. Jefferson], Parswec [Wen,Yelick].

» Optimizing load balance and locality is difficult:
- Locality means putting tightly coupled subcircuit on one processor.

- Since "active” part of circuit likely fo be in a tightly coupled
subcircuit, this may be bad for load balance.



| I"Deadlock in Conservative Asynchronous M
Circuit Simulation

- Example: Sharks & Fish 3, with 3 processors simulating
3 ponds connected by streams along which fish can move

> S e

» Suppose all ponds simulated up to time t,, but no fish move, so
no messages sent from one proc to another

» S0 no processor can simulate past time 1,
» Fix: After waiting for an incoming message for a while, send out
an "Are you stuck t00?" message
» If you ever receive such a message, pass it on

- If you receive such a message that you sent, you have a
deadlock cycle, so just take a step with latest input

- Can be a serial bottleneck



I |II Summary of Discrete Event Simulations //\/'\

- Model of the world is discrete
- Both time and space

» Approaches
- Decompose domain, i.e., set of objects
- Run each component ahead using
»Synchronous: communicate at end of each timestep
»Asynchronous: communicate on-demand
« Conservative scheduling — wait for inputs
—need deadlock detection
» Speculative scheduling — assume no inputs
—roll back if necessary



PARTICLE SYSTEMS
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| Particle Systems NI

* A particle system has
- a finite number of particles
- moving in space according fo Newton's Laws (i.e. F = ma)
- time is continuous

+ Examples
- stars in space with laws of gravity
electron beam in semiconductor manufacturing
atoms in a molecule with electrostatic forces
neutrons in a fission reactor
cars on a freeway with Newton's laws plus model of driver and engine
flying objects in a video game ...

* Reminder: many simulations combine techniques such
as particle simulations with some discrete events
(eg Sharks and Fish)



| # Forces in Particle Systems

* Force on each particle can be subdivided

force = external force + nearby force + far field force

- External force

- ocean current to sharks and fish world (S&F 1)
- externally imposed electric field in electron beam

* Nearby force
» sharks attracted to eat nearby fish (S&F 5)

- balls on a billiard table bounce off of each other
- Van der Waals forces in fluid (1/r®) .. how Gecko feet work?

- Far-field force
- fish attract other fish by gravity-like (1/r? ) force (S&F 2)
- gravity, electrostatics, radiosity in graphics
» forces governed by elliptic PDE
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| # Example S&F 1: Fish in an External Current M

% fishp = array of initial fish positions (stored as complex numbers)
7% fishv = array of initial fish velocities (stored as complex numbers)
7% fishm = array of masses of fish
% tfinal = final time for simulation (O = initial time)
% Algorithm: update position [velocity] using velocity [acceleration]
at each time step
% Initialize time step, iteration count, and array of times
dt=.01, +=0;
7% loop over time steps
while t < tfinal,
t=1+dt;
fishp = fishp + dt*fishv;
accel = current(fishp)./fishm; 7 current depends on position
fishv = fishv + dt*accel;
7%  update time step (small enough to be accurate, but not too small)
dt = min( .1*max(abs(fishv))/max(abs(accel)), .01);
end



| lII Parallelism in External Forces /A

* These are the simplest
The force on each particle is independent

Called "embarrassingly parallel”
- Corresponds o "map reduce" pattern

Evenly distribute particles on processors
- Any distribution works
- Locality is not an issue, ho communication

For each particle on processor, apply the external force

- May need to "reduce” (eg compute maximum) to compute time step,
other data



| # Parallelism in Nearby Forces APEN

* Nearby forces require interaction and therefore
communication,

* Force may depend on other nearby particles:
- Example: collisions.
- simplest algorithm is O(n?): look at all pairs to see if they collide.

» Usual parallel model is domain decomposition of
physical region in which particles are located
- O(n/p) particles per processor if evenly distributed.




| # Parallelism in Nearby Forces

* Challenge 1: interactions of particles near processor
boundary:

- need to communicate particles near boundary to neighboring
processors.

- Low surface to volume ratio means low communication.
» Use squares, not slabs

o Communicate particles in
boundary region to neighbors

Co

Need to check for
collisions between
regions




' Parallelism in Nearby Forces //’A

* Challenge 2: load imbalance, if particles cluster:

- galaxies, electrons hitting a device wall.

* To reduce load imbalance, divide space unevenly.
- Each region contains roughly equal number of particles.

- Quad-tree in 2D, oct-tree in 3D.

Example: each square
contains at most 3
particles




|'#" Parallelism in Far-Field Forces APEN

- Far-field forces involve all-to-all interaction and
therefore communication.

* Force depends on all other particles:
- Examples: gravity, protein folding
- Simplest algorithm is O(n?) as in S&F 2, 4, 5.

- Just decomposing space does not help since every particle needs
to "visit" every other particle.

Implement by rotating particle sets.

+> JE> 'JP 'Jf> P - Keeps processors busy

» All processor eventually see all particles

+ Use more clever algorithms to beat O(n?).



I # Far-field Forces: O(n log n) or O(n), not O(n?) /NN

Based on approximation:
- Settle for the answer to just 3 digits, or just 15 digits ...

- Two approaches
- "Particle-Mesh"
» Approximate by particles on a regular mesh
» Exploit structure of mesh to solve for forces fast (FFT)
- "Tree codes” (Barnes-Hut, Fast-Multipole-Method)
» Approximate clusters of nearby particles by single "metaparticles”
» Only need to sum over (many fewer) metaparticles

R‘ (<} o|o
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LUMPED SYSTEMS - ODES
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| lII System of Lumped Variables M

* Many systems are approximated by
- System of “lumped"” variables.
- Each depends on continuous parameter (usually time).

+ Example -- circuit:
- approximate as graph.
» wires are edges.
» nodes are connections between 2 or more wires.
» each edge has resistor, capacitor, inductor or voltage source.

- system is "lumped" because we are not computing the voltage/current at
every point in space along a wire, just endpoints.

- Variables related by Ohm's Law, Kirchoff's Laws, etc.

*+ Forms a system of ordinary differential equations (ODEs)
- Differentiated with respect to time
- Variant: ODEs with some constraints
» Also called DAEs, Differential Algebraic Equations



| lII Circuit Example

- v,(t) node voltages
- iy(t) branch currents
- v, (1) branch voltages

Equations include

- Kirchoff's current
- Kirchoff's voltage
- Ohm's law

- Capacitance

- Inductance

> all at time t

State of the system is represented by

0 A 0
A 0 -1
0 R -1
0 -I C*d/dt
0 L*d/dt 1

y,

A Is sparse matrix, representing connections in circuit

- One column per branch (edge), one row per node (vertex) with +1 and
-1 in each column at rows indicating end points

Write as single large system of ODEs or DAEs



|'I.Structuml Analysis Example

* Another example is structural analysis in civil engineering:
- Variables are displacement of points in a building.
- Newton's and Hook's (spring) laws apply.
- Static modeling: exert force and determine displacement.

Dynamic modeling: apply continuous force (earthquake).

Eigenvalue problem: do the resonant modes of the building match an
earthquake

OpenSees project in CE at Berkeley looks at this section of 880, among others
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| Gaming Example

Star Wars - The Force Unleashed...

graphics.cs.berkeley.edu/papers/Parker-RTD-2009-08/
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| |II Solving ODEs M

* In these examples, and most others, the matrices
are sparse:
- i.e., most array elements are O.
- neither store nor compute on these O's.
- Sparse because each component only depends on a few others

+ Given a set of ODEs, two kinds of questions are:
- Compute the values of the variables at some time t
» Explicit methods
» Implicit methods
- Compute modes of vibration
» Eigenvalue problems



| |II Solving ODEs M

Suppose ODE is x'(t) = A-x(t), where A is a sparse matrix

- Discretize: only compute x(i-dt) = x[i] ati=0,1,2,...

- ODE gives x'(t) = slope atf t, and so x[i+1] = x[i] + dt-slope
Explicit methods (ex: Forward Euler)

- Use slope at T = i-dt, so slope = A-x[i].

- x[i+1] = x[i] + dt-A-x[i], i.e. sparse matrix-vector multiplication.
Implicit methods (ex: Backward Euler)

- Use slope at t = (i+1)-dt, so slope = A-x[i+1].

- Solve x[i+1] = x[i]+ dt-A-x[i+1] for x[i+1] = (I -dt+-A)!- x][i],

i.e. solve a sparse linear system of equations for x[i+1]

Tradeoffs:

- Explicit: simple algorithm but may need tiny time steps dt for stability
- Implicit: more expensive algorithm, but can take larger time steps dt

Modes of vibration - eigenvalues of A
- Algorithms also either multiply A-x or solve y=(I-d-A):-x for x



CONTINUOUS SYSTEMS -
PDES
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I lII Continuous Systems - PDEs

Examples of such systems include

- Elliptic problems (steady state, global space dependence)
- Electrostatic or Gravitational Potential: Potential(position)

- Hyperbolic problems (time dependent, local space dependence):
- Sound waves: Pressure(position,time)

» Parabolic problems (time dependent, global space dependence)
- Heat flow: Temperature(position, time)
- Diffusion: Concentration(position, time)

Global vs Local Dependence
- Global means either a lot of communication, or tiny time steps
- Local arises from finite wave speeds: limits communication

Many problems combine features of above
* Fluid flow: Velocity,Pressure, Density(position, time)
+ Elasticity: Stress,Strain(position,time)
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I ||lImpIici1' Solution of the 1D Heat Equation //\-/”‘,\
dufs) _ ., dufsy R |

dt dx? 0 X 7

- Discretize time and space using implicit approach
(Backward Euler) to approximate time derivative:

(u(x,1+0) = u(x,t))/dt = C-(u(x-h,1+5) - 2-u(x,1+5) + u(x+h, 1+6))/h?

* Let z = C-3/h? and discretize variable x to jh, T to i),
and u(x,t) to u[j,i]. solve for uat hext fime step:

(L+z-L)-ul:, i+1]=uf:i] 2 -1
12 -
I is identity and | — 4 o
L is Laplacian 1 2 -
* Solve sparse linear system again 12



| lII 2D Implicit Method

« Similar to the 1D case, but the matrix L is now

(4 1 1 \ 6raph and "5 point stencil”
1 4 -1 1
1 4 1 !
1 P FRa— L
L= -1 1 4 -1 -1
1 1 4 1 1
1 4 -1
-1 1 4 3D case is analogous
\ 1 14 (7 point stencil)

* Multiplying by this matrix (as in the explicit case) is
simply nearest neighbor computation on 2D mesh.

* To solve this system, there are several techniques.




I ﬁlgori‘l‘hms for Solving Ax=b (N vars)

Algorithm Serial PRAM Memory #Procs

- Dense LU N3 N N2 N2
Band LU N2 N N3/2 N
JacobiN? N N N
Explicit Inv. N2 log N N2 N2
Conj.Gradients N3/2 N1/2 *]og N N N
Red/Black SOR N3/2 N1/2 N N
Sparse LU N3/2 N1/2 N*log N N
FFT N*log N log N N N
Multigrid N log® N N N
Lower bound N log N N

All entries in "Big-Oh" sense (constants omitted)
PRAM is an idealized parallel model with zero cost communication
Reference: James Demmel, Applied Numerical Linear Algebra, STAM, 1997.
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I #Algor'i'rhms for 2D (3D) Poisson Equation (N = n? (n3) var's)__é,

Algorithm Serial PRAM Memory #Procs

- Dense LU N3 N N2 N2

. Band LU N2 (N7/3) N NI3/2 (N5/3) N(N4/3)
- Jacobi N2 (N>/3) N (N2/3) N N

- Explicit Inv. N2 log N N2 N2

- Conj.Gradients N3/2 (N4/3) N2 (1/3) *|og N N N

+ Red/Black SOR N3/2 (N4/3) N2 (NV3) N N

- Sparse LU N3/2 (N?2) N2 N*log N(N%3) N

- FFT N*log N log N N N

- Multigrid N log> N N N

- Lower bound N log N N

PRAM is an idealized parallel model with « procs, zero cost communication
Reference: J.D. , Applied Numerical Linear Algebra, STAM, 1997.
For more information: take Ma221 this semester!
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| ||I Algorithms and Motifs M

Algorithm Motifs

- Dense LU Dense linear algebra

- Band LU Dense linear algebra

+ Jacobi (Un)structured meshes, Sparse Linear Algebra
+ Explicit Inv. Dense linear algebra

- Conj.Gradients
+ Red/Black SOR
- Sparse LU

- FFT

* Multigrid

(Un)structured meshes, Sparse Linear Algebra
(Un)structured meshes, Sparse Linear Algebra
Sparse Linear Algebra

Spectral

(Un)structured meshes, Sparse Linear Algebra



NASA Airfoil in 2D/

| ||'Ir'r'egular' mesh

Finite Element Mesh of NASA Airfoil
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| #'Source of Irregular Mesh:

Finite Flement Model of Vertebra
Study failure modes of trabecular Bone under stress

Source: M. Adams, H. Bayraktar, T. Keaveny, P. Papadopoulos, A. Gupta
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uFE modeli

I I'IMe'l'hods

Source: Mark Adams, PPPL

Mechanical Testing

uFE mesh
2.5 mm cube

Up to 537M unknowns

44 um elements

Micro-Computed Tomography
uCT @ 22 um resolution

Sources: 44

Jim Demmel
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| l'IAdap'tive Mesh Refinement (AMR) /<

\
|
\
|

- Adaptive mesh around an explosion
- Refinement done by estimating errors; refine mesh if too large
- Parallelism
- Mostly between “patches,” assigned to processors for load balance
- May exploit parallelism within a patch
* Projects:
« Titanium (http://www.cs.berkeley.edu/projects/titanium)
- Chombo (P. Colella, LBL), KeLP (S. Baden, UCSD), J. Bell, LBL




I lII Summary: Some Common Problems //V\

* Load Balancing
- Dynamically - if load changes significantly during job
- Statically - Graph partitioning
» Discrete systems
» Sparse matrix vector multiplication

» Linear algebra
- Solving linear systems (sparse and dense)
- Eigenvalue problems will use similar techniques

 Fast Particle Methods
- O(n log n) instead of O(n®)
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