
PARLab Parallel Boot Camp

Sources of Parallelism and Locality in
Simulation

Jim Demmel
EECS and Mathematics

University of California, Berkeley

Jim Demmel Sources: 2 8/20/10

•  Parallelism and data locality both critical to performance
- Moving data most expensive operation

•  Real world problems have parallelism and locality:
–  Many objects operate independently of others.
–  Objects often depend much more on nearby than distant objects.
–  Dependence on distant objects can often be simplified.

»  Example of all three: particles moving under gravity

•  Scientific models may introduce more parallelism:
–  When a continuous problem is discretized, time dependencies are

generally limited to adjacent time steps.
»  Helps limit dependence to nearby objects (eg collisions)

–  Far-field effects may be ignored or approximated in many cases.

• Many problems exhibit parallelism at multiple levels

Parallelism and Locality in Simulation

Basic Kinds of Simulation

Jim Demmel Sources: 3 8/20/10

•  Particle Systems
–  Billiard balls, Galaxies, Atoms, Circuits, Pinball …

•  Lumped Systems (Ordinary Differential Eqns – ODEs)
–  Structural Mechanics, Chemical kinetics, Circuits,

Star Wars: The Force Unleashed

•  Continuous Systems (Partial Differential Eqns – PDEs)
–  Heat, Elasticity, Electrostatics, Finance, Circuits,

Medical Image Analysis, Terminator 3: Rise of the Machines

•  A given phenomenon can be modeled at multiple levels
•  Many simulations combine multiple techniques
•  For more on simulation in games, see

•  www.cs.berkeley.edu/b-cam/Papers/Parker-2009-RTD

•  Discrete Event Systems
–  “Game of Life”, Manufacturing Systems, Finance, Circuits, Pacman …

Example: Circuit Simulation

Jim Demmel Sources: 4 8/20/10

•  Circuits are simulated at many different levels

Level Primitives Examples
Instruction level Instructions SimOS, SPIM

Cycle level Functional units VIRAM-p

Register Transfer
Level (RTL)

Register, counter,
MUX

VHDL

Gate Level Gate, flip-flop,
memory cell

 Thor

Switch level Ideal transistor Cosmos

Circuit level Resistors,
capacitors, etc.

Spice

Device level Electrons, silicon

Lumped
Systems

Discrete
Event

Continuous
Systems

Outline

Jim Demmel Sources: 5 8/20/10

•  Discrete event systems
–  Time and space are discrete

•  Particle systems
–  Important special case of lumped systems

•  Lumped systems (ODEs)
–  Location/entities are discrete, time is continuous

•  Continuous systems (PDEs)
–  Time and space are continuous

•  Identify common problems and solutions

discrete

continuous

Model Problem: Sharks and Fish

Jim Demmel Sources: 6 8/20/10

•  Illustrates parallelization of these simulations
•  Basic idea: sharks and fish living in an ocean

–  rules for movement (discrete and continuous)
–  breeding, eating, and death
–  forces in the ocean
–  forces between sea creatures

•  6 different versions
–  Different sets of rules, to illustrate different simulations

•  Available in many languages
–  Matlab, pThreads, MPI, OpenMP, Split-C, Titanium, CMF, …
–  See bottom of www.cs.berkeley.edu/~demmel/cs267_Spr10/

– One (or a few) will be used as lab assignments
–  See bottom of www.cs.berkeley.edu/~agearh/cs267.sp10
–  Rest available for your own classes!

“7 Dwarfs” of High Performance Computing
•  Phil Colella (LBL) identified 7 kernels of which most

simulation and data-analysis programs are composed:

Sources: 7

1.  Dense Linear Algebra
•  Ex: Solve Ax=b or Ax = λx where A is a dense matrix

2.  Sparse Linear Algebra
•  Ex: Solve Ax=b or Ax = λx where A is a sparse matrix (mostly zero)

3.  Operations on Structured Grids
•  Ex: Anew(i,j) = 4*A(i,j) – A(i-1,j) – A(i+1,j) – A(i,j-1) – A(i,j+1)

4.  Operations on Unstructured Grids
•  Ex: Similar, but list of neighbors varies from entry to entry

5.  Spectral Methods
•  Ex: Fast Fourier Transform (FFT)

6.  Particle Methods
•  Ex: Compute electrostatic forces on n particles, move them

7.  Monte Carlo
•  Ex: Many independent simulations using different inputs

Jim Demmel 8/20/10

DISCRETE EVENT SYSTEMS

Jim Demmel Sources: 8 8/20/10

Discrete Event Systems

Jim Demmel Sources: 9 8/20/10

•  Systems are represented as:
–  finite set of variables.
–  the set of all variable values at a given time is called the state.
–  each variable is updated by computing a transition function

depending on the other variables.
•  System may be:

–  synchronous: at each discrete timestep evaluate all transition
functions; also called a state machine.

–  asynchronous: transition functions are evaluated only if the
inputs change, based on an “event” from another part of the
system; also called event driven simulation.

•  Example: The “game of life:”
–  Space divided into cells, rules govern cell contents at each step
–  Also available as Sharks and Fish #3 (S&F 3)

Parallelism in Game of Life

Jim Demmel Sources: 10 8/20/10

•  The simulation is synchronous
–  use two copies of the grid (old and new).
–  the value of each new grid cell depends only on 9 cells (itself plus 8

neighbors) in old grid.
–  simulation proceeds in timesteps-- each cell is updated at every step.

•  Easy to parallelize by dividing physical domain: Domain Decomposition

•  Locality is achieved by using large patches of the ocean
–  Only boundary values from neighboring patches are needed.

•  How to pick shapes of domains?

P4

P1 P2 P3

P5 P6

P7 P8 P9

Repeat

 compute locally to update local system

 barrier()

 exchange state info with neighbors

until done simulating

Sources: 11

Regular Meshes
•  Suppose graph is nxn mesh with connection NSEW neighbors

•  Which partition has less communication? (n=18, p=9)

n*(p-1)
edge crossings

2*n*(p1/2 –1)
edge crossings

•  Minimizing communication on mesh ≡
 minimizing “surface to volume ratio” of partition

8/20/10 Jim Demmel

Jim Demmel Sources: 12 8/20/10

•  Circuit is a graph made up of subcircuits connected by wires
– Component simulations need to interact if they share a wire.
– Data structure is (irregular) graph of subcircuits.
– Parallel algorithm is timing-driven or synchronous:

»  Evaluate all components at every timestep (determined by known circuit delay)
•  Graph partitioning assigns subgraphs to processors

– Determines parallelism and locality.
– Goal 1 is to evenly distribute subgraphs to nodes (load balance).
– Goal 2 is to minimize edge crossings (minimize communication).
– Easy for meshes, NP-hard in general, so we will approximate (tools available!)

Synchronous Circuit Simulation

#edge crossings = 6 #edge crossings = 10

better

Sources: 13

Sharks & Fish in Loosely Connected Ponds

• Parallelization: each processor gets a set of ponds with roughly
equal total area

• work is proportional to area, not number of creatures

• One pond can affect another (through streams) but infrequently

Jim Demmel 8/20/10

Sources: 14

Asynchronous Simulation

•  Synchronous simulations may waste time:
–  Simulates even when the inputs do not change,.

•  Asynchronous (event-driven) simulations update only when
an event arrives from another component:

–  No global time steps, but individual events contain time stamps.
–  Example: Game of life in loosely connected ponds (don’t simulate empty

ponds).
–  Example: Circuit simulation with delays (events are gates changing).
–  Example: Traffic simulation (events are cars changing lanes, etc.).

•  Asynchronous is more efficient, but harder to parallelize
–  With message passing, events are naturally implemented as messages,

but how do you know when to execute a “receive”?

Jim Demmel 8/20/10

Sources: 15

Scheduling Asynchronous Circuit Simulation

•  Conservative:
–  Only simulate up to (and including) the minimum time stamp of inputs.
–  Need deadlock detection if there are cycles in graph

»  Example on next slide
–  Example: Pthor circuit simulator in Splash1 from Stanford.

•  Speculative (or Optimistic):
–  Assume no new inputs will arrive and keep simulating.
–  May need to backup if assumption wrong, using timestamps
–  Example: Timewarp [D. Jefferson], Parswec [Wen,Yelick].

•  Optimizing load balance and locality is difficult:
–  Locality means putting tightly coupled subcircuit on one processor.
–  Since “active” part of circuit likely to be in a tightly coupled

subcircuit, this may be bad for load balance.

Jim Demmel 8/20/10

Sources: 16

Deadlock in Conservative Asynchronous
Circuit Simulation
•  Example: Sharks & Fish 3, with 3 processors simulating

3 ponds connected by streams along which fish can move

• Suppose all ponds simulated up to time t0, but no fish move, so
no messages sent from one proc to another

• So no processor can simulate past time t0
•  Fix: After waiting for an incoming message for a while, send out

an “Are you stuck too?” message
•  If you ever receive such a message, pass it on
•  If you receive such a message that you sent, you have a

deadlock cycle, so just take a step with latest input
•  Can be a serial bottleneck

Jim Demmel 8/20/10

Sources: 17

Summary of Discrete Event Simulations

•  Model of the world is discrete
– Both time and space

•  Approaches
– Decompose domain, i.e., set of objects
– Run each component ahead using

» Synchronous: communicate at end of each timestep
» Asynchronous: communicate on-demand

• Conservative scheduling – wait for inputs
– need deadlock detection

• Speculative scheduling – assume no inputs
– roll back if necessary

Jim Demmel 8/20/10

PARTICLE SYSTEMS

Jim Demmel Sources: 18 8/20/10

Sources: 19

Particle Systems

•  A particle system has
–  a finite number of particles
–  moving in space according to Newton’s Laws (i.e. F = ma)
–  time is continuous

•  Examples
–  stars in space with laws of gravity
–  electron beam in semiconductor manufacturing
–  atoms in a molecule with electrostatic forces
–  neutrons in a fission reactor
–  cars on a freeway with Newton’s laws plus model of driver and engine
–  flying objects in a video game …

•  Reminder: many simulations combine techniques such
as particle simulations with some discrete events
(eg Sharks and Fish)

Jim Demmel 8/20/10

Sources: 20

Forces in Particle Systems

•  Force on each particle can be subdivided

• External force
•  ocean current to sharks and fish world (S&F 1)
•  externally imposed electric field in electron beam

• Nearby force
•  sharks attracted to eat nearby fish (S&F 5)
•  balls on a billiard table bounce off of each other
•  Van der Waals forces in fluid (1/r6) … how Gecko feet work?

• Far-field force
•  fish attract other fish by gravity-like (1/r2) force (S&F 2)
•  gravity, electrostatics, radiosity in graphics
•  forces governed by elliptic PDE

force = external_force + nearby_force + far_field_force

Jim Demmel 8/20/10

Sources: 21

Example S&F 1: Fish in an External Current

% fishp = array of initial fish positions (stored as complex numbers)
% fishv = array of initial fish velocities (stored as complex numbers)
% fishm = array of masses of fish
% tfinal = final time for simulation (0 = initial time)
% Algorithm: update position [velocity] using velocity [acceleration]
 at each time step
% Initialize time step, iteration count, and array of times
 dt = .01; t = 0;
% loop over time steps
 while t < tfinal,
 t = t + dt;
 fishp = fishp + dt*fishv;
 accel = current(fishp)./fishm; % current depends on position
 fishv = fishv + dt*accel;
% update time step (small enough to be accurate, but not too small)
 dt = min(.1*max(abs(fishv))/max(abs(accel)), .01);
 end

Jim Demmel 8/20/10

Sources: 22

Parallelism in External Forces
•  These are the simplest
•  The force on each particle is independent
•  Called “embarrassingly parallel”

–  Corresponds to “map reduce” pattern

•  Evenly distribute particles on processors
–  Any distribution works
–  Locality is not an issue, no communication

•  For each particle on processor, apply the external force
–  May need to “reduce” (eg compute maximum) to compute time step,

other data

Jim Demmel 8/20/10

Sources: 23

Parallelism in Nearby Forces
•  Nearby forces require interaction and therefore

communication.
•  Force may depend on other nearby particles:

–  Example: collisions.
–  simplest algorithm is O(n2): look at all pairs to see if they collide.

•  Usual parallel model is domain decomposition of
physical region in which particles are located

–  O(n/p) particles per processor if evenly distributed.

Jim Demmel 8/20/10

Sources: 24

Parallelism in Nearby Forces

•  Challenge 1: interactions of particles near processor
boundary:

–  need to communicate particles near boundary to neighboring
processors.

–  Low surface to volume ratio means low communication.
»  Use squares, not slabs

Communicate particles in
boundary region to neighbors

Need to check for
collisions between

regions

Jim Demmel 8/20/10

Sources: 25

Parallelism in Nearby Forces

•  Challenge 2: load imbalance, if particles cluster:
–  galaxies, electrons hitting a device wall.

•  To reduce load imbalance, divide space unevenly.
–  Each region contains roughly equal number of particles.
–  Quad-tree in 2D, oct-tree in 3D.

Example: each square
contains at most 3

particles

Jim Demmel 8/20/10

Sources: 26

Parallelism in Far-Field Forces

•  Far-field forces involve all-to-all interaction and
therefore communication.

•  Force depends on all other particles:
–  Examples: gravity, protein folding
–  Simplest algorithm is O(n2) as in S&F 2, 4, 5.
–  Just decomposing space does not help since every particle needs

to “visit” every other particle.

•  Use more clever algorithms to beat O(n2).

Implement by rotating particle sets.

•  Keeps processors busy

•  All processor eventually see all particles

Jim Demmel 8/20/10

Sources: 27

Far-field Forces: O(n log n) or O(n), not O(n2)

•  Based on approximation:
–  Settle for the answer to just 3 digits, or just 15 digits …

•  Two approaches
–  “Particle-Mesh”

»  Approximate by particles on a regular mesh
»  Exploit structure of mesh to solve for forces fast (FFT)

–  “Tree codes” (Barnes-Hut, Fast-Multipole-Method)
»  Approximate clusters of nearby particles by single “metaparticles”
»  Only need to sum over (many fewer) metaparticles

Jim Demmel 8/20/10

: Particle-Mesh

Tree code:

LUMPED SYSTEMS - ODES

Jim Demmel Sources: 28 8/20/10

Sources: 29

System of Lumped Variables
•  Many systems are approximated by

–  System of “lumped” variables.
–  Each depends on continuous parameter (usually time).

•  Example -- circuit:
–  approximate as graph.

» wires are edges.
» nodes are connections between 2 or more wires.
» each edge has resistor, capacitor, inductor or voltage source.

–  system is “lumped” because we are not computing the voltage/current at
every point in space along a wire, just endpoints.

–  Variables related by Ohm’s Law, Kirchoff’s Laws, etc.

•  Forms a system of ordinary differential equations (ODEs)
–  Differentiated with respect to time
–  Variant: ODEs with some constraints

»  Also called DAEs, Differential Algebraic Equations

Jim Demmel 8/20/10

Sources: 30

Circuit Example
•  State of the system is represented by

–  vn(t) node voltages
–  ib(t) branch currents all at time t
–  vb(t) branch voltages

•  Equations include
–  Kirchoff’s current
–  Kirchoff’s voltage
–  Ohm’s law
–  Capacitance
–  Inductance

•  A is sparse matrix, representing connections in circuit
–  One column per branch (edge), one row per node (vertex) with +1 and

-1 in each column at rows indicating end points

•  Write as single large system of ODEs or DAEs

0 A 0 vn 0

A’ 0 -I * ib = S
0 R -I vb 0
0 -I C*d/dt 0
0 L*d/dt I 0

Jim Demmel 8/20/10

Sources: 31

Structural Analysis Example

•  Another example is structural analysis in civil engineering:
–  Variables are displacement of points in a building.
–  Newton’s and Hook’s (spring) laws apply.
–  Static modeling: exert force and determine displacement.
–  Dynamic modeling: apply continuous force (earthquake).
–  Eigenvalue problem: do the resonant modes of the building match an

earthquake

OpenSees project in CE at Berkeley looks at this section of 880, among others

Jim Demmel 8/20/10

Gaming Example

Star Wars – The Force Unleashed…

graphics.cs.berkeley.edu/papers/Parker-RTD-2009-08/

Jim Demmel Sources: 32 8/20/10

Sources: 33

Solving ODEs

•  In these examples, and most others, the matrices
are sparse:

–  i.e., most array elements are 0.
–  neither store nor compute on these 0’s.
–  Sparse because each component only depends on a few others

•  Given a set of ODEs, two kinds of questions are:
–  Compute the values of the variables at some time t

»  Explicit methods
»  Implicit methods

–  Compute modes of vibration
»  Eigenvalue problems

Jim Demmel 8/20/10

Sources: 34

Solving ODEs

•  Suppose ODE is x’(t) = A·x(t), where A is a sparse matrix
–  Discretize: only compute x(i·dt) = x[i] at i=0,1,2,…
–  ODE gives x’(t) = slope at t, and so x[i+1] ≈ x[i] + dt·slope

•  Explicit methods (ex: Forward Euler)
–  Use slope at t = i·dt, so slope = A·x[i].
–  x[i+1] = x[i] + dt·A·x[i], i.e. sparse matrix-vector multiplication.

•  Implicit methods (ex: Backward Euler)
–  Use slope at t = (i+1)·dt, so slope = A·x[i+1].
–  Solve x[i+1] = x[i] + dt·A·x[i+1] for x[i+1] = (I -dt·A)-1 · x[i] ,

i.e. solve a sparse linear system of equations for x[i+1]

•  Tradeoffs:
–  Explicit: simple algorithm but may need tiny time steps dt for stability
–  Implicit: more expensive algorithm, but can take larger time steps dt

•  Modes of vibration – eigenvalues of A
–  Algorithms also either multiply A·x or solve y = (I - d·A) · x for x

Jim Demmel 8/20/10

CONTINUOUS SYSTEMS -
PDES

Jim Demmel Sources: 35 8/20/10

Sources: 36

Continuous Systems - PDEs
Examples of such systems include
•  Elliptic problems (steady state, global space dependence)

–  Electrostatic or Gravitational Potential: Potential(position)
•  Hyperbolic problems (time dependent, local space dependence):

–  Sound waves: Pressure(position,time)
•  Parabolic problems (time dependent, global space dependence)

–  Heat flow: Temperature(position, time)
–  Diffusion: Concentration(position, time)

Global vs Local Dependence
–  Global means either a lot of communication, or tiny time steps
–  Local arises from finite wave speeds: limits communication

Many problems combine features of above
•  Fluid flow: Velocity,Pressure,Density(position,time)
•  Elasticity: Stress,Strain(position,time)

Jim Demmel 8/20/10

Sources: 37

Implicit Solution of the 1D Heat Equation

•  Discretize time and space using implicit approach
(Backward Euler) to approximate time derivative:

 (u(x,t+δ) – u(x,t))/dt = C·(u(x-h,t+δ) – 2·u(x,t+δ) + u(x+h, t+δ))/h2

•  Let z = C·δ/h2 and discretize variable x to j·h, t to i·δ,
and u(x,t) to u[j,i]; solve for u at next time step:

 (I + z · L) · u[:, i+1] = u[:,i]

•  I is identity and
 L is Laplacian
•  Solve sparse linear system again

2 -1

 -1 2 -1

 -1 2 -1

 -1 2 -1

 -1 2

L =

d u(x,t) d2u(x,t)

dt dx2

= C ·

Jim Demmel 8/20/10

0 1x

Sources: 38

2D Implicit Method

•  Similar to the 1D case, but the matrix L is now

•  Multiplying by this matrix (as in the explicit case) is
simply nearest neighbor computation on 2D mesh.

•  To solve this system, there are several techniques.

4  -1 -1

 -1 4 -1 -1

 -1 4 -1

-1 4 -1 -1

 -1 -1 4 -1 -1
 -1 -1 4 -1

 -1 4 -1

 -1 -1 4 -1

 -1 -1 4

L =

4

-1

-1

-1

-1

Graph and “5 point stencil”

3D case is analogous
(7 point stencil)

Jim Demmel 8/20/10

Sources: 39

Algorithms for Solving Ax=b (N vars)

Algorithm Serial PRAM Memory #Procs
•  Dense LU N3 N N2 N2
•  Band LU N2 N N3/2 N
•  Jacobi N2 N N N
•  Explicit Inv. N2 log N N2 N2

•  Conj.Gradients N3/2 N1/2 *log N N N
•  Red/Black SOR N3/2 N1/2 N N
•  Sparse LU N3/2 N1/2 N*log N N
•  FFT N*log N log N N N
•  Multigrid N log2 N N N
•  Lower bound N log N N

All entries in “Big-Oh” sense (constants omitted)
PRAM is an idealized parallel model with zero cost communication
Reference: James Demmel, Applied Numerical Linear Algebra, SIAM, 1997.

Jim Demmel 8/20/10

Algorithms for 2D (3D) Poisson Equation (N = n2 (n3) vars)

Jim Demmel Sources: 40 8/20/10

Algorithm Serial PRAM Memory #Procs
•  Dense LU N3 N N2 N2
•  Band LU N2 (N7/3) N N3/2 (N5/3) N(N4/3)
•  Jacobi N2 (N5/3) N (N2/3) N N
•  Explicit Inv. N2 log N N2 N2

•  Conj.Gradients N3/2 (N4/3) N1/2 (1/3) *log N N N
•  Red/Black SOR N3/2 (N4/3) N1/2 (N1/3) N N
•  Sparse LU N3/2 (N2) N1/2 N*log N(N4/3) N
•  FFT N*log N log N N N
•  Multigrid N log2 N N N
•  Lower bound N log N N

PRAM is an idealized parallel model with ∞ procs, zero cost communication
Reference: J.D. , Applied Numerical Linear Algebra, SIAM, 1997.
For more information: take Ma221 this semester!

Algorithms and Motifs

Jim Demmel Sources: 41 8/20/10

Algorithm Motifs
•  Dense LU Dense linear algebra
•  Band LU Dense linear algebra
•  Jacobi (Un)structured meshes, Sparse Linear Algebra
•  Explicit Inv. Dense linear algebra

•  Conj.Gradients (Un)structured meshes, Sparse Linear Algebra
•  Red/Black SOR (Un)structured meshes, Sparse Linear Algebra
•  Sparse LU Sparse Linear Algebra
•  FFT Spectral
•  Multigrid (Un)structured meshes, Sparse Linear Algebra

Sources: 42

Irregular mesh: NASA Airfoil in 2D

Jim Demmel 8/20/10

Mesh of

airfoil

Pattern of

sparse matrix A

Pattern of

 A after LU

Sources: 43

Source of Irregular Mesh:
Finite Element Model of Vertebra

Source: M. Adams, H. Bayraktar, T. Keaveny, P. Papadopoulos, A. Gupta

Study failure modes of trabecular Bone under stress

Jim Demmel 8/20/10

Sources: 44

Micro-Computed Tomography

µCT @ 22 µm resolution

Mechanical Testing

E, εyield, σult, etc.

Methods: µFE modeling (Gordon Bell Prize, 2004)

3D image

2.5 mm cube

44 µm elements

µFE mesh

Source: Mark Adams, PPPL

Up to 537M unknowns

Jim Demmel 8/20/10

Sources: 45

Adaptive Mesh Refinement (AMR)

• Adaptive mesh around an explosion

• Refinement done by estimating errors; refine mesh if too large

• Parallelism

• Mostly between “patches,” assigned to processors for load balance

• May exploit parallelism within a patch

• Projects:

•  Titanium (http://www.cs.berkeley.edu/projects/titanium)

• Chombo (P. Colella, LBL), KeLP (S. Baden, UCSD), J. Bell, LBL

Jim Demmel 8/20/10

CS267 Lecture 6
 46

Summary: Some Common Problems

•  Load Balancing
–  Dynamically – if load changes significantly during job
–  Statically - Graph partitioning

»  Discrete systems
»  Sparse matrix vector multiplication

•  Linear algebra
–  Solving linear systems (sparse and dense)
–  Eigenvalue problems will use similar techniques

•  Fast Particle Methods
–  O(n log n) instead of O(n2)

