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•  Parallelism and data locality both critical to performance 
- Moving data most expensive operation 

•  Real world problems have parallelism and locality: 
–  Many objects operate independently of others. 
–  Objects often depend much more on nearby than distant objects. 
–  Dependence on distant objects can often be simplified. 

»  Example of all three: particles moving under gravity 

•  Scientific models may introduce more parallelism: 
–  When a continuous problem is discretized, time dependencies are 

generally limited to adjacent time steps. 
»  Helps limit dependence to nearby objects (eg collisions) 

–  Far-field effects may be ignored or approximated in many cases. 

• Many problems exhibit parallelism at multiple levels 

Parallelism and Locality in Simulation 



Basic Kinds of Simulation 
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•  Particle Systems 
–  Billiard balls, Galaxies, Atoms, Circuits, Pinball … 

•  Lumped Systems (Ordinary Differential Eqns – ODEs) 
–  Structural Mechanics, Chemical kinetics, Circuits,                      

Star Wars: The Force Unleashed 

•  Continuous Systems (Partial Differential Eqns – PDEs) 
–  Heat, Elasticity, Electrostatics, Finance, Circuits,                      

Medical Image Analysis, Terminator 3: Rise of the Machines 

•  A given phenomenon can be modeled at multiple levels 
•  Many simulations combine multiple techniques 
•  For more on simulation in games, see 

•  www.cs.berkeley.edu/b-cam/Papers/Parker-2009-RTD 

•  Discrete Event Systems 
–  “Game of Life”, Manufacturing Systems, Finance, Circuits, Pacman … 



Example: Circuit Simulation  
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•  Circuits are simulated at many different levels 

Level Primitives Examples 
Instruction level Instructions SimOS, SPIM 

Cycle level Functional units           VIRAM-p 

Register Transfer 
Level (RTL) 

Register, counter, 
MUX 

VHDL 

Gate Level Gate, flip-flop, 
memory cell 

          Thor 

Switch level Ideal transistor Cosmos 

Circuit level Resistors, 
capacitors, etc. 

Spice 

Device level Electrons, silicon 

Lumped 
Systems 

Discrete 
Event 

Continuous 
Systems 



Outline 
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•  Discrete event systems 
–  Time and space are discrete 

•  Particle systems 
–  Important special case of lumped systems 

•  Lumped systems  (ODEs) 
–  Location/entities are discrete, time is continuous 

•  Continuous systems (PDEs) 
–  Time and space are continuous 

•  Identify common problems and solutions 

discrete 

continuous 



Model Problem: Sharks and Fish 
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•  Illustrates parallelization of these simulations  
•  Basic idea: sharks and fish living in an ocean 

–  rules for movement (discrete and continuous) 
–  breeding, eating, and death 
–  forces in the ocean 
–  forces between sea creatures  

•  6 different versions 
–  Different sets of rules, to illustrate different simulations 

•  Available in many languages 
–  Matlab, pThreads, MPI, OpenMP, Split-C, Titanium, CMF, … 
–  See bottom of www.cs.berkeley.edu/~demmel/cs267_Spr10/ 

– One (or a few) will be used as lab assignments 
–  See bottom of www.cs.berkeley.edu/~agearh/cs267.sp10 
–  Rest available for your own classes! 



“7 Dwarfs” of High Performance Computing 
•  Phil Colella (LBL) identified 7 kernels of which most 

simulation and data-analysis programs are composed: 
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1.  Dense Linear Algebra 
•  Ex: Solve Ax=b or Ax = λx where A is a dense matrix 

2.  Sparse Linear Algebra 
•  Ex: Solve Ax=b or Ax = λx where A is a sparse matrix (mostly zero) 

3.  Operations on Structured Grids 
•  Ex: Anew(i,j) = 4*A(i,j) – A(i-1,j) – A(i+1,j) – A(i,j-1) – A(i,j+1) 

4.  Operations on Unstructured Grids 
•  Ex: Similar, but list of neighbors varies from entry to entry 

5.  Spectral Methods 
•  Ex: Fast Fourier Transform (FFT) 

6.  Particle Methods 
•  Ex: Compute electrostatic forces on n particles, move them 

7.  Monte Carlo 
•  Ex: Many independent simulations using different inputs 
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DISCRETE EVENT SYSTEMS 
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Discrete Event Systems 
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•  Systems are represented as: 
–  finite set of variables. 
–  the set of all variable values at a given time is called the state. 
–  each variable is updated by computing a transition function 

depending on the other variables. 
•  System may be: 

–  synchronous: at each discrete timestep evaluate all transition 
functions; also called a state machine. 

–  asynchronous: transition functions are evaluated only if the 
inputs change, based on an “event” from another part of the 
system; also called event driven simulation. 

•  Example: The “game of life:” 
–  Space divided into cells, rules govern cell contents at each step 
–  Also available as Sharks and Fish #3 (S&F 3) 



Parallelism in Game of Life 
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•  The simulation is synchronous 
–  use two copies of the grid (old and new). 
–  the value of each new grid cell depends only on 9 cells (itself plus 8 

neighbors) in old grid. 
–  simulation proceeds in timesteps-- each cell is updated at every step. 

•  Easy to parallelize by dividing physical domain: Domain Decomposition 

•  Locality is achieved by using large patches of the ocean 
–  Only boundary values from neighboring patches are needed. 

•  How to pick shapes of domains? 

P4 

P1 P2 P3 

P5 P6 

P7 P8 P9 

Repeat 

     compute locally to update local system 

     barrier() 

     exchange state info with neighbors 

until done simulating 
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Regular Meshes 
•  Suppose graph is nxn mesh with connection NSEW neighbors 

•  Which partition has less communication? (n=18, p=9) 

n*(p-1) 
edge crossings 

2*n*(p1/2 –1) 
edge crossings 

•  Minimizing communication on mesh  ≡   
      minimizing “surface to volume ratio” of partition  

8/20/10 Jim Demmel 
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•  Circuit is a graph made up of subcircuits connected by wires 
– Component simulations need to interact if they share a wire. 
– Data structure is (irregular) graph of subcircuits. 
– Parallel algorithm is timing-driven or synchronous: 

»  Evaluate all components at every timestep (determined by known circuit delay) 
•  Graph partitioning assigns subgraphs to processors 

– Determines parallelism and locality. 
– Goal 1 is to evenly distribute subgraphs to nodes  (load balance). 
– Goal 2 is to minimize edge crossings (minimize communication). 
– Easy for meshes, NP-hard in general, so we will approximate (tools  available!) 

Synchronous Circuit Simulation 

#edge crossings = 6 #edge crossings = 10 

better 
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Sharks & Fish in Loosely Connected Ponds 

• Parallelization: each processor gets a set of ponds with roughly 
equal total area 

• work is proportional to area, not number of creatures 

• One pond can affect another (through streams) but infrequently 

Jim Demmel 8/20/10 
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Asynchronous Simulation 

•  Synchronous simulations may waste time: 
–  Simulates even when the inputs do not change,. 

•  Asynchronous (event-driven) simulations update only when 
an event arrives from another component: 

–  No global time steps, but individual events contain time stamps. 
–  Example: Game of life in loosely connected ponds (don’t simulate empty 

ponds). 
–  Example: Circuit simulation with delays (events are gates changing). 
–  Example: Traffic simulation (events are cars changing lanes, etc.). 

•  Asynchronous is more efficient, but harder to parallelize 
–  With message passing, events are naturally implemented as messages,  

but how do you know when to execute a “receive”? 

Jim Demmel 8/20/10 
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Scheduling Asynchronous Circuit Simulation 

•  Conservative:  
–  Only simulate up to (and including) the minimum time stamp of inputs. 
–  Need deadlock detection if there are cycles in graph 

»  Example on next slide 
–  Example: Pthor circuit simulator in Splash1 from Stanford. 

•  Speculative (or Optimistic):  
–  Assume no new inputs will arrive and keep simulating. 
–  May need to backup if assumption wrong, using timestamps 
–  Example: Timewarp [D. Jefferson], Parswec [Wen,Yelick]. 

•  Optimizing load balance and locality is difficult: 
–  Locality means putting tightly coupled subcircuit on one processor. 
–  Since “active” part of circuit likely to be in a tightly coupled 

subcircuit, this may be bad for load balance. 

Jim Demmel 8/20/10 
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Deadlock in Conservative Asynchronous 
Circuit Simulation 
•  Example:  Sharks & Fish 3, with 3 processors simulating    

3 ponds connected by streams along which fish can move 

• Suppose all ponds simulated up to time t0, but no fish move, so 
no messages sent from one proc to another 

• So no processor can simulate past time t0 
•  Fix: After waiting for an incoming message for a while, send out 

an “Are you stuck too?” message 
•  If you ever receive such a message, pass it on 
•  If you receive such a message that you sent, you have a 

deadlock cycle, so just take a step with latest  input 
•  Can be a serial bottleneck 

Jim Demmel 8/20/10 
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Summary of Discrete Event Simulations 

•  Model of the world is discrete 
– Both time and space 

•  Approaches 
– Decompose domain, i.e., set of objects 
– Run each component ahead using 

» Synchronous: communicate at end of each timestep 
» Asynchronous: communicate on-demand 

• Conservative scheduling – wait for inputs  
– need deadlock detection 

• Speculative scheduling – assume no inputs  
– roll back if necessary 

Jim Demmel 8/20/10 



PARTICLE SYSTEMS 
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Particle Systems 

•  A particle system has  
–  a finite number of particles 
–  moving in space according to Newton’s Laws (i.e. F = ma) 
–  time is continuous  

•  Examples 
–  stars in space with laws of gravity 
–  electron beam in semiconductor manufacturing 
–  atoms in a molecule with electrostatic forces 
–  neutrons in a fission reactor 
–  cars on a freeway with Newton’s laws plus model of driver and engine 
–  flying objects in a video game … 

•  Reminder: many simulations combine techniques such 
as particle simulations with some discrete events     
(eg Sharks and Fish) 

Jim Demmel 8/20/10 
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Forces in Particle Systems 

•  Force on each particle can be subdivided 

• External force 
•  ocean current to sharks and fish world (S&F 1) 
•  externally imposed electric field in electron beam 

• Nearby force 
•  sharks attracted to eat nearby fish (S&F 5) 
•  balls on a billiard table bounce off of each other 
•  Van der Waals forces in fluid (1/r6)   … how Gecko feet work? 

• Far-field force 
•  fish attract other fish by gravity-like (1/r2 ) force (S&F 2) 
•  gravity, electrostatics, radiosity in graphics 
•  forces governed by elliptic PDE 

force   =   external_force   +   nearby_force   +   far_field_force 

Jim Demmel 8/20/10 
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Example S&F 1: Fish in an External Current 

%    fishp = array of initial fish positions (stored as complex numbers) 
%    fishv = array of initial fish velocities (stored as complex numbers) 
%    fishm = array of masses of fish 
%    tfinal = final time for simulation (0 = initial time) 
%   Algorithm: update position [velocity] using velocity [acceleration] 
        at each time step 
%   Initialize time step, iteration count, and array of times 
      dt = .01;   t = 0; 
%  loop over time steps 
      while t < tfinal,  
         t = t + dt; 
         fishp = fishp + dt*fishv; 
         accel = current(fishp)./fishm;       % current depends on position 
         fishv = fishv + dt*accel; 
%      update time step (small enough to be accurate, but not too small) 
         dt = min( .1*max(abs(fishv))/max(abs(accel)), .01); 
     end      

Jim Demmel 8/20/10 
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Parallelism in External Forces 
•  These are the simplest 
•  The force on each particle is independent 
•  Called “embarrassingly parallel” 

–  Corresponds to “map reduce” pattern 

•  Evenly distribute particles on processors 
–  Any distribution works 
–  Locality is not an issue, no communication 

•  For each particle on processor, apply the external force 
–  May need to “reduce” (eg compute maximum) to compute time step,  

other data 

Jim Demmel 8/20/10 
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Parallelism in Nearby Forces 
•  Nearby forces require interaction and therefore 

communication. 
•  Force may depend on other nearby particles: 

–  Example: collisions. 
–  simplest algorithm is O(n2): look at all pairs to see if they collide. 

•  Usual parallel model is domain  decomposition of 
physical region in which particles are located 

–   O(n/p) particles per processor if evenly distributed. 

Jim Demmel 8/20/10 
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Parallelism in Nearby Forces 

•  Challenge 1: interactions of particles near processor 
boundary: 

–  need to communicate particles near boundary to neighboring 
processors. 

–  Low surface to volume ratio means low communication. 
»  Use squares, not slabs 

Communicate particles in 
boundary region to neighbors


Need to check for 
collisions between 

regions


Jim Demmel 8/20/10 
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Parallelism in Nearby Forces 

•  Challenge 2: load imbalance, if particles cluster: 
–  galaxies, electrons hitting a device wall. 

•  To reduce load imbalance, divide space unevenly. 
–  Each region contains roughly equal number of particles. 
–  Quad-tree in 2D, oct-tree in 3D. 

Example: each square 
contains at most 3 

particles


Jim Demmel 8/20/10 
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Parallelism in Far-Field Forces 

•  Far-field forces involve all-to-all interaction and 
therefore communication. 

•  Force depends on all other particles: 
–  Examples: gravity, protein folding 
–  Simplest algorithm is O(n2) as in S&F 2, 4, 5. 
–  Just decomposing space does not help since every particle needs 

to “visit” every other particle. 

•  Use more clever algorithms to beat O(n2). 

Implement by rotating particle sets. 

•  Keeps processors busy 

•  All processor eventually see all particles 

Jim Demmel 8/20/10 



Sources: 27


Far-field Forces: O(n log n) or O(n), not O(n2) 

•  Based on approximation: 
–  Settle for the answer to just 3 digits, or just 15 digits … 

•  Two approaches 
–  “Particle-Mesh” 

»  Approximate by particles on a regular mesh 
»  Exploit structure of mesh to solve for forces fast (FFT) 

–  “Tree codes”  (Barnes-Hut, Fast-Multipole-Method) 
»  Approximate clusters of nearby particles by single “metaparticles” 
»  Only need to sum over (many fewer) metaparticles 

Jim Demmel 8/20/10 

: Particle-Mesh 

Tree code: 



LUMPED SYSTEMS - ODES 
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System of Lumped Variables 
•  Many systems are approximated by 

–  System of “lumped” variables. 
–  Each depends on continuous parameter (usually time). 

•  Example -- circuit: 
–  approximate as graph. 

» wires are edges. 
» nodes are connections between 2 or more wires. 
» each edge has resistor, capacitor, inductor or voltage source. 

–  system is “lumped” because we are not computing the voltage/current at 
every point in space along a wire, just endpoints. 

–  Variables related by Ohm’s Law, Kirchoff’s Laws, etc. 

•  Forms a system of ordinary differential equations (ODEs) 
–  Differentiated with respect to time 
–  Variant: ODEs with some constraints  

»  Also called DAEs, Differential Algebraic Equations 

Jim Demmel 8/20/10 
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Circuit Example 
•  State of the system is represented by 

–  vn(t)  node voltages 
–  ib(t) branch currents  all at time t 
–  vb(t) branch voltages 

•  Equations include 
–  Kirchoff’s current 
–  Kirchoff’s voltage 
–  Ohm’s law 
–  Capacitance 
–  Inductance 

•  A is sparse matrix, representing connections in circuit 
–  One column per branch (edge), one row per node (vertex) with +1 and 

-1 in each column at rows indicating end points 

•  Write as single large system of ODEs or DAEs 

0  A  0  vn  0 

A’  0  -I     *  ib    =  S 
0  R  -I  vb  0 
0  -I       C*d/dt   0 
0  L*d/dt  I   0 

Jim Demmel 8/20/10 
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Structural Analysis Example 

•  Another example is structural analysis in civil engineering: 
–  Variables are displacement of points in a building. 
–  Newton’s and Hook’s (spring) laws apply. 
–  Static modeling: exert force and determine displacement. 
–  Dynamic modeling: apply continuous force (earthquake). 
–  Eigenvalue problem: do the resonant modes of the building match an 

earthquake 

OpenSees project in CE at Berkeley  looks at this section of 880, among others 

Jim Demmel 8/20/10 



Gaming Example 

Star Wars – The Force Unleashed… 

graphics.cs.berkeley.edu/papers/Parker-RTD-2009-08/ 
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Solving ODEs 

•  In these examples, and most others, the matrices 
are sparse: 

–  i.e., most array elements are 0. 
–  neither store nor compute on these 0’s. 
–  Sparse because each component only depends on a few others 

•  Given a set of ODEs, two kinds of questions are: 
–  Compute the values of the variables at some time t 

»  Explicit methods 
»  Implicit methods 

–  Compute modes of vibration 
»  Eigenvalue problems 

Jim Demmel 8/20/10 
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Solving ODEs 

•  Suppose ODE is x’(t) = A·x(t), where A is a sparse matrix 
–  Discretize: only compute x(i·dt) = x[i]  at i=0,1,2,… 
–  ODE gives x’(t) = slope at t, and so x[i+1] ≈ x[i] + dt·slope  

•  Explicit methods (ex: Forward Euler) 
–  Use slope at t = i·dt, so slope = A·x[i]. 
–  x[i+1] = x[i] + dt·A·x[i],  i.e. sparse matrix-vector multiplication. 

•  Implicit methods (ex: Backward Euler) 
–  Use slope at t = (i+1)·dt, so slope = A·x[i+1]. 
–  Solve  x[i+1]  =  x[i] + dt·A·x[i+1]   for   x[i+1]  =  (I -dt·A)-1 · x[i] ,                   

i.e. solve a sparse linear system of equations for x[i+1] 

•  Tradeoffs: 
–  Explicit: simple algorithm but may need tiny time steps dt for stability 
–  Implicit: more expensive algorithm, but can take larger time steps dt 

•  Modes of vibration – eigenvalues of A 
–  Algorithms also either multiply  A·x  or solve  y = (I - d·A) · x  for  x 

Jim Demmel 8/20/10 



CONTINUOUS SYSTEMS - 
PDES 
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Continuous Systems - PDEs 
Examples of such systems include 
•  Elliptic problems (steady state, global space dependence) 

–  Electrostatic or Gravitational Potential: Potential(position) 
•  Hyperbolic problems (time dependent, local space dependence): 

–  Sound waves: Pressure(position,time) 
•  Parabolic problems (time dependent, global space dependence) 

–  Heat flow:  Temperature(position, time) 
–  Diffusion:  Concentration(position, time) 

Global vs Local Dependence 
–  Global means either a lot of communication, or tiny time steps 
–  Local arises from finite wave speeds: limits communication 

Many problems combine features of above 
•  Fluid flow:   Velocity,Pressure,Density(position,time) 
•  Elasticity:   Stress,Strain(position,time) 

Jim Demmel 8/20/10 
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Implicit Solution of the 1D Heat Equation 

•  Discretize time and space using implicit approach 
(Backward Euler) to approximate time derivative: 

     (u(x,t+δ) – u(x,t))/dt = C·(u(x-h,t+δ) – 2·u(x,t+δ) + u(x+h, t+δ))/h2 

•  Let z = C·δ/h2  and discretize variable x to j·h, t to i·δ,  
and u(x,t) to u[j,i];  solve for u at next time step: 

       (I + z · L) · u[:, i+1] = u[:,i]  

•   I is identity and 
    L is Laplacian  
•  Solve sparse linear system again  

2    -1  

     -1    2    -1 

                  -1     2    -1 

                                 -1    2     -1 

                                        -1     2 

L =


d u(x,t)           d2u(x,t)

dt                  dx2


= C ·


Jim Demmel 8/20/10 
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2D Implicit Method  

•  Similar to the 1D case, but the matrix L is now 

•  Multiplying by this matrix (as in the explicit case) is 
simply nearest neighbor computation on 2D mesh. 

•  To solve this system, there are several techniques. 

4  -1           -1 

 -1    4    -1          -1 

      -1     4                 -1 

-1                4     -1          -1 

       -1         -1     4    -1          -1           
              -1         -1     4                  -1 

                   -1                   4    -1 

                          -1            -1     4    -1 

                                -1             -1     4 

L =


4 

-1 

-1 

-1 

-1 

Graph and “5 point stencil” 

3D case is analogous 
(7 point stencil) 

Jim Demmel 8/20/10 
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Algorithms for Solving Ax=b (N vars) 

Algorithm  Serial   PRAM   Memory      #Procs 
•  Dense LU  N3   N   N2   N2 
•  Band LU  N2    N   N3/2    N 
•  Jacobi N2   N   N   N 
•  Explicit Inv.  N2   log N   N2   N2 

•  Conj.Gradients  N3/2   N1/2 *log N  N   N 
•  Red/Black SOR N3/2   N1/2   N   N 
•  Sparse LU  N3/2    N1/2   N*log N   N 
•  FFT   N*log N  log N   N   N 
•  Multigrid  N   log2 N   N   N 
•  Lower bound  N   log N   N 

All entries in “Big-Oh” sense (constants omitted) 
PRAM is an idealized parallel model with zero cost communication 
Reference:  James Demmel, Applied Numerical Linear Algebra, SIAM, 1997. 
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Algorithms for 2D (3D) Poisson Equation (N = n2 (n3) vars) 
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Algorithm  Serial   PRAM   Memory  #Procs 
•  Dense LU    N3   N   N2   N2 
•  Band LU    N2  (N7/3)  N   N3/2  (N5/3)  N(N4/3) 
•  Jacobi    N2 (N5/3)  N (N2/3)  N   N 
•  Explicit Inv.    N2   log N   N2   N2 

•  Conj.Gradients N3/2 (N4/3)  N1/2 (1/3) *log N N   N 
•  Red/Black SOR N3/2 (N4/3)  N1/2 (N1/3)  N   N 
•  Sparse LU    N3/2 (N2)  N1/2   N*log N(N4/3)  N 
•  FFT     N*log N  log N   N   N 
•  Multigrid    N   log2 N   N   N 
•  Lower bound    N   log N   N 

PRAM is an idealized parallel model with ∞ procs, zero cost communication 
Reference: J.D. , Applied Numerical Linear Algebra, SIAM, 1997. 
For more information: take Ma221 this semester! 



Algorithms and Motifs 
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Algorithm          Motifs    
•  Dense LU         Dense linear algebra 
•  Band LU         Dense linear algebra 
•  Jacobi         (Un)structured meshes, Sparse Linear Algebra 
•  Explicit Inv.         Dense linear algebra 

•  Conj.Gradients     (Un)structured meshes, Sparse Linear Algebra 
•  Red/Black SOR    (Un)structured meshes, Sparse Linear Algebra 
•  Sparse LU         Sparse Linear Algebra 
•  FFT          Spectral 
•  Multigrid         (Un)structured meshes, Sparse Linear Algebra 
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Irregular mesh: NASA Airfoil in 2D 

Jim Demmel 8/20/10 

Mesh of  

airfoil 

Pattern of  

sparse matrix A 

Pattern of  

 A after LU 
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Source of Irregular Mesh: 
Finite Element Model of Vertebra 

Source: M. Adams, H. Bayraktar, T. Keaveny, P. Papadopoulos, A. Gupta 

Study failure modes of trabecular Bone under stress 

Jim Demmel 8/20/10 



Sources: 44


Micro-Computed Tomography

µCT @ 22 µm resolution


Mechanical Testing

E, εyield, σult, etc.


Methods: µFE modeling (Gordon Bell Prize, 2004) 

3D image

2.5 mm cube


44 µm elements


µFE mesh

Source: Mark Adams, PPPL 

Up to 537M unknowns 

Jim Demmel 8/20/10 
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Adaptive Mesh Refinement (AMR) 

• Adaptive mesh around an explosion

• Refinement done by estimating errors; refine mesh if too large


• Parallelism 

• Mostly between “patches,” assigned to processors for load balance

• May exploit parallelism within a patch  


• Projects: 

•  Titanium (http://www.cs.berkeley.edu/projects/titanium)

• Chombo (P. Colella, LBL), KeLP (S. Baden, UCSD), J. Bell, LBL


Jim Demmel 8/20/10 
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Summary: Some Common Problems 

•  Load Balancing 
–  Dynamically – if load changes significantly during job 
–  Statically - Graph partitioning 

»  Discrete systems 
»  Sparse matrix vector multiplication 

•  Linear algebra 
–  Solving linear systems (sparse and dense) 
–  Eigenvalue problems will use similar techniques 

•  Fast Particle Methods 
–  O(n log n) instead of O(n2) 


