
Distributed Memory
Programming in MPI and UPC 

Kathy Yelick

yelick@cs.berkeley.edu

http://www.cs.berkeley.edu/~yelick/

http://upc.lbl.gov

http://titanium.cs.berkeley.edu

 - Listing of the 500 most powerful
 Computers in the World
 - Yardstick: Rmax from Linpack

 Ax=b, dense problem

 - Updated twice a year:
 ISC‘xy in Germany, June xy
 SC‘xy in USA, November xy

 - All data available from www.top500.org

Size

R
at

e

TPP performance

TOP500

8/19/10
 MPI and UPC 2

Performance Development

 1 Gflop/s

 1 Tflop/s

 100 Mflop/s

100 Gflop/s

100 Tflop/s

 10 Gflop/s

 10 Tflop/s

 1 Pflop/s

100 Pflop/s

 10 Pflop/s

59.7 GFlop/s 

400 MFlop/s 

1.17 TFlop/s 

1.75 PFlop/s 

20.05 TFlop/s 

27.9 PFlop/s 

SUM 

N=1 

N=500 

34th List: The TOP10

Rank Site Manufacturer Computer Country Cores Rmax
[Tflops]

Power
[MW]

1 Oak Ridge National
Laboratory Cray Jaguar

Cray XT5 HC 2.6 GHz USA 224,162 1,759 6.95

2 DOE/NNSA/LANL IBM Roadrunner
BladeCenter QS22/LS21 USA 122,400 1,042 2.34

3 University of
Tennessee Cray Kraken

Cray XT5 HC 2.36GHz USA 98,928 831.7

4 Forschungszentrum
Juelich (FZJ) IBM Jugene

Blue Gene/P Solution Germany 294,912 825.5 2.26

5
National

SuperComputer
Center

NUDT
Tianhe-1

NUDT TH-1 Cluster, Xeon,
ATI Radeon, Infiniband

China 71,680 563.1

6
NASA/Ames

Research Center/
NAS

SGI Pleiades
SGI Altix ICE 8200EX USA 56,320 544.3 2.34

7 DOE/NNSA/LLNL IBM BlueGene/L
eServer Blue Gene Solution USA 212,992 478.2 2.32

8 Argonne National
Laboratory IBM Intrepid

Blue Gene/P Solution USA 163,840 458.6 1.26

9 TACC/U. of Texas Sun Ranger
SunBlade x6420 USA 62,976 433.2 2.0

10 Sandia National
Labs Sun Red Sky - Sun Blade x6275,

Xeon 2.93 Ghz, Infiniband USA 41,616 423.9

Top500 Architecture Trend

8/19/10
 MPI and UPC 5

Concurrency Has Increased Dramatically

Exponential wave of increasing concurrency for forseeable future!
1M cores sooner than you think!

Sum of the # of cores in top 15 systems (from top500.org)

8/19/10
 MPI and UPC 6

Computing Power in top500 by Country

8/19/10
 MPI and UPC 7

Ecosystem for HPC

From the NRC Report on “The Future of Supercomputing”:

•  Platforms, software, institutions, applications, and people who solve
supercomputing applications can be thought of collectively as an
ecosystem

•  Research investment in HPC should be informed by the ecosystem
point of view - progress must come on a broad front of interrelated
technologies, rather than in the form of individual breakthroughs.

Pond ecosystem image from http://

www.tpwd.state.tx.us/expltx/eft/

txwild/pond.htm

Supercomputing Ecosystem (1988)

Cold War and Big Oil spending in the 1980s

Powerful Vector Supercomputers 20 years of Fortran applications base in
physics codes and third party apps

Supercomputing Ecosystem (until about 1988)

Cold War and Big Oil spending in the 1980s

Powerful Vector Supercomputers 20 years of Fortran applications base in
physics codes and third party apps

Supercomputing Ecosystem (2006)

Commercial Off The Shelf technology (COTS)

“Clusters” 12 years of legacy MPI applications base

Supercomputing Ecosystem (2006)

Commercial Off The Shelf technology (COTS)

“Clusters” 12 years of legacy MPI applications base

Programming With MPI

• MPI is a library
• All operations are performed with routine calls
• Basic definitions in

•  mpi.h for C
•  mpif.h for Fortran 77 and 90
•  MPI module for Fortran 90 (optional)

• First Program:
• Create 4 processes in a simple MPI job
• Write out process number
• Write out some variables (illustrate separate name

space)

Slide source: Bill Gropp, UIUC 8/19/10
 MPI and UPC 13

Finding Out About the Environment

• Two important questions that arise early in a
parallel program are:

• How many processes are participating in this
computation?

• Which one am I?
• MPI provides functions to answer these

questions:
• MPI_Comm_size reports the number of processes.
• MPI_Comm_rank reports the rank, a number between

0 and size-1, identifying the calling process

8/19/10
 MPI and UPC 14
Slide source: Bill Gropp, UIUC

Hello (C)

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])
{
 int rank, size;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 printf("I am %d of %d\n", rank, size);
 MPI_Finalize();
 return 0;
}

8/19/10
 MPI and UPC 15
Slide source: Bill Gropp, UIUC

Hello (Fortran)

program main
include 'mpif.h'
integer ierr, rank, size

call MPI_INIT(ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)
print *, 'I am ', rank, ' of ', size
call MPI_FINALIZE(ierr)
end

8/19/10
 MPI and UPC 16
Slide source: Bill Gropp, UIUC

Hello (C++)
#include "mpi.h"
#include <iostream>

int main(int argc, char *argv[])
{
 int rank, size;
 MPI::Init(argc, argv);
 rank = MPI::COMM_WORLD.Get_rank();
 size = MPI::COMM_WORLD.Get_size();
 std::cout << "I am " << rank << " of " << size <<
 "\n";

 MPI::Finalize();
 return 0;
}

8/19/10
 MPI and UPC 17
Slide source: Bill Gropp, UIUC

Notes on Hello World

• All MPI programs begin with MPI_Init and end with
MPI_Finalize

• MPI_COMM_WORLD is defined by mpi.h (in C) or
mpif.h (in Fortran) and designates all processes in the
MPI “job”

• Each statement executes independently in each process
•  including the printf/print statements

•  I/O not part of MPI-1but is in MPI-2
•  print and write to standard output or error not part of either

MPI-1 or MPI-2
•  output order is undefined (may be interleaved by character, line,

or blocks of characters),

• The MPI-1 Standard does not specify how to run an MPI
program, but many implementations provide
mpirun –np 4 a.out

8/19/10
 MPI and UPC 18
Slide source: Bill Gropp, UIUC

MPI Basic Send/Receive

• We need to fill in the details in

• Things that need specifying:
• How will “data” be described?
• How will processes be identified?
• How will the receiver recognize/screen messages?
• What will it mean for these operations to complete?

Process 0 Process 1

Send(data)

Receive(data)

8/19/10
 MPI and UPC 19
Slide source: Bill Gropp, UIUC

Some Basic Concepts

• Processes can be collected into groups
• Each message is sent in a context, and must be

received in the same context
• Provides necessary support for libraries

• A group and context together form a
communicator

• A process is identified by its rank in the group
associated with a communicator

• There is a default communicator whose group
contains all initial processes, called
MPI_COMM_WORLD

8/19/10
 MPI and UPC 20
Slide source: Bill Gropp, UIUC

MPI Datatypes

• The data in a message to send or receive is
described by a triple (address, count, datatype),
where

• An MPI datatype is recursively defined as:
• predefined, corresponding to a data type from the

language (e.g., MPI_INT, MPI_DOUBLE)
• a contiguous array of MPI datatypes
• a strided block of datatypes
• an indexed array of blocks of datatypes
• an arbitrary structure of datatypes

• There are MPI functions to construct custom
datatypes, in particular ones for subarrays

8/19/10
 MPI and UPC 21
Slide source: Bill Gropp, UIUC

MPI Tags

• Messages are sent with an accompanying user-
defined integer tag, to assist the receiving
process in identifying the message

• Messages can be screened at the receiving end
by specifying a specific tag, or not screened by
specifying MPI_ANY_TAG as the tag in a
receive

• Some non-MPI message-passing systems have
called tags “message types”. MPI calls them
tags to avoid confusion with datatypes

8/19/10
 MPI and UPC 22
Slide source: Bill Gropp, UIUC

MPI Basic (Blocking) Send

MPI_SEND(start, count, datatype, dest, tag, comm)
•  The message buffer is described by (start, count, datatype).
•  The target process is specified by dest (rank within comm)
•  When this function returns, the buffer (A) can be reused, but the message may

not have been received by the target process.

MPI_RECV(start, count, datatype, source, tag, comm, status)
•  Waits until a matching (source and tag) message is received
• source is rank in communicator specified by comm, or MPI_ANY_SOURCE
• tag is a tag to be matched on or MPI_ANY_TAG
•  Receiving fewer than count is OK, but receiving more is an error
• status contains further information (e.g. size of message)

A(10)
B(20)

MPI_Send(A, 10, MPI_DOUBLE, 1, …) MPI_Recv(B, 20, MPI_DOUBLE, 0, …)

8/19/10
 MPI and UPC 23
Slide source: Bill Gropp, UIUC

A Simple MPI Program
#include “mpi.h”
#include <stdio.h>
int main(int argc, char *argv[])
{
 int rank, buf;
 MPI_Status status;
 MPI_Init(&argv, &argc);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 /* Process 0 sends and Process 1 receives */
 if (rank == 0) {
 buf = 123456;
 MPI_Send(&buf, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);
 }
 else if (rank == 1) {
 MPI_Recv(&buf, 1, MPI_INT, 0, 0, MPI_COMM_WORLD,
 &status);
 printf(“Received %d\n”, buf);
 }

 MPI_Finalize();
 return 0;
}

Note: Fortran and C++ versions
are in online lecture notes

8/19/10
 MPI and UPC 24
Slide source: Bill Gropp, UIUC

A Simple MPI Program (Fortran)

 program main
 include ‘mpif.h’
 integer rank, buf, ierr, status(MPI_STATUS_SIZE)

 call MPI_Init(ierr)
 call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
C Process 0 sends and Process 1 receives
 if (rank .eq. 0) then
 buf = 123456
 call MPI_Send(buf, 1, MPI_INTEGER, 1, 0,
 * MPI_COMM_WORLD, ierr)
 else if (rank .eq. 1) then
 call MPI_Recv(buf, 1, MPI_INTEGER, 0, 0,
 * MPI_COMM_WORLD, status, ierr)
 print *, “Received “, buf
 endif
 call MPI_Finalize(ierr)
 end

8/19/10
 MPI and UPC 25
Slide source: Bill Gropp, UIUC

A Simple MPI Program (C++)

#include “mpi.h”
#include <iostream>
int main(int argc, char *argv[])
{
 int rank, buf;
 MPI::Init(argv, argc);
 rank = MPI::COMM_WORLD.Get_rank();

 // Process 0 sends and Process 1 receives
 if (rank == 0) {
 buf = 123456;
 MPI::COMM_WORLD.Send(&buf, 1, MPI::INT, 1, 0);
 }
 else if (rank == 1) {
 MPI::COMM_WORLD.Recv(&buf, 1, MPI::INT, 0, 0);
 std::cout << “Received “ << buf << “\n”;
 }

 MPI::Finalize();
 return 0;
}

8/19/10
 MPI and UPC 26
Slide source: Bill Gropp, UIUC

Retrieving Further Information

• Status is a data structure allocated in the user’s program.
•  In C:

int recvd_tag, recvd_from, recvd_count;
MPI_Status status;
MPI_Recv(..., MPI_ANY_SOURCE, MPI_ANY_TAG, ..., &status)
recvd_tag = status.MPI_TAG;
recvd_from = status.MPI_SOURCE;
MPI_Get_count(&status, datatype, &recvd_count);

•  In Fortran:
integer recvd_tag, recvd_from, recvd_count
integer status(MPI_STATUS_SIZE)
call MPI_RECV(..., MPI_ANY_SOURCE, MPI_ANY_TAG, .. status, ierr)
tag_recvd = status(MPI_TAG)
recvd_from = status(MPI_SOURCE)
call MPI_GET_COUNT(status, datatype, recvd_count, ierr)

8/19/10
 MPI and UPC 27
Slide source: Bill Gropp, UIUC

Retrieving Further Information

• Status is a data structure allocated in the user’s program.
•  In C++:

int recvd_tag, recvd_from, recvd_count;
MPI::Status status;
Comm.Recv(..., MPI::ANY_SOURCE, MPI::ANY_TAG, ...,
 status)

recvd_tag = status.Get_tag();
recvd_from = status.Get_source();
recvd_count = status.Get_count(datatype);

8/19/10
 MPI and UPC 28
Slide source: Bill Gropp, UIUC

Collective Operations in MPI

• Collective operations are called by all processes in a
communicator
• MPI_BCAST distributes data from one process (the root) to
all others in a communicator
• MPI_REDUCE combines data from all processes in
communicator and returns it to one process
• Operators include: MPI_MAX, MPI_MIN, MPI_PROD, MPI_SUM,…

• In many numerical algorithms, SEND/RECEIVE can be
replaced by BCAST/REDUCE, improving both simplicity
and efficiency
• Can use a more efficient algorithm than you might choose for

simplicity (e.g., P-1 send/receive pairs for broadcast or reduce)
• May use special hardware support on some systems

8/19/10
 MPI and UPC 29
Slide source: Bill Gropp, UIUC

Example: PI in C - 1
#include "mpi.h"
#include <math.h>

#include <stdio.h>
int main(int argc, char *argv[])
{

int done = 0, n, myid, numprocs, i, rc;
double PI25DT = 3.141592653589793238462643;
double mypi, pi, h, sum, x, a;
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);
while (!done) {
 if (myid == 0) {
 printf("Enter the # of intervals: (0 quits) ");
 scanf("%d",&n);
 }
 MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
 if (n == 0) break;

8/19/10
 MPI and UPC 30
Slide source: Bill Gropp, UIUC

Example: PI in C - 2

 h = 1.0 / (double) n;
 sum = 0.0;
 for (i = myid + 1; i <= n; i += numprocs) {
 x = h * ((double)i - 0.5);
 sum += 4.0 / (1.0 + x*x);
 }
 mypi = h * sum;
 MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,
 MPI_COMM_WORLD);
 if (myid == 0)
 printf("pi is approximately %.16f, Error is .16f\n",
 pi, fabs(pi - PI25DT));
}
MPI_Finalize();

 return 0;
}

8/19/10
 MPI and UPC 31
Slide source: Bill Gropp, UIUC

Example: PI in Fortran - 1

 program main
 include ‘mpif.h’
 integer done, n, myid, numprocs, i, rc
 double pi25dt, mypi, pi, h, sum, x, z
 data done/.false./
 data PI25DT/3.141592653589793238462643/
 call MPI_Init(ierr)
 call MPI_Comm_size(MPI_COMM_WORLD,numprocs, ierr)
 call MPI_Comm_rank(MPI_COMM_WORLD,myid, ierr)
 do while (.not. done)
 if (myid .eq. 0) then
 print *,”Enter the number of intervals: (0 quits)“
 read *, n
 endif
 call MPI_Bcast(n, 1, MPI_INTEGER, 0,
 * MPI_COMM_WORLD, ierr)
 if (n .eq. 0) goto 10

8/19/10
 MPI and UPC 32
Slide source: Bill Gropp, UIUC

Example: PI in Fortran - 2

 h = 1.0 / n
 sum = 0.0

 do i=myid+1,n,numprocs
 x = h * (i - 0.5)

 sum += 4.0 / (1.0 + x*x)
 enddo
 mypi = h * sum
 call MPI_Reduce(mypi, pi, 1, MPI_DOUBLE_PRECISION,
 * MPI_SUM, 0, MPI_COMM_WORLD, ierr)
 if (myid .eq. 0) then
 print *, "pi is approximately “, pi,
 * “, Error is “, abs(pi - PI25DT)

 enddo
10   continue

 call MPI_Finalize(ierr)
 end

8/19/10
 MPI and UPC 33
Slide source: Bill Gropp, UIUC

Example: PI in C++ - 1
#include "mpi.h"
#include <math.h>
#include <iostream>
int main(int argc, char *argv[])
{
 int done = 0, n, myid, numprocs, i, rc;
 double PI25DT = 3.141592653589793238462643;
 double mypi, pi, h, sum, x, a;
 MPI::Init(argc, argv);
 numprocs = MPI::COMM_WORLD.Get_size();
 myid = MPI::COMM_WORLD.Get_rank();
 while (!done) {
 if (myid == 0) {
 std::cout << "Enter the # of intervals: (0 quits) ";
 std::cin >> n;;
 }
 MPI::COMM_WORLD.Bcast(&n, 1, MPI::INT, 0);
 if (n == 0) break;

8/19/10
 MPI and UPC 34
Slide source: Bill Gropp, UIUC

Example: PI in C++ - 2

 h = 1.0 / (double) n;
 sum = 0.0;
 for (i = myid + 1; i <= n; i += numprocs) {
 x = h * ((double)i - 0.5);
 sum += 4.0 / (1.0 + x*x);
 }
 mypi = h * sum;
 MPI::COMM_WORLD.Reduce(&mypi, &pi, 1, MPI::DOUBLE,
 MPI::SUM, 0);
 if (myid == 0)
 std::cout << "pi is approximately “ << pi <<
 “, Error is “ << fabs(pi - PI25DT) << “\n”;
}
MPI::Finalize();

 return 0;
}

8/19/10
 MPI and UPC 35
Slide source: Bill Gropp, UIUC

MPI Collective Routines

• Many Routines: Allgather, Allgatherv,
Allreduce, Alltoall, Alltoallv, Bcast,
Gather, Gatherv, Reduce, Reduce_scatter,
Scan, Scatter, Scatterv

• All versions deliver results to all participating
processes.

• V versions allow the hunks to have different sizes.
• Allreduce, Reduce, Reduce_scatter, and Scan

take both built-in and user-defined combiner functions.
• MPI-2 adds Alltoallw, Exscan, intercommunicator

versions of most routines

8/19/10
 MPI and UPC 36

Buffers
•  Message passing has a small set of primitives, but there are subtleties

•  Buffering and deadlock
•  Deterministic execution
•  Performance

•  When you send data, where does it go? One possibility is:

Process 0 Process 1

User data

Local buffer

the network

User data

Local buffer

8/19/10
 MPI and UPC 37
Derived from: Bill Gropp, UIUC

Avoiding Buffering

•  It is better to avoid copies:

This requires that MPI_Send wait on delivery, or
that MPI_Send return before transfer is complete,
and we wait later.

Process 0 Process 1

User data

User data

the network

8/19/10
 MPI and UPC 38
Slide source: Bill Gropp, UIUC

• Send a large message from process 0 to process 1
•  If there is insufficient storage at the destination, the send must

wait for the user to provide the memory space (through a
receive)

• What happens with this code?

Sources of Deadlocks

Process 0

Send(1)
Recv(1)

Process 1

Send(0)
Recv(0)

•  This is called “unsafe” because it depends on
the availability of system buffers in which to
store the data sent until it can be received

8/19/10
 MPI and UPC 39
Slide source: Bill Gropp, UIUC

Some Solutions to the “unsafe” Problem

•  Order the operations more carefully:

•  Supply receive buffer at same time as send:

Process 0

Send(1)
Recv(1)

Process 1

Recv(0)
Send(0)

Process 0

Sendrecv(1)

Process 1

Sendrecv(0)

8/19/10
 MPI and UPC 40
Slide source: Bill Gropp, UIUC

More Solutions to the “unsafe” Problem
•  Supply own space as buffer for send

•  Use non-blocking operations:

Process 0

Bsend(1)
Recv(1)

Process 1

Bsend(0)
Recv(0)

Process 0

Isend(1)
Irecv(1)
Waitall

Process 1

Isend(0)
Irecv(0)
Waitall

8/19/10
 MPI and UPC 41
Slide source: Bill Gropp, UIUC

MPI’s Non-blocking Operations

• Non-blocking operations return (immediately) “request
handles” that can be tested and waited on:

 MPI_Request request;
 MPI_Status status;
 MPI_Isend(start, count, datatype,
 dest, tag, comm, &request);

 MPI_Irecv(start, count, datatype,
 dest, tag, comm, &request);

 MPI_Wait(&request, &status);
(each request must be Waited on)

• One can also test without waiting:
 MPI_Test(&request, &flag, &status);

8/19/10
 MPI and UPC 42
Slide source: Bill Gropp, UIUC

MPI’s Non-blocking Operations (Fortran)

• Non-blocking operations return (immediately) “request
handles” that can be tested and waited on:

 integer request
 integer status(MPI_STATUS_SIZE)
 call MPI_Isend(start, count, datatype,
 dest, tag, comm, request,ierr)

 call MPI_Irecv(start, count, datatype,
 dest, tag, comm, request, ierr)

 call MPI_Wait(request, status, ierr)
(Each request must be waited on)

• One can also test without waiting:
 call MPI_Test(request, flag, status, ierr)

8/19/10
 MPI and UPC 43
Slide source: Bill Gropp, UIUC

MPI’s Non-blocking Operations (C++)

• Non-blocking operations return (immediately) “request
handles” that can be tested and waited on:

MPI::Request request;
MPI::Status status;

 request = comm.Isend(start, count,
 datatype, dest, tag);

 request = comm.Irecv(start, count,
 datatype, dest, tag);

 request.Wait(status);
(each request must be Waited on)

• One can also test without waiting:
 flag = request.Test(status);

8/19/10
 MPI and UPC 44
Slide source: Bill Gropp, UIUC

Other MPI Point-to-Point Features

•  It is sometimes desirable to wait on multiple requests:
 MPI_Waitall(count, array_of_requests,
 array_of_statuses)

• Also MPI_Waitany, MPI_Waitsome, and test versions
• MPI provides multiple modes for sending messages:

•  Synchronous mode (MPI_Ssend): the send does not complete
until a matching receive has begun. (Unsafe programs deadlock.)

•  Buffered mode (MPI_Bsend): user supplies a buffer to the system
for its use. (User allocates enough memory to avoid deadlock.)

•  Ready mode (MPI_Rsend): user guarantees that a matching
receive has been posted. (Allows access to fast protocols;
undefined behavior if matching receive not posted.)

8/19/10
 MPI and UPC 45

Synchronization
• Global synchronization is available in MPI

•  C: MPI_Barrier(comm)
•  Fortran: MPI_Barrier(comm, ierr)
•  C++: comm.Barrier();

• Blocks until all processes in the group of the
communicator comm call it.

• Almost never required to make a message passing
program correct

•  Useful in measuring performance and load balancing

8/19/10
 MPI and UPC 46

MPI has become the de facto standard for parallel
computing using message passing
Pros and Cons of standards

•  MPI created finally a standard for applications
development in the HPC community → portability

•  The MPI standard is a least common denominator
building on mid-80s technology, so may discourage
innovation

Programming Model reflects hardware!

“I am not sure how I will program a Petaflops computer,
but I am sure that I will need MPI somewhere” – HDS 2001

MPI – The de facto standard

8/19/10
 MPI and UPC 47

Exaflop

MPI References

• The Standard itself:
• at http://www.mpi-forum.org
• All MPI official releases, in both postscript and HTML

• Other information on Web:
• at http://www.mcs.anl.gov/mpi
• pointers to lots of stuff, including other talks and

tutorials, a FAQ, other MPI pages

8/19/10
 MPI and UPC 48
Slide source: Bill Gropp, UIUC

Books on MPI

•  Using MPI: Portable Parallel Programming
with the Message-Passing Interface (2nd edition),
by Gropp, Lusk, and Skjellum, MIT Press,
1999.

•  Using MPI-2: Portable Parallel Programming
with the Message-Passing Interface, by Gropp,
Lusk, and Thakur, MIT Press, 1999.

•  MPI: The Complete Reference - Vol 1 The MPI Core, by
Snir, Otto, Huss-Lederman, Walker, and Dongarra, MIT
Press, 1998.

•  MPI: The Complete Reference - Vol 2 The MPI Extensions,
by Gropp, Huss-Lederman, Lumsdaine, Lusk, Nitzberg,
Saphir, and Snir, MIT Press, 1998.

•  Designing and Building Parallel Programs, by Ian Foster,
Addison-Wesley, 1995.

•  Parallel Programming with MPI, by Peter Pacheco, Morgan-
Kaufmann, 1997.

8/19/10
 MPI and UPC 49
Slide source: Bill Gropp, UIUC

Partitioned Global Address Space Languages

 One-Sided Communication

8/19/10
 MPI and UPC 50

What’s Wrong with MPI Everywhere

•  We can run 1 MPI process per core
•  This works now (for CMPs) and will work for a while

•  How long will it continue working?
•  4 - 8 cores? Probably. 128 - 1024 cores? Probably not.
•  Depends on performance expectations -- more on this later

•  What is the problem?
•  Latency: some copying required by semantics
•  Memory utilization: partitioning data for separate address space

requires some replication
•  How big is your per core subgrid? At 10x10x10, over 1/2 of the points

are surface points, probably replicated
•  Memory bandwidth: extra state means extra bandwidth
•  Weak scaling: success model for the “cluster era;” will not be for

the many core era -- not enough memory per core
•  Heterogeneity: MPI per CUDA thread-block?

•  Advantage: no new apps work; modest infrastructure work
(multicore-optimized MPI)

8/19/10
 MPI and UPC 51

Current Implementations of PGAS Languages

•  A successful language/library must run everywhere
•  UPC

•  Commercial compilers available on Cray, SGI, HP machines
•  Open source compiler from LBNL/UCB (source-to-source)
•  Open source gcc-based compiler from Intrepid

•  CAF
•  Commercial compiler available on Cray machines
•  Open source compiler available from Rice

•  Titanium
•  Open source compiler from UCB runs on most machines

•  DARPA HPCS Languages
•  Cray Chapel, IBM X10, Sun Fortress
•  Use PGAS memory abstraction, but have dynamic threading
•  Recent additions to parallel language landscape  no mature compilers

for clusters yet

8/19/10
 MPI and UPC 52

Unified Parallel C (UPC)

Overview and Design Philosophy
•  Unified Parallel C (UPC) is:

•  An explicit parallel extension of ANSI C
•  A partitioned global address space language
•  Sometimes called a GAS language

•  Similar to the C language philosophy
•  Programmers are clever and careful, and may need to get

close to hardware
•  to get performance, but
•  can get in trouble

•  Concise and efficient syntax
•  Common and familiar syntax and semantics for

parallel C with simple extensions to ANSI C
•  Based on ideas in Split-C, AC, and PCP

8/19/10
 MPI and UPC 53

UPC Execution
Model

UPC Execution Model

•  Threads working independently in a SPMD fashion
•  Number of threads specified at compile-time or run-time;

available as program variable THREADS
•  MYTHREAD specifies thread index (0..THREADS-1)
•  upc_barrier is a global synchronization: all wait
•  There is a form of parallel loop that we will see later

•  There are two compilation modes
•  Static Threads mode:

•  THREADS is specified at compile time by the user
•  The program may use THREADS as a compile-time constant

•  Dynamic threads mode:
•  Compiled code may be run with varying numbers of threads

8/19/10
 MPI and UPC 55

Hello World in UPC

• Any legal C program is also a legal UPC program
•  If you compile and run it as UPC with P threads, it will

run P copies of the program.
• Using this fact, plus the identifiers from the previous

slides, we can parallel hello world:

#include <upc.h> /* needed for UPC extensions */
#include <stdio.h>

main() {
 printf("Thread %d of %d: hello UPC world\n",
 MYTHREAD, THREADS);
}

8/19/10
 MPI and UPC 56

Example: Monte Carlo Pi Calculation

• Estimate Pi by throwing darts at a unit square
• Calculate percentage that fall in the unit circle

•  Area of square = r2 = 1
•  Area of circle quadrant = ¼ * π r2 = π/4

• Randomly throw darts at x,y positions
•  If x2 + y2 < 1, then point is inside circle
• Compute ratio:

•  # points inside / # points total
•  π = 4*ratio

r =1

8/19/10
 MPI and UPC 57

Each thread calls “hit” separately

Initialize random in
math library

Each thread can use
input arguments

Each thread gets its own
copy of these variables

Pi in UPC

• Independent estimates of pi:
 main(int argc, char **argv) {
 int i, hits, trials = 0;
 double pi;

 if (argc != 2)trials = 1000000;
 else trials = atoi(argv[1]);

 srand(MYTHREAD*17);

 for (i=0; i < trials; i++) hits += hit();
 pi = 4.0*hits/trials;
 printf("PI estimated to %f.", pi);
 }

8/19/10
 MPI and UPC 58

Helper Code for Pi in UPC

• Required includes:
 #include <stdio.h>
 #include <math.h>
 #include <upc.h>

• Function to throw dart and calculate where it hits:
 int hit(){
 int const rand_max = 0xFFFFFF;
 double x = ((double) rand()) / RAND_MAX;
 double y = ((double) rand()) / RAND_MAX;
 if ((x*x + y*y) <= 1.0) {
 return(1);
 } else {
 return(0);
 }
 }

8/19/10
 MPI and UPC 59

Shared vs. Private
Variables

Private vs. Shared Variables in UPC

• Normal C variables and objects are allocated in the private
memory space for each thread.

• Shared variables are allocated only once, with thread 0
 shared int ours; // use sparingly: performance
 int mine;

• Shared variables may not have dynamic lifetime: may not
occur in a in a function definition, except as static. Why?

Shared

G
lo

ba
l a

dd
re

ss

sp
ac

e

Private
mine: mine: mine:

Thread0 Thread1 Threadn

ours:

8/19/10
 MPI and UPC 61

Pi in UPC: Shared Memory Style

• Parallel computing of pi, but with a bug
 shared int hits;
 main(int argc, char **argv) {
 int i, my_trials = 0;
 int trials = atoi(argv[1]);
 my_trials = (trials + THREADS - 1)/THREADS;
 srand(MYTHREAD*17);
 for (i=0; i < my_trials; i++)
 hits += hit();
 upc_barrier;
 if (MYTHREAD == 0) {
 printf("PI estimated to %f.", 4.0*hits/trials);
 }
 }

shared variable to
record hits

divide work up evenly

accumulate hits

What is the problem with this program?

8/19/10
 MPI and UPC 62

Shared Arrays Are Cyclic By Default

• Shared scalars always live in thread 0
• Shared arrays are spread over the threads
• Shared array elements are spread across the threads

shared int x[THREADS] /* 1 element per thread */
shared int y[3][THREADS] /* 3 elements per thread */
shared int z[3][3] /* 2 or 3 elements per thread */

•  In the pictures below, assume THREADS = 4
•  Red elts have affinity to thread 0

x

y

z

As a 2D array, y is
logically blocked
by columns

Think of linearized
C array, then map
in round-robin

z is not

8/19/10
 MPI and UPC 63

Pi in UPC: Shared Array Version

• Alternative fix to the race condition
• Have each thread update a separate counter:

•  But do it in a shared array
•  Have one thread compute sum

shared int all_hits [THREADS];
main(int argc, char **argv) {
 … declarations an initialization code omitted
 for (i=0; i < my_trials; i++)
 all_hits[MYTHREAD] += hit();
 upc_barrier;
 if (MYTHREAD == 0) {
 for (i=0; i < THREADS; i++) hits += all_hits[i];
 printf("PI estimated to %f.", 4.0*hits/trials);
 }
}

all_hits is
shared by all
processors,
just as hits was

update element
with local affinity

8/19/10
 MPI and UPC 64

UPC
Synchronization

UPC Global Synchronization

•  UPC has two basic forms of barriers:
•  Barrier: block until all other threads arrive

 upc_barrier
•  Split-phase barriers
 upc_notify; this thread is ready for barrier
 do computation unrelated to barrier
 upc_wait; wait for others to be ready

•  Optional labels allow for debugging
#define MERGE_BARRIER 12
if (MYTHREAD%2 == 0) {
 ...
 upc_barrier MERGE_BARRIER;
} else {
 ...
 upc_barrier MERGE_BARRIER;
}

8/19/10
 MPI and UPC 66

Synchronization - Locks

•  UPC Locks are an opaque type:
upc_lock_t

•  Locks must be allocated before use:
upc_lock_t *upc_all_lock_alloc(void);

 allocates 1 lock, pointer to all threads
upc_lock_t *upc_global_lock_alloc(void);

 allocates 1 lock, pointer to one thread
•  To use a lock:

void upc_lock(upc_lock_t *l)
void upc_unlock(upc_lock_t *l)

 use at start and end of critical region
•  Locks can be freed when not in use

void upc_lock_free(upc_lock_t *ptr);

8/19/10
 MPI and UPC 67

Pi in UPC: Shared Memory Style

• Parallel computing of pi, without the bug
 shared int hits;
 main(int argc, char **argv) {
 int i, my_hits, my_trials = 0;
 upc_lock_t *hit_lock = upc_all_lock_alloc();
 int trials = atoi(argv[1]);
 my_trials = (trials + THREADS - 1)/THREADS;
 srand(MYTHREAD*17);
 for (i=0; i < my_trials; i++)
 my_hits += hit();
 upc_lock(hit_lock);
 hits += my_hits;
 upc_unlock(hit_lock);
 upc_barrier;
 if (MYTHREAD == 0)
 printf("PI: %f", 4.0*hits/trials);
 }

create a lock

accumulate hits
locally

accumulate
across threads

8/19/10
 MPI and UPC 68

Recap: Private vs. Shared Variables in UPC

• We saw several kinds of variables in the pi example
•  Private scalars (my_hits)
•  Shared scalars (hits)
•  Shared arrays (all_hits)
•  Shared locks (hit_lock)

Shared

G
lo

ba
l a

dd
re

ss

sp
ac

e

Private
my_hits: my_hits: my_hits:

Thread0 Thread1 Threadn

all_hits[0]:

hits:

all_hits[n]: all_hits[1]:

hit_lock:

where:
n=Threads-1

8/19/10
 MPI and UPC 69

UPC Collectives

UPC Collectives in General

• UPC collectives interface is in the language spec:
• http://upc.lbl.gov/docs/user/upc_spec_1.2.pdf

• It contains typical functions:
• Data movement: broadcast, scatter, gather, …
• Computational: reduce, prefix, …

• General interface has synchronization modes:
• Avoid over-synchronizing (barrier before/after)
• Data being collected may be read/written by any

thread simultaneously
• Simple interface for scalar values (int, double,…)

• Berkeley UPC value-based collectives
• Works with any compiler
• http://upc.lbl.gov/docs/user/README-collectivev.txt

8/19/10
 MPI and UPC 71

Pi in UPC: Data Parallel Style

• The previous version of Pi works, but is not scalable:
•  On a large # of threads, the locked region will be a bottleneck

• Use a reduction for better scalability

 #include <bupc_collectivev.h>
 // shared int hits;
 main(int argc, char **argv) {
 ...
 for (i=0; i < my_trials; i++)
 my_hits += hit();
 my_hits = // type, input, thread, op
 bupc_allv_reduce(int, my_hits, 0, UPC_ADD);
 // upc_barrier;
 if (MYTHREAD == 0)
 printf("PI: %f", 4.0*my_hits/trials);
 }

 Berkeley collectives
no shared variables

barrier implied by collective

8/19/10
 MPI and UPC 72

Work Distribution
Using upc_forall

Example: Vector Addition

 /* vadd.c */
 #include <upc_relaxed.h>
#define N 100*THREADS

shared int v1[N], v2[N], sum[N];
void main() {

 int i;
 for(i=0; i<N; i++)

 if (MYTHREAD == i%THREADS)
 sum[i]=v1[i]+v2[i];

}

• Questions about parallel vector additions:

• How to layout data (here it is cyclic)

• Which processor does what (here it is “owner computes”)

cyclic layout

owner computes

8/19/10
 MPI and UPC 74

•  The idiom in the previous slide is very common
•  Loop over all; work on those owned by this proc

•  UPC adds a special type of loop
 upc_forall(init; test; loop; affinity)
 statement;

•  Programmer indicates the iterations are independent
•  Undefined if there are dependencies across threads

•  Affinity expression indicates which iterations to run on each thread.
It may have one of two types:
•  Integer: affinity%THREADS is MYTHREAD
•  Pointer: upc_threadof(affinity) is MYTHREAD

•  Syntactic sugar for loop on previous slide
•  Some compilers may do better than this, e.g.,

 for(i=MYTHREAD; i<N; i+=THREADS)
•  Rather than having all threads iterate N times:

 for(i=0; i<N; i++) if (MYTHREAD == i%THREADS)

with
upc
_for
all()

8/19/10
 MPI and UPC 75

Vector Addition with upc_forall

#define N 100*THREADS

shared int v1[N], v2[N], sum[N];

void main() {
 int i;
 upc_forall(i=0; i<N; i++; i)

 sum[i]=v1[i]+v2[i];
}

• The vadd example can be rewritten as follows
• Equivalent code could use “&sum[i]” for affinity
• The code would be correct but slow if the affinity

expression were i+1 rather than i.

The cyclic data
distribution may
perform poorly on
some machines

8/19/10
 MPI and UPC 76

Distributed Arrays
in UPC

Blocked Layouts in UPC

#define N 100*THREADS
shared int [*] v1[N], v2[N], sum[N];

void main() {
 int i;
 upc_forall(i=0; i<N; i++; &sum[i])

 sum[i]=v1[i]+v2[i];
}

•  If this code were doing nearest neighbor averaging (3pt stencil) the
cyclic layout would be the worst possible layout.

•  Instead, want a blocked layout
•  Vector addition example can be rewritten as follows using a blocked

layout

blocked layout

8/19/10
 MPI and UPC 78

Layouts in General

• All non-array objects have affinity with thread zero.
• Array layouts are controlled by layout specifiers:

•  Empty (cyclic layout)
•  [*] (blocked layout)
•  [0] or [] (indefinite layout, all on 1 thread)
•  [b] or [b1][b2]…[bn] = [b1*b2*…bn] (fixed block size)

• The affinity of an array element is defined in terms of:
•  block size, a compile-time constant
•  and THREADS.

• Element i has affinity with thread
 (i / block_size) % THREADS

•  In 2D and higher, linearize the elements as in a C
representation, and then use above mapping

8/19/10
 MPI and UPC 79

Pointers to Shared vs. Arrays

#define N 100*THREADS
shared int v1[N], v2[N], sum[N];
void main() {

int i;
shared int *p1, *p2;

p1=v1; p2=v2;
for (i=0; i<N; i++, p1++, p2++)

 if (i %THREADS= = MYTHREAD)
 sum[i]= *p1 + *p2;

}

•  In the C tradition, arrays can be access through pointers

• Here is the vector addition example using pointers

v1

p1

8/19/10
 MPI and UPC 80

UPC Pointers

int *p1; /* private pointer to local memory */
shared int *p2; /* private pointer to shared space */
int *shared p3; /* shared pointer to local memory */
shared int *shared p4; /* shared pointer to
 shared space */

Shared

G
lo

ba
l

ad
dr

es
s

sp
ac

e

Private
p1:

Thread0 Thread1 Threadn

p2:

p1:

p2:

p1:

p2:

p3:

p4:

p3:

p4:

p3:

p4:

Pointers to shared often require more storage and are more costly to
dereference; they may refer to local or remote memory.

8/19/10
 MPI and UPC 81

Dynamic Memory Allocation in UPC

• Dynamic memory allocation of shared memory is available
in UPC

• Non-collective (called independently)
 shared void *upc_global_alloc(size_t nblocks,
 size_t nbytes);
 nblocks : number of blocks
 nbytes : block size
• Collective (called together; all threads get same pointer)
 shared void *upc_all_alloc(size_t nblocks,
 size_t nbytes);

• Freeing dynamically allocated memory in shared space
 void upc_free(shared void *ptr);

8/19/10
 MPI and UPC 82

Performance of
UPC

PGAS Languages have Performance Advantages
Strategy for acceptance of a new language
• Make it run faster than anything else

Keys to high performance
• Parallelism:

•  Scaling the number of processors
• Maximize single node performance

•  Generate friendly code or use tuned libraries (BLAS, FFTW,
etc.)

• Avoid (unnecessary) communication cost
•  Latency, bandwidth, overhead
•  Berkeley UPC and Titanium use GASNet communication

layer
• Avoid unnecessary delays due to dependencies

•  Load balance; Pipeline algorithmic dependencies

8/19/10
 MPI and UPC 84

One-Sided vs Two-Sided

•  A one-sided put/get message can be handled directly by a network
interface with RDMA support

•  Avoid interrupting the CPU or storing data from CPU (preposts)
•  A two-sided messages needs to be matched with a receive to

identify memory address to put data
•  Offloaded to Network Interface in networks like Quadrics
•  Need to download match tables to interface (from host)
•  Ordering requirements on messages can also hinder bandwidth

address

message id

data payload

data payload

one-sided put message

two-sided message

network
 interface

memory

host
CPU

8/19/10
 MPI and UPC 85

One-Sided vs. Two-Sided: Practice

0

100

200

300

400

500

600

700

800

900

10 100 1,000 10,000 100,000 1,000,000

Size (bytes)

Ba
nd

w
id

th
 (M

B/
s)

GASNet put (nonblock)"
MPI Flood

Relative BW (GASNet/MPI)

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

10 1000 100000 10000000

Size (bytes)

•  InfiniBand: GASNet vapi-conduit and OSU MVAPICH 0.9.5
•  Half power point (N ½) differs by one order of magnitude
•  This is not a criticism of the implementation!

Joint work with Paul Hargrove and Dan Bonachea

(u
p

is
 g

oo
d)

NERSC Jacquard
machine with
Opteron
processors

8/19/10
 MPI and UPC 86

GASNet: Portability and High-Performance
(d

ow
n

is
 g

oo
d)

GASNet better for latency across machines

8-byte Roundtrip Latency

14.6

6.6

22.1

9.6

6.6

4.5

9.5

18.5

24.2

13.5

17.8

8.3

0

5

10

15

20

25

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

R
ou

nd
tr

ip
 L

at
en

cy
 (u

se
c)

MPI ping-pong

GASNet put+sync

Joint work with UPC Group; GASNet design by Dan Bonachea
8/19/10
 MPI and UPC 87

(u
p

is
 g

oo
d)

GASNet at least as high (comparable) for large messages

Flood Bandwidth for 2MB messages

1504

630

244

857
225

610

1490799
255

858 228
795

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

Pe
rc

en
t H

W
 p

ea
k

(B
W

 in
 M

B
)

MPI GASNet

GASNet: Portability and High-Performance

Joint work with UPC Group; GASNet design by Dan Bonachea
8/19/10
 MPI and UPC 88

(u
p

is
 g

oo
d)

GASNet excels at mid-range sizes: important for overlap

GASNet: Portability and High-Performance

Flood Bandwidth for 4KB messages

547

420

190

702

152

252

750

714231

763
223

679

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

Pe
rc

en
t H

W
 p

ea
k

MPI

GASNet

Joint work with UPC Group; GASNet design by Dan Bonachea
8/19/10
 MPI and UPC 89

Case Study: NAS FT in UPC

• Perform FFT on a 3D Grid
• 1D FFTs in each dimension, 3 phases
• Transpose after first 2 for locality
• Bisection bandwidth-limited

•  Problem as #procs grows

• Three approaches:
• Exchange:

•  wait for 2nd dim FFTs to finish, send 1
message per processor pair

• Slab:
•  wait for chunk of rows destined for 1

proc, send when ready
• Pencil:

•  send each row as it completes

Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea
8/19/10
 MPI and UPC 90

NAS FT Variants Performance Summary

•  Slab is always best for MPI; small message cost too high
•  Pencil is always best for UPC; more overlap

Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea

.5 Tflops

8/19/10
 MPI and UPC 91

Beyond the SPMD Model: Dynamic Threads

• UPC uses a static threads (SPMD) programming model
•  No dynamic load balancing built-in, although some examples

(Delaunay mesh generation) of building it on top
•  Berkeley UPC model extends basic memory semantics (remote

read/write) with active messages
•  AM have limited functionality (no messages except acks) to

avoid deadlock in the network
• A more dynamic runtime would have many uses

•  Application load imbalance, OS noise, fault tolerance
• Two extremes are well-studied

•  Dynamic load balancing (e.g., random stealing) without locality
•  Static parallelism (with threads = processors) with locality

• Can we combine both in a general-purpose way?

Joint work with Parry Husbands

8/19/10
 MPI and UPC 92

The Parallel Case

Blocks 2D
block-cyclic
distributed

Panel factorizations
involve communication
for pivoting

C
om

pleted part of L

A(i,j) A(i,k) ‏ ‏

A(j,i) A(j,k) ‏ ‏

Trailing matrix
to be updated

Panel being factored

Completed part of U

8/19/10
 MPI and UPC 93

Parallel Tasks in LU

some edges omitted

•  Implementation uses 3 levels of threading:
•  UPC threads (SPMD), user-level non-preemptive threads, BLAS threads

• Theoretical and practical problem: Memory deadlock
•  Not enough memory for all tasks at once. (Each update needs two

temporary blocks, a green and blue, to run.)
•  If updates are scheduled too soon, you will run out of memory
•  If updates are scheduled too late, critical path will be delayed. 8/19/10
 MPI and UPC 94

UPC HP Linpack Performance

• Faster than ScaLAPACK due to less synchronization
• Comparable to MPI HPL (numbers from HPCC database)
• Large scaling of UPC code on Itanium/Quadrics (Thunder)

• 2.2 TFlops on 512p and 4.4 TFlops on 1024p
Joint work with Parry Husbands

8/19/10
 MPI and UPC 95

Utilization Comparison

•  Synchronous (above)
vs. asynchronous (below)
schedule

•  SGI Altix Itanium 2 1.4GHz,
n=12,800, process grid = 2x4,
block size = 400

•  Grey blocks = matrix
multiplication

•  Black blocks = panel
factorization

8/19/10
 MPI and UPC 96

UPC Group (Past and Present)
•  Filip Blagojevic
•  Dan Bonachea
•  Paul Hargrove (Runtime Lead)
•  Steve Hofmeyer
•  Costin Iancu (Compiler Lead)
•  Seung-Jai Min
•  Kathy Yelick (Project Lead)
•  Yili Zheng

Former:
•  Christian Bell
•  Parry Husbands
•  Rajesh Nishtala
•  Michael Welcome

http://upc.lbl.gov

Compiler, runtime,
GASNet available here.

8/19/10
 MPI and UPC 97

Supercomputing Ecosystem (2006)

Commercial Off The Shelf technology (COTS)

“Clusters” 12 years of legacy MPI applications base

PCs and desktop
systems are no longer
the economic driver.

2010

Architecture and
programming model
are about to change

PGAS Languages for Manycore

•  PGAS memory are a good fit to machines with explicitly managed
memory (local store)

•  Global address space implemented as DMA reads/writes
•  New “vertical” partition of memory needed for on/off chip, e.g.,

upc_offchip_alloc
•  Non-blocking features of UPC put/get are useful

•  SPMD execution model needs to be adapted to heterogeneity

DMA

x: 1
y:

x: 5
y:

x: 7
y: 0

Shared
partitioned
on-chip

l: m: Private on-chip

Shared
off-chip
DRAM

Computer Node

CPU Memory

GPU

GPU
Mem
ory

CPU CPU

GPU

GPU
Mem
ory

Computer Node

CPU Memory

GPU

GPU
Mem
ory

CPU CPU

GPU

GPU
Mem
ory

Network

PGAS

Hierarchical PGAS Memory Model

•  A global address space for hierarchical machines may have multiple kinds
of pointers

•  These can be encode by programmers in type system or hidden, e.g., all
global or only local/global

•  This partitioning is about pointer span, not control / parallelism

B

span 1
(core local)

span 2
(chip local)

level 3
(node local)

level 4
(global world)

C
D

A
1

2
3 4

Hybrid Partitioned Global Address Space

Local
Segment
on Host
Memory

Processor 1

Shared
Segment
on Host
Memory

Local
Segment
on GPU
Memory

Local
Segment
on Host
Memory

Processor 2

Local
Segment
on GPU
Memory

Local
Segment
on Host
Memory

Processor 3

Local
Segment
on GPU
Memory

Local
Segment
on Host
Memory

Processor 4

Local
Segment
on GPU
Memory

  Each “processor” has two shared segments
  Decouples the memory model from execution models;

one thread per CPU, vs. one thread for all CPU and GPU
“cores”

  Caveat: type system and therefore interfaces blow up
with different parts of address space

Shared
Segment
on GPU
Memory

Shared
Segment
on Host
Memory

Shared
Segment
on GPU
Memory

Shared
Segment
on Host
Memory

Shared
Segment
on GPU
Memory

Shared
Segment
on Host
Memory

Shared
Segment
on GPU
Memory

GASNet GPU Extension Performance

Latency Bandwidth

• Provide method to query machine structure at runtime

Programming to Machine Structure in an
Abstract Manner

103

Team T = Ti.defaultTeam();

4 

5 

6 

7 

0 

1 

2 

3 

0, 1, 2, 3, 4, 5, 6, 
7 

0, 1, 2, 3 

0, 1  2, 3 

4, 5, 6, 7 

4, 5  6, 7 

Summary and Discussion

• Message Passing
•  MPI is the de facto programming model for large-scale machines
•  Was developed as a standardization of “known” ideas (but not without

controversy)
•  MPI 3.0 standards effort is underway now: you can join!

•  Looking at one-sided communication again
•  Race conditions are relatively rare

• Partitioned Global Address Space Language
•  Offer a compromise on performance and ease of programming
•  Match both shared and distributed memory
•  Demonstrated scalability (like MPI), portability (through GASNet + C)
•  UPC is an example, others include Co-Array Fortran, Titanium (Java)
•  The DARPA HPCS languages: X10, Chapel, Fortress

• Productivity
•  In the eye of the programmer
•  Trade-off: races vs packing/unpacking code

8/19/10
 MPI and UPC 104

