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Performance Development 
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34th List: The TOP10 

Rank Site Manufacturer Computer Country Cores Rmax 
[Tflops] 

Power 
[MW] 

1 Oak Ridge National 
Laboratory Cray Jaguar  

Cray XT5 HC 2.6 GHz USA 224,162 1,759 6.95 

2 DOE/NNSA/LANL IBM Roadrunner  
BladeCenter QS22/LS21 USA 122,400 1,042 2.34 

3 University of 
Tennessee Cray Kraken  

Cray XT5 HC 2.36GHz USA 98,928 831.7 

4 Forschungszentrum 
Juelich (FZJ) IBM Jugene 

Blue Gene/P Solution Germany 294,912 825.5 2.26 

5 
National 

SuperComputer 
Center 

NUDT 
Tianhe-1 

NUDT TH-1 Cluster, Xeon, 
ATI Radeon, Infiniband 

China 71,680 563.1 

6 
NASA/Ames 

Research Center/
NAS 

SGI Pleiades 
SGI Altix ICE 8200EX USA 56,320 544.3 2.34 

7 DOE/NNSA/LLNL IBM BlueGene/L 
eServer Blue Gene Solution USA 212,992 478.2 2.32 

8 Argonne National 
Laboratory IBM Intrepid 

Blue Gene/P Solution USA 163,840 458.6 1.26 

9 TACC/U. of Texas Sun Ranger  
SunBlade x6420 USA 62,976 433.2 2.0 

10 Sandia National 
Labs Sun Red Sky - Sun Blade x6275, 

Xeon 2.93 Ghz, Infiniband USA 41,616 423.9 



Top500 Architecture Trend 
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Concurrency Has Increased Dramatically 

Exponential wave of increasing concurrency for forseeable future! 
1M cores sooner than you think! 

Sum of the # of cores in top 15 systems (from top500.org) 
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Computing Power in top500 by Country 
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Ecosystem for HPC 

From the NRC Report on “The Future of Supercomputing”: 

•  Platforms, software, institutions, applications, and people who solve 
supercomputing applications can be thought of collectively as an 
ecosystem 

•  Research investment in HPC should be informed by the ecosystem 
point of view - progress must come on a broad front of interrelated 
technologies, rather than in the form of individual breakthroughs. 

Pond ecosystem image from http://

www.tpwd.state.tx.us/expltx/eft/

txwild/pond.htm 



Supercomputing Ecosystem (1988) 

Cold War and Big Oil spending in the 1980s 

Powerful Vector Supercomputers 20 years of Fortran applications base in 
physics codes and third party apps 



Supercomputing Ecosystem (until  about 1988) 

Cold War and Big Oil spending in the 1980s 

Powerful Vector Supercomputers 20 years of Fortran applications base in 
physics codes and third party apps 



Supercomputing Ecosystem (2006) 

Commercial Off The Shelf technology (COTS) 

“Clusters” 12 years of legacy MPI applications base 



Supercomputing Ecosystem (2006) 

Commercial Off The Shelf technology (COTS) 

“Clusters” 12 years of legacy MPI applications base 



Programming With MPI 

• MPI is a library 
• All operations are performed with routine calls 
• Basic definitions in  

•  mpi.h for C 
•  mpif.h for Fortran 77 and 90 
•  MPI module for Fortran 90 (optional) 

• First Program: 
• Create 4 processes in a simple MPI job 
• Write out process number  
• Write out some variables (illustrate separate name 

space) 

Slide source: Bill Gropp, UIUC 8/19/10
 MPI and UPC 13




Finding Out About the Environment 

• Two important questions that arise early in a 
parallel program are: 

• How many processes are participating in this 
computation? 

• Which one am I? 
• MPI provides functions to answer these 

questions: 
• MPI_Comm_size reports the number of processes. 
• MPI_Comm_rank reports the rank, a number between 

0 and size-1, identifying the calling process 
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Hello (C) 

#include "mpi.h" 
#include <stdio.h> 

int main( int argc, char *argv[] ) 
{ 
    int rank, size; 
    MPI_Init( &argc, &argv ); 
    MPI_Comm_rank( MPI_COMM_WORLD, &rank ); 
    MPI_Comm_size( MPI_COMM_WORLD, &size ); 
    printf( "I am %d of %d\n", rank, size ); 
    MPI_Finalize(); 
    return 0; 
} 

8/19/10
 MPI and UPC 15
Slide source: Bill Gropp, UIUC 



Hello (Fortran) 

program main 
include 'mpif.h' 
integer ierr, rank, size 

call MPI_INIT( ierr ) 
call MPI_COMM_RANK( MPI_COMM_WORLD, rank, ierr ) 
call MPI_COMM_SIZE( MPI_COMM_WORLD, size, ierr ) 
print *, 'I am ', rank, ' of ', size 
call MPI_FINALIZE( ierr ) 
end 
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Hello (C++) 
#include "mpi.h" 
#include <iostream> 

int main( int argc, char *argv[] ) 
{ 
    int rank, size; 
    MPI::Init(argc, argv); 
    rank = MPI::COMM_WORLD.Get_rank(); 
    size = MPI::COMM_WORLD.Get_size(); 
    std::cout << "I am " << rank << " of " << size << 
   "\n"; 

    MPI::Finalize(); 
    return 0; 
} 
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Notes on Hello World 

• All MPI programs begin with MPI_Init and end with 
MPI_Finalize 

• MPI_COMM_WORLD is defined by mpi.h (in C) or 
mpif.h (in Fortran) and designates all processes in the 
MPI “job” 

• Each statement executes independently in each process 
•  including the printf/print statements 

•  I/O not part of MPI-1but is in MPI-2 
•  print and write to standard output or error not part of either 

MPI-1 or MPI-2 
•  output order is undefined (may be interleaved by character, line, 

or blocks of characters), 

• The MPI-1 Standard does not specify how to run an MPI 
program, but many implementations provide  
mpirun –np 4 a.out 
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MPI Basic Send/Receive 

• We need to fill in the details in 

• Things that need specifying: 
• How will “data” be described? 
• How will processes be identified? 
• How will the receiver recognize/screen messages? 
• What will it mean for these operations to complete? 

Process 0 Process 1 

Send(data) 

Receive(data) 
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Some Basic Concepts 

• Processes can be collected into groups 
• Each message is sent in a context, and must be 

received in the same context 
• Provides necessary support for libraries 

• A group and context together form a 
communicator 

• A process is identified by its rank in the group 
associated with a communicator 

• There is a default communicator whose group 
contains all initial processes, called 
MPI_COMM_WORLD 
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MPI Datatypes 

• The data in a message to send or receive is 
described by a triple (address, count, datatype), 
where 

• An MPI datatype is recursively defined as: 
• predefined, corresponding to a data type from the 

language (e.g., MPI_INT, MPI_DOUBLE) 
• a contiguous array of MPI datatypes 
• a strided block of datatypes 
• an indexed array of blocks of datatypes 
• an arbitrary structure of datatypes 

• There are MPI functions to construct custom 
datatypes, in particular ones for subarrays 
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MPI Tags 

• Messages are sent with an accompanying user-
defined integer tag, to assist the receiving 
process in identifying the message 

• Messages can be screened at the receiving end 
by specifying a specific tag, or not screened by 
specifying MPI_ANY_TAG as the tag in a 
receive 

• Some non-MPI message-passing systems have 
called tags “message types”.  MPI calls them 
tags to avoid confusion with datatypes 

8/19/10
 MPI and UPC 22
Slide source: Bill Gropp, UIUC 



MPI Basic (Blocking) Send 

MPI_SEND(start, count, datatype, dest, tag, comm) 
•  The message buffer is described by (start, count, datatype). 
•  The target process is specified by dest (rank within comm) 
•  When this function returns, the buffer (A) can be reused, but the message may 

not have been received by the target process. 

MPI_RECV(start, count, datatype, source, tag, comm, status) 
•  Waits until a matching (source and tag) message is received 
• source is rank in communicator specified by comm, or MPI_ANY_SOURCE 
• tag is a tag to be matched on or MPI_ANY_TAG 
•  Receiving fewer than count is OK, but receiving more is an error 
• status contains further information (e.g. size of message) 

A(10) 
B(20) 

MPI_Send( A, 10, MPI_DOUBLE, 1, …) MPI_Recv( B, 20, MPI_DOUBLE, 0, … ) 
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A Simple MPI Program 
#include “mpi.h” 
#include <stdio.h> 
int main( int argc, char *argv[]) 
{ 
  int rank, buf; 
  MPI_Status status; 
  MPI_Init(&argv, &argc);    
  MPI_Comm_rank( MPI_COMM_WORLD, &rank ); 

  /* Process 0 sends and Process 1 receives */ 
  if (rank == 0) { 
    buf = 123456; 
    MPI_Send( &buf, 1, MPI_INT, 1, 0, MPI_COMM_WORLD); 
  } 
  else if (rank == 1) { 
    MPI_Recv( &buf, 1, MPI_INT, 0, 0, MPI_COMM_WORLD,  
              &status ); 
    printf( “Received %d\n”, buf ); 
  } 

  MPI_Finalize(); 
  return 0; 
} 

Note: Fortran and C++ versions  
are in online lecture notes 
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A Simple MPI Program (Fortran) 

     program main 
     include ‘mpif.h’ 
     integer rank, buf, ierr, status(MPI_STATUS_SIZE) 

     call MPI_Init(ierr)  
     call MPI_Comm_rank( MPI_COMM_WORLD, rank, ierr ) 
C Process 0 sends and Process 1 receives  
     if (rank .eq. 0) then 
        buf = 123456 
        call MPI_Send( buf, 1, MPI_INTEGER, 1, 0,  
    *                  MPI_COMM_WORLD, ierr ) 
     else if (rank .eq. 1) then 
        call MPI_Recv( buf, 1, MPI_INTEGER, 0, 0, 
    *                  MPI_COMM_WORLD, status, ierr ) 
        print *, “Received “, buf 
     endif 
     call MPI_Finalize(ierr) 
     end 
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A Simple MPI Program (C++) 

#include “mpi.h” 
#include <iostream> 
int main( int argc, char *argv[]) 
{ 
  int rank, buf; 
  MPI::Init(argv, argc); 
  rank = MPI::COMM_WORLD.Get_rank(); 

  // Process 0 sends and Process 1 receives  
  if (rank == 0) { 
    buf = 123456; 
    MPI::COMM_WORLD.Send( &buf, 1, MPI::INT, 1, 0 ); 
  } 
  else if (rank == 1) { 
    MPI::COMM_WORLD.Recv( &buf, 1, MPI::INT, 0, 0 ); 
    std::cout << “Received “ << buf << “\n”; 
  } 

  MPI::Finalize(); 
  return 0; 
} 
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Retrieving Further Information 

• Status is a data structure allocated in the user’s program. 
•  In C: 

int recvd_tag, recvd_from, recvd_count; 
MPI_Status status; 
MPI_Recv(..., MPI_ANY_SOURCE, MPI_ANY_TAG, ..., &status ) 
recvd_tag  = status.MPI_TAG; 
recvd_from = status.MPI_SOURCE; 
MPI_Get_count( &status, datatype, &recvd_count ); 

•  In Fortran: 
integer recvd_tag, recvd_from, recvd_count 
integer status(MPI_STATUS_SIZE) 
call MPI_RECV(..., MPI_ANY_SOURCE, MPI_ANY_TAG, .. status, ierr) 
tag_recvd  = status(MPI_TAG) 
recvd_from = status(MPI_SOURCE) 
call MPI_GET_COUNT(status, datatype, recvd_count, ierr) 
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Retrieving Further Information 

• Status is a data structure allocated in the user’s program. 
•  In C++: 

int recvd_tag, recvd_from, recvd_count; 
MPI::Status status; 
Comm.Recv(..., MPI::ANY_SOURCE, MPI::ANY_TAG, ...,  
        status ) 

recvd_tag   = status.Get_tag(); 
recvd_from  = status.Get_source(); 
recvd_count = status.Get_count( datatype ); 
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Collective Operations in MPI 

• Collective operations are called by all processes in a 
communicator 
• MPI_BCAST distributes data from one process (the root) to 
all others in a communicator 
• MPI_REDUCE combines data from all processes in 
communicator and returns it to one process 
• Operators include: MPI_MAX, MPI_MIN, MPI_PROD, MPI_SUM,… 

• In many numerical algorithms, SEND/RECEIVE can be 
replaced by BCAST/REDUCE, improving both simplicity 
and efficiency 
• Can use a more efficient algorithm than you might choose for 

simplicity (e.g., P-1 send/receive pairs for broadcast or reduce) 
• May use special hardware support on some systems 
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Example:  PI in C - 1 
#include "mpi.h" 
#include <math.h> 

#include <stdio.h> 
int main(int argc, char *argv[]) 
{ 

int done = 0, n, myid, numprocs, i, rc; 
double PI25DT = 3.141592653589793238462643; 
double mypi, pi, h, sum, x, a; 
MPI_Init(&argc,&argv); 
MPI_Comm_size(MPI_COMM_WORLD,&numprocs); 
MPI_Comm_rank(MPI_COMM_WORLD,&myid); 
while (!done)  { 
  if (myid == 0) { 
    printf("Enter the # of intervals: (0 quits) "); 
    scanf("%d",&n); 
  } 
  MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD); 
  if (n == 0) break; 
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Example:  PI in C - 2 

    h   = 1.0 / (double) n; 
  sum = 0.0; 
  for (i = myid + 1; i <= n; i += numprocs) { 
    x = h * ((double)i - 0.5); 
    sum += 4.0 / (1.0 + x*x); 
  } 
  mypi = h * sum; 
  MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, 
             MPI_COMM_WORLD); 
  if (myid == 0) 
    printf("pi is approximately %.16f, Error is .16f\n", 
            pi, fabs(pi - PI25DT)); 
} 
MPI_Finalize(); 

 return 0; 
} 
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Example:  PI in Fortran - 1 

     program main 
     include ‘mpif.h’  
     integer done, n, myid, numprocs, i, rc 
     double pi25dt, mypi, pi, h, sum, x, z 
     data done/.false./ 
     data PI25DT/3.141592653589793238462643/ 
     call MPI_Init(ierr) 
     call MPI_Comm_size(MPI_COMM_WORLD,numprocs, ierr ) 
     call MPI_Comm_rank(MPI_COMM_WORLD,myid, ierr) 
     do while (.not. done) 
       if (myid .eq. 0) then 
        print *,”Enter the number of intervals: (0 quits)“ 
        read *, n 
       endif 
       call MPI_Bcast(n, 1, MPI_INTEGER, 0, 
   *                   MPI_COMM_WORLD, ierr ) 
       if (n .eq. 0) goto 10 
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Example:  PI in Fortran - 2 

        h   = 1.0 / n 
    sum = 0.0 

        do i=myid+1,n,numprocs 
          x = h * (i - 0.5) 

      sum += 4.0 / (1.0 + x*x) 
    enddo 
    mypi = h * sum 
    call MPI_Reduce(mypi, pi, 1, MPI_DOUBLE_PRECISION, 
   *                MPI_SUM, 0, MPI_COMM_WORLD, ierr ) 
    if (myid .eq. 0) then 
        print *, "pi is approximately “, pi,  
   *      “, Error is “, abs(pi - PI25DT) 

    enddo 
10   continue 

    call MPI_Finalize( ierr ) 
    end 
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Example:  PI in C++ - 1 
#include "mpi.h" 
#include <math.h> 
#include <iostream> 
int main(int argc, char *argv[]) 
{ 
  int done = 0, n, myid, numprocs, i, rc; 
  double PI25DT = 3.141592653589793238462643; 
  double mypi, pi, h, sum, x, a; 
  MPI::Init(argc, argv); 
  numprocs = MPI::COMM_WORLD.Get_size(); 
  myid     = MPI::COMM_WORLD.Get_rank(); 
  while (!done)  { 
    if (myid == 0) { 
      std::cout << "Enter the # of intervals: (0 quits) "; 
      std::cin >> n;; 
    } 
    MPI::COMM_WORLD.Bcast(&n, 1, MPI::INT, 0 ); 
    if (n == 0) break; 
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Example:  PI in C++ - 2 

   h   = 1.0 / (double) n; 
  sum = 0.0; 
  for (i = myid + 1; i <= n; i += numprocs) { 
    x = h * ((double)i - 0.5); 
    sum += 4.0 / (1.0 + x*x); 
  } 
  mypi = h * sum; 
  MPI::COMM_WORLD.Reduce(&mypi, &pi, 1, MPI::DOUBLE,  
                        MPI::SUM, 0); 
  if (myid == 0) 
    std::cout << "pi is approximately “ << pi <<  
          “, Error is “ << fabs(pi - PI25DT) << “\n”; 
} 
MPI::Finalize(); 

 return 0; 
} 
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MPI Collective Routines 

• Many Routines:  Allgather, Allgatherv, 
Allreduce, Alltoall, Alltoallv, Bcast, 
Gather, Gatherv, Reduce, Reduce_scatter, 
Scan, Scatter, Scatterv 

• All versions deliver results to all participating 
processes. 

• V versions allow the hunks to have different sizes. 
• Allreduce, Reduce, Reduce_scatter, and Scan 

take both built-in and user-defined combiner functions. 
• MPI-2 adds Alltoallw, Exscan, intercommunicator 

versions of most routines 
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Buffers 
•  Message passing has a small set of primitives, but there are subtleties 

•  Buffering and deadlock 
•  Deterministic execution 
•  Performance  

•  When you send data, where does it go?  One possibility is: 

Process 0 Process 1 

User data 

Local buffer 

the network 

User data 

Local buffer 
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Avoiding Buffering 

•  It is better to avoid copies: 

This requires that MPI_Send wait on delivery, or 
that MPI_Send return before transfer is complete, 
and we wait later. 

Process 0 Process 1 

User data 

User data 

the network 
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• Send a large message from process 0 to process 1 
•  If there is insufficient storage at the destination, the send must 

wait for the user to provide the memory space (through a 
receive) 

• What happens with this code? 

Sources of Deadlocks 

Process 0 

Send(1) 
Recv(1) 

Process 1 

Send(0) 
Recv(0) 

•  This is called “unsafe” because it depends on 
the availability of system buffers in which to 
store the data sent until it can be received  
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Some Solutions to the “unsafe” Problem 

•  Order the operations more carefully: 

•  Supply receive buffer at same time as send: 

Process 0 

Send(1) 
Recv(1) 

Process 1 

Recv(0) 
Send(0) 

Process 0 

Sendrecv(1) 

Process 1 

Sendrecv(0) 
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More Solutions to the “unsafe” Problem 
•  Supply own space as buffer for send 

•  Use non-blocking operations: 

Process 0 

Bsend(1) 
Recv(1) 

Process 1 

Bsend(0) 
Recv(0) 

Process 0 

Isend(1) 
Irecv(1) 
Waitall 

Process 1 

Isend(0) 
Irecv(0) 
Waitall 
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MPI’s Non-blocking Operations 

• Non-blocking operations return (immediately) “request 
handles” that can be tested and waited on: 

  MPI_Request request; 
  MPI_Status status; 
  MPI_Isend(start, count, datatype, 
    dest, tag, comm, &request); 

  MPI_Irecv(start, count, datatype, 
    dest, tag, comm, &request); 

  MPI_Wait(&request, &status); 
(each request must be Waited on) 

• One can also test without waiting: 
  MPI_Test(&request, &flag, &status); 
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MPI’s Non-blocking Operations (Fortran) 

• Non-blocking operations return (immediately) “request 
handles” that can be tested and waited on: 

  integer request 
  integer status(MPI_STATUS_SIZE) 
  call MPI_Isend(start, count, datatype, 
    dest, tag, comm, request,ierr) 

  call MPI_Irecv(start, count, datatype, 
    dest, tag, comm, request, ierr) 

  call MPI_Wait(request, status, ierr) 
(Each request must be waited on) 

• One can also test without waiting: 
  call MPI_Test(request, flag, status, ierr) 
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MPI’s Non-blocking Operations (C++) 

• Non-blocking operations return (immediately) “request 
handles” that can be tested and waited on: 

MPI::Request request; 
MPI::Status  status; 

  request = comm.Isend(start, count, 
                  datatype, dest, tag); 

  request = comm.Irecv(start, count, 
                  datatype, dest, tag); 

  request.Wait(status); 
(each request must be Waited on) 

• One can also test without waiting: 
  flag = request.Test( status ); 
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Other MPI Point-to-Point Features 

•  It is sometimes desirable to wait on multiple requests: 
 MPI_Waitall(count, array_of_requests, 
 array_of_statuses) 

• Also MPI_Waitany, MPI_Waitsome, and test versions 
• MPI provides multiple modes for sending messages: 

•  Synchronous mode (MPI_Ssend):  the send does not complete 
until a matching receive has begun.  (Unsafe programs deadlock.) 

•  Buffered mode (MPI_Bsend):  user supplies a buffer to the system 
for its use.  (User allocates enough memory to avoid deadlock.) 

•  Ready mode (MPI_Rsend):  user guarantees that a matching 
receive has been posted. (Allows access to fast protocols; 
undefined behavior if matching receive not posted.) 
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Synchronization 
• Global synchronization is available in MPI 

•  C: MPI_Barrier( comm ) 
•  Fortran: MPI_Barrier( comm, ierr ) 
•  C++: comm.Barrier(); 

• Blocks until all processes in the group of the 
communicator comm call it. 

• Almost never required to make a message passing 
program correct 

•  Useful in measuring performance and load balancing 
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MPI has become the de facto standard for parallel 
computing using message passing 
Pros and Cons of standards 

•  MPI created finally a standard for applications 
development in the HPC community → portability 

•  The MPI standard is a least common denominator 
building on mid-80s technology, so may discourage 
innovation 

Programming Model reflects hardware!  

“I am not sure how I will program a Petaflops computer, 
but I am sure that I will need MPI somewhere” – HDS 2001 

MPI – The de facto standard 
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MPI References 

• The Standard itself: 
• at http://www.mpi-forum.org 
• All MPI official releases, in both postscript and HTML 

• Other information on Web: 
• at http://www.mcs.anl.gov/mpi 
• pointers to lots of stuff, including other talks and 

tutorials, a FAQ, other MPI pages 
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Books on MPI 

•  Using MPI:  Portable Parallel Programming  
with the Message-Passing Interface (2nd edition),  
by Gropp, Lusk, and Skjellum, MIT Press,  
1999. 

•  Using MPI-2:  Portable Parallel Programming  
with the Message-Passing Interface, by Gropp,  
Lusk, and Thakur, MIT Press, 1999. 

•  MPI:  The Complete Reference - Vol 1 The MPI Core, by 
Snir, Otto, Huss-Lederman, Walker, and Dongarra, MIT 
Press, 1998. 

•  MPI: The Complete Reference - Vol 2 The MPI Extensions, 
by Gropp, Huss-Lederman, Lumsdaine, Lusk, Nitzberg, 
Saphir, and Snir, MIT Press, 1998. 

•  Designing and Building Parallel Programs, by Ian Foster, 
Addison-Wesley, 1995. 

•  Parallel Programming with MPI, by Peter Pacheco, Morgan-
Kaufmann, 1997. 
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Partitioned Global Address Space Languages 

            One-Sided Communication 
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What’s Wrong with MPI Everywhere 

•  We can run 1 MPI process per core 
•  This works now (for CMPs) and will work for a while 

•  How long will it continue working?  
•  4 - 8 cores? Probably.  128 - 1024 cores? Probably not. 
•  Depends on performance expectations -- more on this later 

•  What is the problem? 
•  Latency: some copying required by semantics 
•  Memory utilization: partitioning data for separate address space 

requires some replication 
•  How big is your per core subgrid?  At 10x10x10, over 1/2 of the points 

are surface points, probably replicated 
•  Memory bandwidth: extra state means extra bandwidth 
•  Weak scaling: success model for the “cluster era;” will not be for 

the many core era -- not enough memory per core 
•  Heterogeneity: MPI per CUDA thread-block? 

•  Advantage: no new apps work; modest infrastructure work 
(multicore-optimized MPI) 
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Current Implementations of PGAS Languages 

•  A successful language/library must run everywhere 
•  UPC 

•  Commercial compilers available on Cray, SGI, HP machines 
•  Open source compiler from LBNL/UCB (source-to-source) 
•  Open source gcc-based compiler from Intrepid 

•  CAF 
•  Commercial compiler available on Cray machines 
•  Open source compiler available from Rice 

•  Titanium  
•  Open source compiler from UCB runs on most machines 

•  DARPA HPCS Languages 
•  Cray Chapel, IBM X10, Sun Fortress 
•  Use PGAS memory abstraction, but have dynamic threading 
•  Recent additions to parallel language landscape  no mature compilers 

for clusters yet 
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Unified Parallel C (UPC) 

Overview and Design Philosophy  
•  Unified Parallel C (UPC) is: 

•  An explicit parallel extension of ANSI C  
•  A partitioned global address space language 
•  Sometimes called a GAS language 

•  Similar to the C language philosophy 
•  Programmers are clever and careful, and may need to get 

close to hardware 
•  to get performance, but 
•  can get in trouble 

•  Concise and efficient syntax 
•  Common and familiar syntax and semantics for 

parallel C with simple extensions to ANSI C 
•  Based on ideas in Split-C, AC, and PCP 
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UPC Execution 
Model




UPC Execution Model 

•  Threads working independently in a SPMD fashion 
•  Number of threads specified at compile-time or run-time; 

available as program variable THREADS 
•  MYTHREAD specifies thread index (0..THREADS-1) 
•  upc_barrier is a global synchronization: all wait 
•  There is a form of parallel loop that we will see later 

•  There are two compilation modes 
•  Static Threads mode: 

•  THREADS is specified at compile time by the user 
•  The program may use THREADS as a compile-time constant 

•  Dynamic threads mode: 
•  Compiled code may be run with varying numbers of threads 
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Hello World in UPC 

• Any legal C program is also a legal UPC program 
•  If you compile and run it as UPC with P threads, it will 

run P copies of the program. 
• Using this fact, plus the identifiers from the previous 

slides, we can parallel hello world: 

#include <upc.h>  /* needed for UPC extensions */ 
#include <stdio.h> 

main() { 
  printf("Thread %d of %d: hello UPC world\n",  
         MYTHREAD, THREADS); 
} 
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Example: Monte Carlo Pi Calculation 

• Estimate Pi by throwing darts at a unit square 
• Calculate percentage that fall in the unit circle 

•  Area of square = r2 = 1 
•  Area of circle quadrant = ¼ * π r2 = π/4  

• Randomly throw darts at x,y positions 
•  If x2 + y2 < 1, then point is inside circle 
• Compute ratio: 

•  # points inside / # points total 
•   π = 4*ratio  

r =1 
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Each thread calls “hit” separately 

Initialize random in 
math library 

Each thread can use 
input arguments 

Each thread gets its own 
copy of these variables 

Pi in UPC  

• Independent estimates of pi: 
  main(int argc, char **argv) { 
    int i, hits, trials = 0; 
    double pi; 

    if (argc != 2)trials = 1000000; 
    else trials = atoi(argv[1]); 

    srand(MYTHREAD*17); 

    for (i=0; i < trials; i++) hits += hit(); 
    pi = 4.0*hits/trials; 
    printf("PI estimated to %f.", pi); 
  } 
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Helper Code for Pi in UPC 

• Required includes: 
    #include <stdio.h> 
    #include <math.h>  
    #include <upc.h>  

• Function to throw dart and calculate where it hits: 
  int hit(){ 
    int const rand_max = 0xFFFFFF; 
    double x = ((double) rand()) / RAND_MAX; 
    double y = ((double) rand()) / RAND_MAX; 
    if ((x*x + y*y) <= 1.0) { 
         return(1); 
    } else { 
         return(0); 
    } 
  } 
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Shared vs. Private 
Variables




Private vs. Shared Variables in UPC 

• Normal C variables and objects are allocated in the private 
memory space for each thread. 

• Shared variables are allocated only once, with thread 0 
     shared int ours;  // use sparingly: performance 
     int mine; 

• Shared variables may not have dynamic lifetime:  may not 
occur in a in a function definition, except as static.  Why? 

Shared 
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Private 
mine:  mine:  mine:  

Thread0   Thread1                                       Threadn 

ours:  
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Pi in UPC: Shared Memory Style 

• Parallel computing of pi, but with a bug 
  shared int hits; 
  main(int argc, char **argv) { 
      int i, my_trials = 0; 
      int trials = atoi(argv[1]); 
      my_trials = (trials + THREADS - 1)/THREADS; 
      srand(MYTHREAD*17); 
      for (i=0; i < my_trials; i++)    
        hits += hit(); 
      upc_barrier; 
      if (MYTHREAD == 0) { 
        printf("PI estimated to %f.", 4.0*hits/trials); 
      } 
   } 

shared variable to 
record hits 

divide work up evenly 

accumulate hits 

What is the problem with this program? 
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Shared Arrays Are Cyclic By Default 

• Shared scalars always live in thread 0 
• Shared arrays are spread over the threads 
• Shared array elements are spread across the threads 

shared int x[THREADS]        /* 1 element per thread */ 
shared int y[3][THREADS] /* 3 elements per thread */ 
shared int z[3][3]               /* 2 or 3 elements per thread */ 

•  In the pictures below, assume THREADS = 4 
•  Red elts have affinity to thread 0 

x 

y 

z 

As a 2D array, y is 
logically blocked 
by columns 

Think of linearized 
C array, then map 
in round-robin 

z is not 
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Pi in UPC: Shared Array Version 

• Alternative fix to the race condition  
• Have each thread update a separate counter: 

•  But do it in a shared array 
•  Have one thread compute sum 

shared int all_hits [THREADS]; 
main(int argc, char **argv) { 
  … declarations an initialization code omitted 
  for (i=0; i < my_trials; i++)  
    all_hits[MYTHREAD] += hit(); 
  upc_barrier; 
  if (MYTHREAD == 0) { 
    for (i=0; i < THREADS; i++) hits += all_hits[i]; 
    printf("PI estimated to %f.", 4.0*hits/trials); 
  } 
} 

all_hits is 
shared by all 
processors, 
just as hits was 

update element 
with local affinity 
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UPC Global Synchronization 

•  UPC has two basic forms of barriers: 
•  Barrier: block until all other threads arrive  

 upc_barrier 
•  Split-phase barriers 
   upc_notify;  this thread is ready for barrier 
      do computation unrelated to barrier 
   upc_wait;      wait for others to be ready 

•  Optional labels allow for debugging 
#define MERGE_BARRIER 12 
if (MYTHREAD%2 == 0) { 
     ... 
     upc_barrier MERGE_BARRIER;   
} else { 
     ... 
     upc_barrier MERGE_BARRIER; 
} 
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Synchronization - Locks 

•  UPC Locks are an opaque type: 
upc_lock_t 

•  Locks must be allocated before use: 
upc_lock_t *upc_all_lock_alloc(void); 

   allocates 1 lock, pointer to all threads 
upc_lock_t *upc_global_lock_alloc(void); 

     allocates 1 lock, pointer to one thread 
•  To use a lock: 

void upc_lock(upc_lock_t *l) 
void upc_unlock(upc_lock_t *l) 

  use at start and end of critical region 
•  Locks can be freed when not in use 

void upc_lock_free(upc_lock_t *ptr); 
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Pi in UPC: Shared Memory Style 

• Parallel computing of pi, without the bug 
  shared int hits; 
  main(int argc, char **argv) { 
      int i, my_hits, my_trials = 0; 
  upc_lock_t *hit_lock = upc_all_lock_alloc(); 
      int trials = atoi(argv[1]); 
      my_trials = (trials + THREADS - 1)/THREADS; 
      srand(MYTHREAD*17); 
      for (i=0; i < my_trials; i++)  
         my_hits += hit(); 
      upc_lock(hit_lock); 
      hits += my_hits; 
      upc_unlock(hit_lock); 
      upc_barrier; 
      if (MYTHREAD == 0)  
        printf("PI: %f", 4.0*hits/trials); 
   } 

create a lock 

accumulate hits 
locally 

accumulate 
across threads 
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Recap: Private vs. Shared Variables in UPC 

• We saw several kinds of variables in the pi example 
•  Private scalars (my_hits) 
•  Shared scalars (hits) 
•  Shared arrays (all_hits) 
•  Shared locks (hit_lock) 

Shared 
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Private 
my_hits:  my_hits:  my_hits:  

Thread0   Thread1                                       Threadn 

all_hits[0]: 

hits:  

all_hits[n]: all_hits[1]: 

hit_lock:  

where: 
n=Threads-1 
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UPC Collectives in General 

• UPC collectives interface is in the language spec: 
• http://upc.lbl.gov/docs/user/upc_spec_1.2.pdf 

• It contains typical functions: 
• Data movement: broadcast, scatter, gather, … 
• Computational: reduce, prefix, … 

• General interface has synchronization modes: 
• Avoid over-synchronizing (barrier before/after) 
• Data being collected may be read/written by any 

thread simultaneously 
• Simple interface for scalar values (int, double,…) 

• Berkeley UPC value-based collectives  
• Works with any compiler 
• http://upc.lbl.gov/docs/user/README-collectivev.txt 
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Pi in UPC: Data Parallel Style 

• The previous version of Pi works, but is not scalable: 
•  On a large # of threads, the locked region will be a bottleneck 

• Use a reduction for better scalability 

  #include <bupc_collectivev.h> 
  // shared int hits; 
  main(int argc, char **argv) { 
      ... 
      for (i=0; i < my_trials; i++)  
         my_hits += hit(); 
      my_hits =         // type, input, thread, op 
         bupc_allv_reduce(int, my_hits, 0, UPC_ADD);  
      // upc_barrier; 
      if (MYTHREAD == 0)  
        printf("PI: %f", 4.0*my_hits/trials); 
   } 

 Berkeley collectives 
no shared variables 

barrier implied by collective 
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Work Distribution 
Using upc_forall 



Example: Vector Addition 

 /* vadd.c */ 
 #include <upc_relaxed.h> 
#define N 100*THREADS 

shared int v1[N], v2[N], sum[N]; 
void main() { 

 int i; 
 for(i=0; i<N; i++) 

   if (MYTHREAD == i%THREADS)
     sum[i]=v1[i]+v2[i]; 

} 

• Questions about parallel vector additions: 

• How to layout data (here it is cyclic)

• Which processor does what (here it is “owner computes”)


cyclic layout 

owner computes 
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•  The idiom in the previous slide is very common 
•  Loop over all; work on those owned by this proc 

•  UPC adds a special type of loop 
    upc_forall(init; test; loop; affinity) 
      statement; 

•  Programmer indicates the iterations are independent 
•  Undefined if there are dependencies across threads 

•  Affinity expression indicates which iterations to run on each thread.  
It may have one of two types: 
•  Integer: affinity%THREADS is MYTHREAD 
•  Pointer: upc_threadof(affinity) is MYTHREAD 

•  Syntactic sugar for loop on previous slide 
•  Some compilers may do better than this, e.g.,  

   for(i=MYTHREAD; i<N; i+=THREADS) 
•  Rather than having all threads iterate N times: 

      for(i=0; i<N; i++) if (MYTHREAD == i%THREADS) 

with 
upc
_for
all() 
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Vector Addition with upc_forall 

#define N 100*THREADS 

shared int v1[N], v2[N], sum[N]; 

void main() { 
 int i; 
 upc_forall(i=0; i<N; i++; i)        

                 sum[i]=v1[i]+v2[i]; 
} 

• The vadd example can be rewritten as follows 
• Equivalent code could use “&sum[i]” for affinity 
• The code would be correct but slow if the affinity 

expression were i+1 rather than i. 

The cyclic data 
distribution may 
perform poorly on 
some machines
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Distributed Arrays 
in UPC




Blocked Layouts in UPC 

#define N 100*THREADS 
shared int [*] v1[N], v2[N], sum[N]; 

void main() { 
 int i; 
 upc_forall(i=0; i<N; i++; &sum[i])   

                 sum[i]=v1[i]+v2[i]; 
} 

•  If this code were doing nearest neighbor averaging (3pt stencil) the 
cyclic layout would be the worst possible layout. 

•  Instead, want a blocked layout 
•  Vector addition example can be rewritten as follows using a blocked 

layout 

blocked layout 
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Layouts in General 

• All non-array objects have affinity with thread zero. 
• Array layouts are controlled by layout specifiers: 

•  Empty (cyclic layout) 
•  [*] (blocked layout) 
•  [0] or [] (indefinite layout, all on 1 thread) 
•  [b] or [b1][b2]…[bn] = [b1*b2*…bn] (fixed block size) 

• The affinity of an array element is defined in terms of: 
•  block size, a compile-time constant 
•  and THREADS.   

• Element i has affinity with thread  
        (i / block_size) % THREADS 

•  In 2D and higher, linearize the elements as in a C 
representation, and then use above mapping 
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Pointers to Shared vs. Arrays 

#define N 100*THREADS 
shared int v1[N], v2[N], sum[N]; 
void main() { 

int i; 
shared int *p1, *p2; 

p1=v1; p2=v2; 
for (i=0; i<N; i++, p1++, p2++ )  

     if (i %THREADS= = MYTHREAD) 
  sum[i]= *p1 + *p2; 

} 

•  In the C tradition, arrays can be access through pointers

• Here is the vector addition example using pointers


v1 

p1 
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UPC Pointers  

int *p1;        /* private pointer to local memory */ 
shared int *p2; /* private pointer to shared space */ 
int *shared p3; /* shared pointer to local memory */ 
shared int  *shared p4; /* shared pointer to   
                           shared space */ 

Shared 
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Private 
p1:  

Thread0   Thread1                                       Threadn 

p2:  

p1:  

p2:  

p1:  

p2:  

p3:  

p4:  

p3:  

p4:  

p3:  

p4:  

Pointers to shared often require more storage and are more costly to 
dereference; they may refer to local or remote memory. 
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Dynamic Memory Allocation in UPC 

• Dynamic memory allocation of shared memory is available 
in UPC 

• Non-collective (called independently) 
  shared void *upc_global_alloc(size_t nblocks,                    
                                size_t nbytes); 
   nblocks : number of blocks 
      nbytes : block size 
• Collective (called together; all threads get same pointer) 
  shared void *upc_all_alloc(size_t nblocks,  
                             size_t nbytes); 

• Freeing dynamically allocated memory in shared space 
  void upc_free(shared void *ptr); 
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Performance of 
UPC




PGAS Languages have Performance Advantages 
Strategy for acceptance of a new language 
• Make it run faster than anything else 

Keys to high performance 
• Parallelism: 

•  Scaling the number of processors 
• Maximize single node performance 

•  Generate friendly code or use tuned libraries (BLAS, FFTW, 
etc.) 

• Avoid (unnecessary) communication cost 
•  Latency, bandwidth, overhead 
•  Berkeley UPC and Titanium use GASNet communication 

layer 
• Avoid unnecessary delays due to dependencies 

•  Load balance; Pipeline algorithmic dependencies 
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One-Sided vs Two-Sided 

•  A one-sided put/get message can be handled directly by a network 
interface with RDMA support 

•  Avoid interrupting the CPU or storing data from CPU (preposts) 
•  A two-sided messages needs to be matched with a receive to 

identify memory address to put data 
•  Offloaded to Network Interface in networks like Quadrics 
•  Need to download match tables to interface (from host) 
•  Ordering requirements on messages can also hinder bandwidth 

address 

message id 

data payload 

data payload 

one-sided put message 

two-sided message 

network 
 interface 

memory 

host 
CPU 
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One-Sided vs. Two-Sided: Practice 
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•  InfiniBand: GASNet vapi-conduit and OSU MVAPICH 0.9.5 
•  Half power point (N ½ ) differs by one order of magnitude 
•  This is not a criticism of the implementation! 

Joint work with Paul Hargrove and Dan Bonachea
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GASNet: Portability and High-Performance 
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GASNet better for latency across machines 
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Joint work with UPC Group; GASNet design by Dan Bonachea
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GASNet at least as high (comparable) for large messages 
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Joint work with UPC Group; GASNet design by Dan Bonachea
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GASNet excels at mid-range sizes: important for overlap 

GASNet: Portability and High-Performance 

Flood Bandwidth for 4KB messages

547

420

190

702

152

252

750

714231

763
223

679

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

Pe
rc

en
t H

W
 p

ea
k

MPI

GASNet

Joint work with UPC Group; GASNet design by Dan Bonachea
8/19/10
 MPI and UPC 89




Case Study: NAS FT in UPC 

• Perform FFT on a 3D Grid 
• 1D FFTs in each dimension, 3 phases 
• Transpose after first 2 for locality 
• Bisection bandwidth-limited 

•  Problem as #procs grows 

• Three approaches: 
• Exchange:  

•  wait for 2nd dim FFTs to finish, send 1 
message per processor pair 

• Slab:  
•  wait for chunk of rows destined for 1 

proc, send when ready 
• Pencil:  

•  send each row as it completes 

Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea
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NAS FT Variants Performance Summary 

•  Slab is always best for MPI; small message cost too high 
•  Pencil is always best for UPC; more overlap 

Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea


.5 Tflops 
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Beyond the SPMD Model: Dynamic Threads 

• UPC uses a static threads (SPMD) programming model 
•  No dynamic load balancing built-in, although some examples 

(Delaunay mesh generation) of building it on top 
•  Berkeley UPC model extends basic memory semantics (remote 

read/write) with active messages 
•  AM have limited functionality (no messages except acks) to 

avoid deadlock in the network 
• A more dynamic runtime would have many uses 

•  Application load imbalance, OS noise, fault tolerance 
• Two extremes are well-studied 

•  Dynamic load balancing (e.g., random stealing) without locality 
•  Static parallelism (with threads = processors) with locality 

• Can we combine both in a general-purpose way? 

Joint work with Parry Husbands

8/19/10
 MPI and UPC 92




The Parallel Case 

Blocks 2D 
block-cyclic 
distributed 

Panel factorizations 
involve communication 
for pivoting 

C
om

pleted part of L 

A(i,j) A(i,k) ‏  ‏

A(j,i) A(j,k) ‏  ‏

Trailing matrix 
to be updated 

Panel being factored 

Completed part of U 
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Parallel Tasks in LU 

some edges omitted 

•  Implementation uses 3 levels of threading: 
•  UPC threads (SPMD), user-level non-preemptive threads, BLAS threads 

• Theoretical and practical problem: Memory deadlock 
•  Not enough memory for all tasks at once.  (Each update needs two 

temporary blocks, a green and blue, to run.) 
•  If updates are scheduled too soon, you will run out of memory 
•  If updates are scheduled too late, critical path will be delayed. 8/19/10
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UPC HP Linpack Performance 

• Faster than ScaLAPACK due to less synchronization 
• Comparable to MPI HPL (numbers from HPCC database) 
• Large scaling of UPC code on Itanium/Quadrics (Thunder)  

• 2.2 TFlops on 512p  and 4.4 TFlops on 1024p 
Joint work with Parry Husbands
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Utilization Comparison 

•  Synchronous (above) 
vs. asynchronous (below) 
schedule 

•  SGI Altix Itanium 2 1.4GHz, 
n=12,800, process grid = 2x4, 
block size = 400   

•  Grey blocks = matrix 
multiplication 

•  Black blocks = panel 
factorization 

8/19/10
 MPI and UPC 96




UPC Group (Past and Present) 
•  Filip Blagojevic 
•  Dan Bonachea 
•  Paul Hargrove (Runtime Lead) 
•  Steve Hofmeyer 
•  Costin Iancu (Compiler Lead) 
•  Seung-Jai Min 
•  Kathy Yelick (Project Lead) 
•  Yili Zheng 

Former:  
•  Christian Bell 
•  Parry Husbands 
•  Rajesh Nishtala 
•  Michael Welcome 

http://upc.lbl.gov 

Compiler, runtime, 
GASNet available here. 
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Supercomputing Ecosystem (2006) 

Commercial Off The Shelf technology (COTS) 

“Clusters” 12 years of legacy MPI applications base 

PCs and desktop 
systems are no longer 
the economic driver. 

2010 

Architecture and 
programming model 
are about to change 



PGAS Languages for Manycore 

•  PGAS memory are a good fit to machines with explicitly managed 
memory (local store) 

•  Global address space implemented as DMA reads/writes 
•  New “vertical” partition of memory needed for on/off chip, e.g., 

upc_offchip_alloc  
•  Non-blocking features of UPC put/get are useful 

•  SPMD execution model needs to be adapted to heterogeneity 

DMA


x: 1 
y:  

x: 5 
y:  

x: 7 
y: 0 

Shared 
partitioned 
on-chip 

l:  m:  Private on-chip 

Shared 
off-chip 
DRAM 

Computer Node 

CPU Memory 

GPU 

GPU 
Mem
ory 

CPU CPU 

GPU 

GPU 
Mem
ory 

Computer Node 

CPU Memory 

GPU 

GPU 
Mem
ory 

CPU CPU 

GPU 

GPU 
Mem
ory 

Network 

PGAS 



Hierarchical PGAS Memory Model 

•  A global address space for hierarchical machines may have multiple kinds 
of pointers 

•  These can be encode by programmers in type system or hidden, e.g., all 
global or only local/global 

•  This partitioning is about pointer span, not control / parallelism 
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Hybrid Partitioned Global Address Space 

Local 
Segment 
on Host  
Memory 

Processor 1 

Shared 
Segment 
on Host 
Memory 

Local 
Segment 
on GPU  
Memory 

Local 
Segment 
on Host  
Memory 

Processor 2 

Local 
Segment 
on GPU  
Memory 

Local 
Segment 
on Host  
Memory 

Processor 3 

Local 
Segment 
on GPU  
Memory 

Local 
Segment 
on Host  
Memory 

Processor 4 

Local 
Segment 
on GPU  
Memory 

  Each “processor” has two shared segments  
  Decouples the memory model from execution models; 

one thread per CPU, vs. one thread for all CPU and GPU 
“cores” 

  Caveat: type system and therefore interfaces blow up 
with different parts of address space 
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GASNet GPU Extension Performance 

Latency Bandwidth 



• Provide method to query machine structure at runtime 

Programming to Machine Structure in an 
Abstract Manner 
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Team T = Ti.defaultTeam(); 
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Summary and Discussion 

• Message Passing  
•  MPI is the de facto programming model for large-scale machines 
•  Was developed as a standardization of “known” ideas (but not without 

controversy) 
•  MPI 3.0 standards effort is underway now: you can join! 

•  Looking at one-sided communication again 
•  Race conditions are relatively rare 

• Partitioned Global Address Space Language 
•  Offer a compromise on performance and ease of programming 
•  Match both shared and distributed memory 
•  Demonstrated scalability (like MPI), portability (through GASNet + C) 
•  UPC is an example, others include Co-Array Fortran, Titanium (Java) 
•  The DARPA HPCS languages: X10, Chapel, Fortress 

• Productivity 
•  In the eye of the programmer 
•  Trade-off: races vs packing/unpacking code 
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