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‘ Summary |

e New communication lower bounds for (nearly) all dense or sparse, sequential or
parallel, direct linear algebra problems

e New algorithms that attain lower bounds (sequential and parallel)
e Measured and modeled speedups, not just asymptotics
e Open problems in dense and sparse linear algebra

‘ Motivation |

“Communication” means

e Parallel: Data movement between processors
e Sequential: Data movement between levels of memory hierarchy
e # words (inverse bandwidth) and # messages (latency)

Communication matters because:

e Much slower than flops, and getting exponentially slower over time
e Moving data much more energy-intensive than computing on it

‘ Lower Bounds |

Dense Matrix Multiplication
Lower bound on: | Lower bound

# words () (# flops / (local/fast memory size)!/?
# messages () (# flops / (local/fast memory size)>/?
¢ Results due to Hong-Kung [HK81], Irony/Tishkin/Toledo [ITT04]

e Attained by block algorithm (sequential) and Cannon’s algorithm (parallel)

Extensions to (nearly) all direct problems

e Theorem: same lower bounds hold for LU, Cholesky, QR, EV/SVD problems

— Sequential or parallel, dense or sparse
— See [BDHSO09] for details and proof

e Existing library routines not both bandwidth and latency optimal
— ScalLAPACK: only Cholesky is optimal; LAPACK: Cholesky bandwidth only

‘ New Algorithms |

Communication-Avoiding QR (CAQR)

e Factor panel with “Tall Skinny QR” (TSQR): block reduction with QR as operator

e Measured speedup of parallel TSQR: up to 6.7x on 16 processors of a Pentium |l
cluster

e Modeled speedup of parallel CAQR: up to 9.7x on an IBM Power5 system
e See [DGHLO8] for details, models, and more performance results
e Standalone TSQR useful for iterative methods (orthogonalize basis vectors)

TSQR performance results

e Single node of 8-core Intel Clover-
. town (we have cluster and out-of-
1 00E47 core versions too)
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e Includes factorization and assem-
bling explicit ) factor

e Best number of threads for LAPACK
QR (MKL and stock LAPACK): 1

e Even better measured and modeled
speedups on clusters
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Communication-Avoiding LU (CALU)

e Factor panel once with “Tall Skinny LU” (like a block reduction) to choose pivots
e Swap pivot rows to top and factor again without pivoting — O(n?) extra flops

e Measured speedup of parallel TSLU: up to 5.58x on Cray XT4

e Measured speedup of parallel CALU (size 10* x 10%): 1.31x on Cray XT4

e See [DGXO08] for details, models, and more performance results

‘ Current Work |

Eigenvalue/SVD Problems

e Successive Band Reduction (SBR)
— uses two-step reduction to tridiagonal rather than one-step

— pays off when only eigen/singular values are required
— costs constant factor more flops when vectors are required

— First step (full to banded) can be
done in optimal way

« using optimal QR factorization
and BLAS 3 kernels

— Second step (banded to tridiago-
nal) is lower order term

— MKL driver routines do not yet take
advantage of two-step approach

Gflops/sec

e Randomized divide-and-conquer approach

— no reductions, uses randomized rank-revealing QR factorization
—communication-optimal in asymptotic sense
— costs (larger) constant factor more flops

e More flops — pay-off in future

Sparse Cholesky on 5-pt Stencil Matrix

e Gilbert (‘73) proved lower bounds for sparse Cholesky factorization
—Q(n3/2) flops, Q(nlogn) fill-in

e Communication lower bound is then () (max {%, n log n})

e Nested dissection attains computation/fill-in lower bound
— New variant attains communication lower bound (we think)
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