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Summary

•New communication lower bounds for (nearly) all dense or sparse, sequential or
parallel, direct linear algebra problems
•New algorithms that attain lower bounds (sequential and parallel)
•Measured and modeled speedups, not just asymptotics
•Open problems in dense and sparse linear algebra

Motivation

“Communication” means
• Parallel: Data movement between processors
• Sequential: Data movement between levels of memory hierarchy
• # words (inverse bandwidth) and # messages (latency)

Communication matters because:
•Much slower than flops, and getting exponentially slower over time
•Moving data much more energy-intensive than computing on it

Lower Bounds

Dense Matrix Multiplication
Lower bound on: Lower bound
# words Ω

(
# flops / (local/fast memory size)1/2

)
# messages Ω

(
# flops / (local/fast memory size)3/2

)
•Results due to Hong-Kung [HK81], Irony/Tishkin/Toledo [ITT04]
• Attained by block algorithm (sequential) and Cannon’s algorithm (parallel)

Extensions to (nearly) all direct problems
• Theorem: same lower bounds hold for LU, Cholesky, QR, EV/SVD problems

– Sequential or parallel, dense or sparse
– See [BDHS09] for details and proof
• Existing library routines not both bandwidth and latency optimal

– ScaLAPACK: only Cholesky is optimal; LAPACK: Cholesky bandwidth only

New Algorithms

Communication-Avoiding QR (CAQR)
• Factor panel with “Tall Skinny QR” (TSQR): block reduction with QR as operator
•Measured speedup of parallel TSQR: up to 6.7× on 16 processors of a Pentium III

cluster
•Modeled speedup of parallel CAQR: up to 9.7× on an IBM Power5 system
• See [DGHL08] for details, models, and more performance results
• Standalone TSQR useful for iterative methods (orthogonalize basis vectors)

TSQR performance results
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LAPACK QR vs. TSQR (factor and Q)
8-core Intel Clovertown node
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• Single node of 8-core Intel Clover-
town (we have cluster and out-of-
core versions too)

• Includes factorization and assem-
bling explicit Q factor

• Best number of threads for LAPACK
QR (MKL and stock LAPACK): 1

• Even better measured and modeled
speedups on clusters

Communication-Avoiding LU (CALU)

• Factor panel once with “Tall Skinny LU” (like a block reduction) to choose pivots
• Swap pivot rows to top and factor again without pivoting – O(n2) extra flops
•Measured speedup of parallel TSLU: up to 5.58× on Cray XT4
•Measured speedup of parallel CALU (size 104 × 104): 1.31× on Cray XT4
• See [DGX08] for details, models, and more performance results

Current Work

Eigenvalue/SVD Problems

• Successive Band Reduction (SBR)
– uses two-step reduction to tridiagonal rather than one-step

– pays off when only eigen/singular values are required
– costs constant factor more flops when vectors are required
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Direct
Two−step

– First step (full to banded) can be
done in optimal way
∗ using optimal QR factorization

and BLAS 3 kernels
– Second step (banded to tridiago-

nal) is lower order term
– MKL driver routines do not yet take

advantage of two-step approach

•Randomized divide-and-conquer approach
– no reductions, uses randomized rank-revealing QR factorization
– communication-optimal in asymptotic sense
– costs (larger) constant factor more flops
•More flops→ pay-off in future

Sparse Cholesky on 5-pt Stencil Matrix

•Gilbert (‘73) proved lower bounds for sparse Cholesky factorization
– Ω(n3/2) flops, Ω(n log n) fill-in

•Communication lower bound is then Ω
(

max
{

n3/2
√

M
, n log n

})
•Nested dissection attains computation/fill-in lower bound

– New variant attains communication lower bound (we think)
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