‘ Symmetric Eigenproblem |

Standard approaches to computing the eigenvalues and eigenvectors of a
symmetric matrix use orthogonal similarity transformations to reduce the ma-
trix to tridiagonal form

e (Sca)LAPACK directly reduces full matrix to tridiagonal form
e We consider a two-stage approach

— 18t stage reduces full matrix to band form
— 2"d stage reduces band to tridiagonal using successive band reduction

..................
0000000000000000000
0000000000000000
OOOOOOOOOOOOOOOOOOOOOO
00000000000000000000
0000000000000000000000
OOOOOOOOOOOOOOOOOOOO
......................
QQQQQQQQQQQQQQQQQQQQ
00000000000000000000000

......
000000000
OOOOOOOO
OOOOOOOOOOO
OOOOOOOOOO
.............
DDDDDDDDDDD
...........
...........

...........

.................... _ tecececeeee _
000000000000000000000000000000000

...............................
0000000000000000000000000000000000000

...............................
000000000000000000000000000000000000

00000000000000000000000000000
00000000000000000000000000000

lllllllllllllllllllll

000000000000000000000000

seresetyy 0 oL, tteece) &= 7L L
=400

‘ Successive Band Reduction |

In successive band reduction, we reduce the bandwidth of the matrix by zero-
iIng out parallelograms and chasing the trapezoidal-shaped fill or “bulge” (mul-
tiple times) off the band

Bulge-chasing

The picture below shows the annihilation of one parallelogram and its bulges
through the bulge-chasing process

Q,"
; Q
% Q11 .
C Q3T
7 Q2
c d (Q4T
Q3
Q5"
Q,
Qs '3
Anatomy of a bulge-chase
b QR: compute @ to annihilate parallel-
gl ogram and update triangle
QR| PRE
SYM PRE: apply @ from left to columns of
4 rectangle

SYM: apply @ from left and Q% from
right to lower triangle of symmet-

POST .
ric square

N

POST: apply Q! from right to rows of
rectangle

Par Lab Summer Retreat 2011

Grey Ballard and Nicholas Knight
{ballard, knight}@cs.berkeley.edu

‘ Asymptotic Analysis |

Communication-avoiding approaches require asymptotically less data move-
ment then existing algorithms in the sequential two-level memory model

n = matrix dimension b = matrix bandwidth A/ = fast memory size

Full reduction

Direct tridiagonalization suffers from high communication costs, whereas re-
ducing to banded form can be done efficiently with blocked algorithms

Flops | Words Messages
LAPACK 4n3 0@ O(”M)

Full-to-banded | 3n’ O(;—Bﬁ) O(n—g)

CASBR 5n>VM & O(n?) 0(%)

Band reduction

Most band reduction algorithms achieve only O(1) data re-use, whereas
CASBR achieves O(b) re-use when b < /M

Flops | Words Messages
LAPACK | 4n°b O(n°b)| O(n°b)
CASBR | 5020 | O(n2) 0(’%)

‘ Avoiding Communication |

Obtaining data locality

There are two main approaches to avoiding communication (i.e., obtaining
locality) with SBR:

(a) Increase the number of columns (c) in each parallelogram

e permits use of BLAS-3 kernels which attain O(c) data re-use
e reduces number of diagonals (d) eliminated in current sweep

(b) Increase the number of bulges (mult) chased at a time

e decreases number of times band is read from slow memory
e increases size of “working set”

Tuning Parameters

1. Number of sweeps and diagonals per sweep: {d;} (such thatb =) d;)
2. Bulge parameters for it" sweep

(a) number of threads: p;

(b) the number of columns in each parallelogram: ¢; (such that ¢; + d; < b;)
(c) the number of bulges chased at a time: mult;

(d) the number of times each bulge is chased at a time: hops;

3. Implementation of single bulge-chase (choice of subroutines, data structure)

Communication-Avoiding
Successive Band Reduction

‘ Shared-Memory Parallel Implementation |

We have extended our sequential implementation to shared-memory parallel
machines by exploiting pipeline parallelism

‘ Performance Resulis |

We show performance results of CASBR against LAPACK’'s DSBTRD

e CASBR has not been fully tuned; parameters were heuristically chosen
— 2 sweeps (b =48), ¢; = b; — d;, mult; = hops; =1

Gainestown
Intel dual socket quad-core Nehalem X5550 (8MB shared L3, MKL v10.0)

Gainestown, b=500 Gainestown, n=5000

12000 10000

10000 8000

8000

Par(8) 6000 /‘ ar(s)
6000

e—pPar(4) 4000 e—par(4)

4000

Seq Seq
2000 2000
@ \/KL - @M KL
0 0

2000 4000 6000 8000 10000 12000 100 200 300 400 500
b

MFLOPS
MFLOPS

Best parallel speedup over MKL: 17x (n = 12000, b = 500, 8 threads)
Best sequential speedup over MKL: 4.5x (n = 12000, b = 500)
Best parallel efficiency: 3x over sequential (n = 12000, b = 500, 4 threads)

Hopper
AMD quad socket six-core 'MagnyCours’ (6MB shared L3, ACML v4.4)

Hopper, b=500 Hopper, n=5000

9000 6000

8000 5000

7000
. £000 4000 ﬂ
o 5000 D3 (6) 3000 =P ar(6)
£ 4000

3000 Seq 2000 Seq

2000 ACML 1000 ACML
1000

0 0
2000 4000 6000 8000 10000 12000 100 200 300 400 500

b

MFLOPS

Best parallel speedup over ACML: 30x (n = 12000, b = 500, 6 threads)
Best sequential speedup over ACML: 8x (n = 8000, b = 500)
Best parallel efficiency: 3.6 x over sequential (n = 12000, b = 500, 6 threads)

‘ Future Work |

e Use autotuning framework to optimize CASBR across several platforms

e Implement distributed-memory parallel algorithm (MPIl and NUMA-aware)
e Handle eigenvector updates (results shown here are for eigenvalues only)
e Prove a lower bound to show that CASBR is asymptotically optimal

Research supported by Microsoft (Award #024263) and Intel (Award #024894) funding and by matching funding
by U.C. Discovery (Award #DIG07-10227). Additional support comes from Par Lab affiliates National Instru-
ments, NEC, Nokia, NVIDIA, and Samsung.

