
Communication-Avoiding
Successive Band Reduction

Grey Ballard and Nicholas Knight
{ballard,knight}@cs.berkeley.edu

Symmetric Eigenproblem

Standard approaches to computing the eigenvalues and eigenvectors of a
symmetric matrix use orthogonal similarity transformations to reduce the ma-
trix to tridiagonal form

• (Sca)LAPACK directly reduces full matrix to tridiagonal form

•We consider a two-stage approach

– 1st stage reduces full matrix to band form
– 2nd stage reduces band to tridiagonal using successive band reduction

1 2 

CASBR 

Successive Band Reduction

In successive band reduction, we reduce the bandwidth of the matrix by zero-
ing out parallelograms and chasing the trapezoidal-shaped fill or “bulge” (mul-
tiple times) off the band

Bulge-chasing
The picture below shows the annihilation of one parallelogram and its bulges
through the bulge-chasing process

5 

Q1 

4 

3 

2 

1 
6 

Q1
T

 

b+
1 

d+
1 

c

c+
d 

c    d 

Q2 

Q2
T

 

Q3 

Q3
T

 

Q4 

Q4
T

 

Q5 

Q5
T

 

Anatomy of a bulge-chase

QR: compute Q to annihilate parallel-
ogram and update triangle

PRE: apply Q from left to columns of
rectangle

SYM: apply Q from left and QT from
right to lower triangle of symmet-
ric square

POST: apply QT from right to rows of
rectangle

Asymptotic Analysis

Communication-avoiding approaches require asymptotically less data move-
ment then existing algorithms in the sequential two-level memory model

n = matrix dimension b = matrix bandwidth M = fast memory size

Full reduction
Direct tridiagonalization suffers from high communication costs, whereas re-
ducing to banded form can be done efficiently with blocked algorithms

Flops Words Messages

LAPACK 4
3n

3 O(n3) O
(

n3

M

)
Full-to-banded 4

3n
3 O

(
n3
√

M

)
O
(

n3

M 3/2

)
CASBR 5n2

√
M O(n2) O

(
n2

M

)
Band reduction
Most band reduction algorithms achieve only O(1) data re-use, whereas
CASBR achieves O(b) re-use when b ≤

√
M

Flops Words Messages
LAPACK 4n2b O(n2b) O(n2b)

CASBR 5n2b O(n2) O
(

n2

M

)

Avoiding Communication

Obtaining data locality
There are two main approaches to avoiding communication (i.e., obtaining
locality) with SBR:

(a) Increase the number of columns (c) in each parallelogram
• permits use of BLAS-3 kernels which attain O(c) data re-use
• reduces number of diagonals (d) eliminated in current sweep

(b) Increase the number of bulges (mult) chased at a time
• decreases number of times band is read from slow memory
• increases size of “working set”

0 20 40 60 80 100 120 140 160

0

20

40

60

80

100

120

140

160

nz = 1900

0 20 40 60 80 100 120 140 160

0

20

40

60

80

100

120

140

160

nz = 1900

Tuning Parameters

1. Number of sweeps and diagonals per sweep: {di} (such that b =
∑

di)

2. Bulge parameters for ith sweep
(a) number of threads: pi

(b) the number of columns in each parallelogram: ci ( such that ci + di ≤ bi)
(c) the number of bulges chased at a time: multi

(d) the number of times each bulge is chased at a time: hopsi

3. Implementation of single bulge-chase (choice of subroutines, data structure)

Shared-Memory Parallel Implementation

We have extended our sequential implementation to shared-memory parallel
machines by exploiting pipeline parallelism

Performance Results

We show performance results of CASBR against LAPACK’s DSBTRD

•CASBR has not been fully tuned; parameters were heuristically chosen
– 2 sweeps (b2 = 48), ci = bi − di, multi = hopsi = 1

Gainestown
Intel dual socket quad-core Nehalem X5550 (8MB shared L3, MKL v10.0)

0 

2000 

4000 

6000 

8000 

10000 

12000 

2000  4000  6000  8000  10000  12000 

M
FL
O
PS
 

n 

Gainestown, b=500 

Par(8) 

Par(4) 

Seq 

MKL 
0 

2000 

4000 

6000 

8000 

10000 

100  200  300  400  500 

M
FL
O
PS
 

b 

Gainestown, n=5000 

Par(8) 

Par(4) 

Seq 

MKL 

Best parallel speedup over MKL: 17× (n = 12000, b = 500, 8 threads)
Best sequential speedup over MKL: 4.5× (n = 12000, b = 500)
Best parallel efficiency: 3× over sequential (n = 12000, b = 500, 4 threads)

Hopper
AMD quad socket six-core ’MagnyCours’ (6MB shared L3, ACML v4.4)

0 
1000 
2000 
3000 
4000 
5000 
6000 
7000 
8000 
9000 

2000  4000  6000  8000  10000  12000 

M
FL
O
PS
 

n 

Hopper, b=500 

Par(6) 

Seq 

ACML 

0 

1000 

2000 

3000 

4000 

5000 

6000 

100  200  300  400  500 

M
FL
O
PS
 

b 

Hopper, n=5000 

Par(6) 

Seq 

ACML 

Best parallel speedup over ACML: 30× (n = 12000, b = 500, 6 threads)
Best sequential speedup over ACML: 8× (n = 8000, b = 500)
Best parallel efficiency: 3.6× over sequential (n = 12000, b = 500, 6 threads)

Future Work

•Use autotuning framework to optimize CASBR across several platforms
• Implement distributed-memory parallel algorithm (MPI and NUMA-aware)
•Handle eigenvector updates (results shown here are for eigenvalues only)
• Prove a lower bound to show that CASBR is asymptotically optimal

Research supported by Microsoft (Award #024263) and Intel (Award #024894) funding and by matching funding
by U.C. Discovery (Award #DIG07-10227). Additional support comes from Par Lab affiliates National Instru-
ments, NEC, Nokia, NVIDIA, and Samsung.

Par Lab Summer Retreat 2011


