Intel® Threading Building Blocks

Michael Wrinn, Intel

ParLab Boot Camp ¢ August 19, 2009

Family Tree

1988

1995

2001

2006

2009
\4

Pragmas

OpenMP*
fork/join
tasks

Chare Kernel

small tasks
Languages Threaded-C STL

continuation tasks :
generic
Cilk/ task stealing programming
space efficient scheduler
cache- obI|V|ous algorithms

Libraries
OpenMP taskqueue
while & recursion JSR-166 \4
(FJTask) STAPL

containers recursive ranges

ECMA .NET*
parallel iteration classes\

Intel® TBB 1.0

/ V
Microsoft® PPL — Intel® TBB 2.2

*Other names and brands may be claimed as the property of others

Key Features

Intel® Threading Building Blocks (TBB)

L4

It is a template library intended to ease parallel programming for C++
developers
= Relies on generic programming to deliver high performance parallel algorithms with broad applicability

It provides a high-level abstraction for parallelism
= Shifts focus from workers (threads) to the work (you specify tasks patterns instead of threads
= Hides low level details of thread management (maps your logical tasks onto physical threads)
= Library maps your logical tasks onto physical threads, efficiently using cache and balancing load
= Full support for nested parallelism

It facilitates scalable performance
= Strives for efficient use of cache, and balances load
= Portable across Linux*, Mac OS*, Windows*, and Solaris*

= Emphasizes scalable data parallel programming bLoop parallelism tasks are more scalable than a
fixed number of separate tasks

Can be used in concert with other packages such as native threads
and OpenMP

Open source and licensed versions available

Check Intel® TBB online

& Cll 52 v, threadingbuildingblocks.org > O~ .

Intel® Threading Building Blocks 2.2 for Open Source
intel'

)

Welcome Guest | Legin | Register \ /

Intel® Threading lismin a

C++ program. It i Active user forums, FAQs, technical without —
be a thr ry. It earch
blogs and TBB Developers Wiki

e aL ut the great addl ions to T:: in 2.2 in Terry Wilmarth's an d Jamz: Rein d: s' blogs on the Page & Feed options

L &3
blog What's New in Intel® TE8 2.27 Bookmark This
<' blogs about 2.2:
Several very important contributions \L Resources
were made by the OS community e
allowing TBB 2.1 to build and work on:
XBox* 360, Sun Solaris*, AIX*

e Read James Reinder

Digg this «" del.icio.us

POWERED BY

Code Samples

TECHNOLOGY

% TBB is not intended for

= |/O bound processing
= Real-time processing

< General limitations
= Direct use only from C++
= Distributed memory not supported (target is desktop)
= Requires more work than sprinkling in pragmas

/Generic Parallel Alqorithms\

parallel_for, parallel_for_each
parallel_reduce
parallel_scan
parallel_do
pipeline

parallel_sort

\ parallel_invoke /

4)

Task scheduler
task_group
task
task_scheduler_init
_ task_scheduler_observer)

4 Synchronization Primitives
atomic, mutex, recursive_mutex
spin_mutex, spin_rw_mutex
queuing_mutex, queuing_rw_mutex
_ null_mutex, null_rw_mutex Y,
Threads
tbb_thread

Intel® TBB 2.2
Components

4)

Concurrent Containers
concurrent_hash_map
concurrent_queue
concurrent_bounded_queue

~

_ concurrent_vector Y,

Thread Local Storage
combinable
enumerable_thread_specific

4)

Memory Allocation
tbb_allocator
zero_allocator

cache_aligned_allocator

_ scalable_allocator)

Task-based Programming

< Tasks are light-weight entities at user-level

= TBB parallel algorithms map tasks onto threads
automatically

» Task scheduler manages the thread pool

« Scheduler is unfair to favor tasks that have been most recent
in the cache

= Oversubscription and undersubscription of core
resources is prevented by task-stealing technique of
TBB scheduler

Generic Programming

< Best known example is C++ STL

< Enables distribution of broadly-useful high-quality
algorithms and data structures

< Write best possible algorithm with fewest constraints
= Do not force particular data structure on user
= Classic example: STL std::sort

% Instantiate algorithm to specific situation

= C++ template instantiation, partial specialization, and inlining
make resulting code efficient

< Standard Template Library, overall, is not thread-safe

Generic Programming - Example

< The compiler creates the needed versions

T must define a copy constructor
and a destructor

template <typename T> T max (T x, T y) {
if (x < y) return y;
return x

}
T must define operator<

int main() {
int i = max(20,5);
double £ = max (2.5, 5.2);
MyClass m = max (MyClass(“foo”) ,MyClass (“bar”)) ;
return O;

TBB Parallel Algorithms

< Task scheduler powers high level parallel patterns that are pre-packaged, tested,
and tuned for scalability

= parallel_for: load-balanced parallel execution of loop iterations where
iterations are independent

= parallel_reduce: load-balanced parallel execution of independent loop
iterations that perform reduction (e.g. summation of array elements)

= parallel_do: load-balanced parallel execution of independent loop
iterations with unknown or dynamically changing bounds (e.g. applying
function to the element of linked list)

= parallel_scan: template function that computes parallel prefix
= pipeline: data-flow pipeline pattern
= parallel_sort: parallel sort

= parallel_invoke: evaluates up to 10 functions, possibly in parallel and
waits for all of them to finish.

The parallel _for Template

template <typename Range, typename Body>
void parallel_for(const Range& range, const Body &body);

< Requires definition of:

» A range type to iterate over
« Must define a copy constructor and a destructor
» Defines is_empty()
» Defines is_divisible()
» Defines a splitting constructor, R(R &r, split)

= A body type that operates on the range (or a subrange)
* Must define a copy constructor and a destructor
» Defines operator()

Body is Generic

< Requirements for parallel for Body

Body::Body(const Body&)
Body::~Body()

void Body::operator() (Range& subrange) const

Copy constructor

Destructor

Apply the body to
subrange.

< parallel_for partitions original range into subranges, and
deals out subranges to worker threads in a way that:

= Balances load
= Uses cache efficiently
= Scales

Range is Generic

< Requirements for parallel _for Range

R::R (const R&) Copy constructor

R::~R() Destructor

bool R::is_empty() const True if range is empty

bool R::is_divisible() const True if range can be partitioned

R::R (R& r, split) Splitting constructor; splits r into
two subranges

< Library provides predefined ranges
* blocked range and blocked range2d

< You can define your own ranges

How splitting works on bilocked range2d

tasks available to be
scheduled to other threads
47 (thieves)

Quicksort — Step 1

32 44 9 26 31 57 3 19 55 29 27 1

5 42 62 25 51 49 15 54 6 18 48 10 2 60 41 14 47 24 36 37 52 22 34 35 11 28 8 13 43 53 23 61 38 56 16 59 17 50 7 21 45 4 39 33 40 58 12 30 0 46 63

Quicksort — Step 2

32 44 9 26 31 57 3 19 55 29 27 1 20 5 42 62 25 51 49 15 54 6 18 48 10 2 60 41 14 47 24 36 37 52 22 34 35 11 28 8 13 43 53 23 61 38 56 16 59 17 50 7 21 45 4 39 33 40 58 12 30 0 46 63

Quicksort — Step 2

THREAD 2

13 43 53 23 61 38 56 16 59 17 50 7 21 45 4 39 33 40 58 12 30

v

52 47 41 43 53 60 61 38 56 48 59 54 50
49 51 45 62 39 42 40 58 55 57 44 46 63

0 46 63

32 44 9 26 31 57 3 19 55 29 27 1 20 5 42 62 25 51 49 15 54 6 18 48 10 2 60 41 14 47 24 36 37 52 22 34 35 11 28 8

v v
]

Thread 2 gets work by
stealing from Thread 1

Quicksort — Step 3

THREAD 2

18 48 10 2 60 41 14 47 24 36 37 52 22 34 35 11 28 8 13 43 53 23 61 38 56 16 59 17 50 7 21 45 4 39 33 40 58 12 30 0 46 63

52 47 41 43 53 60 61 38 56 48 59 54 50
49 51 45 62 39 42 40 58 55 57 44 46 63

\ v v

32 44 9 26 31 57 3 19 55 29 27 1 20 5 42 62 25 51 49 15 54 6

45 47 41 43 50 52 51 54 62
46 44 40 38 49 59 56 61 58 55
42 48 39 57 60 53 63

Thread 2 partitions/splits its
data

Quicksort — Step 3
THREAD 2

11 28 8 13 43 53 23 61 38 56 16 59 17 50 7

THREAD 4

21 45 4 39 33 40 58 12 30 0 46 63

32 44 9 26 31 57 3 19 55 29 27 1 20

5 42 62 25 51 49 15 54 6 18 48 10 2 60 41 14 47 24 36 37 52 22 34 35

11 0 9 26 31 30 3 19 12 29 27 1 20 5 33 4 25 21 7 37 52 47 41 43 53 60 61 38 56 48 59 54 50
15 17 6 18 16 10 2 23 13 14 8 24 36 32 28 22 34 35 49 51 45 62 39 42 40 58 55 57 44 46 63
|
12 29 27 19 20 30 33 31 25 21 11 15 45 47 41 43 50 52 51 54 62
46 44 40 38 49 59 56 61 58 55

17 26 18 16 10 9 23 13 14 8 24 36
32 28 22 34 35

Thread 3 gets work by Thread 4 gets work by
stealing from Thread 1 stealing from Thread 2

42 48 39 57 60 53 63

Quicksort — Step 4

THREAD 4

21 45 4 39 33 40 58 12 30 0 46 63

THREAD 3 THREAD 2

11 28 8 13 43 53 23 61 38 56 16 59 17 50 7

32 44 9 26 31 57 3 19 55 29 27 1 20

5 42 62 25 51 49 15 54 6 18 48 10 2 60 41 14 47 24 36 37 52 22 34 35

v v

52 47 41 43 53 60 61 38 56 48 59 54 50

37 49 51 45 62 39 42 40 58 55 57 44 46 63
|
12 29 27 19 20 30 33 31 25 21 11 15 45 47 41 43 50 52 51 54 62
17 26 18 16 10 9 23 13 14 8 24 36 46 44 40 38 49 59 56 61 58 55
32 28 22 34 35 42 48 39 57 60 53 63

11 8 14 13 21 25 26 31 33 30
9 10 16 12 20 23 19 27 29 24
17 15 36 32 28 22 34 35

Thread 2 sorts the rest Thread 4 sorts the rest
data of its data

Thread 3 partitions/splits
its data its

58 59 60 61 62 63

52 53 54 55 56 57

42 43 44 45 46 47 48 49 50 51

37 38 39 40 41

01234567

icksort — Step 5

 THREAD 1 THREAD 3 THREAD 2 THREAD 4

32 44 9 26 31 57 3 19 55 29 27 1 20 5 42 62 25 51 49 15 54 6 18 48 10 2 60 41 14 47 24 36 37 52 22 34 35 11 28 8 13 43 53 23 61 38 56 16 59 17 50 7 21 45 4 39 33 40 58 12 30 0 46 63

\ v v

37 52 47 41 43 53 60 61 38 56 48 59 54 50
49 51 45 62 39 42 40 58 55 57 44 46 63

12 29 27 19 20 30 33 31 25 21 11 15 45 47 41 43 50 52 51 54 62
17 26 18 16 10 9 23 13 14 8 24 36 46 44 40 38 49 59 56 61 58 55
32 28 22 34 35 42 48 39 57 60 53 63

11 8 14 13
9 10 16 12
17 15

Thread 3 sorts the
rest of its data

012345678910 11 12 13 14 15 16 17 18 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

cksort — Step 6

THREAD 3 THREAD 2 THREAD 4

32 44 9 26 31 57 3 19 55 29 27 1 20 5 42 62 25 51 49 15 54 6 18 48 10 2 60 41 14 47 24 36 37 52 22 34 35 11 28 8 13 43 53 23 61 38 56 16 59 17 50 7 21 45 4 39 33 40 58 12 30 0 46 63

v v

52 47 41 43 53 60 61 38 56 48 59 54 50
49 51 45 62 39 42 40 58 55 57 44 46 63

|
12 29 27 19 20 30 33 31 25 21 11 15 45 47 41 43 50 52 51 54 62
17 26 18 16 10 9 23 13 14 8 24 36 46 44 40 38 49 59 56 61 58 55
32 28 22 34 35 42 48 39 57 60 53 63

11 8 14 13
9 10 16 12
17 15

012345678910 11 12 13 14 15 16 17 18 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

icksort — Step 6

THREAD 3 THREAD 2 THREAD 4

32 44 9 26 31 57 3 19 55 29 27 1 20 5 42 62 25 51 49 15 54 6 18 48 10 2 60 41 14 47 24 36 37 52 22 34 35 11 28 8 13 43 53 23 61 38 56 16 59 17 50 7 21 45 4 39 33 40 58 12 30 0 46 63

\ v v

52 47 41 43 53 60 61 38 56 48 59 54 50

37 49 51 45 62 39 42 40 58 55 57 44 46 63
|
12 29 27 19 20 30 33 31 25 21 11 15 45 47 41 43 50 52 51 54 62

17 26 18 16 10 9 23 13 14 8 24 36 46 44 40 38 49 59 56 61 58 55
32 28 22 34 35 42 48 39 57 60 53 63

v

11 8 14 13
9 10 16 12
17 15

v

30 29 33
36 32 28
31 34 35

Thread 2 gets more work by
stealing from Thread 1

012345678910 11 12 13 14 15 16 17 18 37

61

52 53 54 62 63

58 59 60

55 56 57

46 47 48 49 50 51

42 43 44 45

38 39 40 41

Quicksort — Step 7

THREAD 4

32 44 9 26 31 57 3 19 55 29 27 1 20 5 42 62 25 51 49 15 54 6 38 56 16 59 17 50 7 21 45 4 39 33 40 58 12 30 0 46 63

\ v v

37 52 47 41 43 53 60 61 38 56 48 59 54 50
49 51 45 62 39 42 40 58 55 57 44 46 63
|

THREAD 3 THREAD 2

18 48 10 2 60 41 14 47 24 36 37 52 22 34 35 11 28 8 13 43 53 23 61

12 29 27 19 20 30 33 31 25 21 11 15 45 47 41 43 50 52 51 54 62
17 26 18 16 10 9 23 13 14 8 24 36 46 44 40 38 49 59 56 61 58 55
32 28 22 34 35 42 48 39 57 60 53 63

11 8 14 13
9 10 16 12
17 15

v

30 29 33
36 32 28
31 34 35

Thread 2 sorts the rest
of its data

62 63

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

012345678910 11 12

An Example using parallel for (1 of 3)

R/

< Independent iterations and fixed/known bounds

const int N = 100000;

void change array(float array, int M) {
for (int i = 0; i < M; i++){
array[i] *= 2;
}
}

int main () {
float A[N];
initialize array(A);
change array (A, N);
return O;

An Example using parallel for (2 of 3)

< Include and initialize the library

$§nnchade \iPb/task_ scheduler init.h7 Include Library Headers
#inciibdet“apNiblocked range.h” |

#incindeiiibbéparady¢d) for.h”
change array (A, N);

usingenamagpace tbb;

—!Lnd'rmain O-{

task scheduler init init;

float A[N];

Use namespace

blue = original code
green = provided by TBB
red = boilerplate for library

Initialize scheduler

An Example using parallel for (3 of 3)

blue = original code

<+ Use the parallel for algorithm i = e oy e
red = boilerplate for library

3%?.‘ han e%ggg;?g? L _*array, int M
publlc gln% rayy 0; i <M

oid operator() (const blocked range <int>& r) const{
i++) {

} for (int i = r.begin(); i '= r.end();
array[i] *= 2;

ihange£r¥£yéo %float *a): array(a) {}

Use auto_partitioner()

int M) {

ChangeAr;ayBody (array) , auto partitioner())

An Example using parallel _for (3b of 3)

blue = original code
green = provided by TBB
red = boilerplate for library

<+ Use the parallel for algorithm

class ChangeArrayBody {
float *array;
public:
ChangeArrayBody (float *a): array(a) {}
void operator() (const blocked range <int>& r) const{
for (int i = r.begin(); i !'= r.end(); i++){
array[i] *= 2;

}
};

void parallel change array(float *array, int M) {
parallel for (blocked range <int>(0, M),
ChangeArrayBody (array) ,
auto partitioner());

An Example using parallel for
with C++0x lambda functions

blue = original code
green = provided by TBB
red = boilerplate for library

void parallel change array(float *array, int M) {
parallel for (blocked range <int>(0, M),

[=] (const blocked range <int>& r) const{

for (int i = r.begin(); i !'= r.end(); i++) ({
array[i] *= 2;
} Use lambda function to implement
} MyBody::operator() inside
auto partitioner()); the call to parallel_for().
}

void change array(float *array, int M) {
for (int 1 = 0; i < M; i++){
array[i] *= 2;

}

} Closer resemblance to sequential code

The parallel_reduce Template

template <typename Range, typename Body>
void parallel_reduce (const Range& range, Body &body);

< Requirements for parallel _reduce Body

Body::Body(const Body&, split) Splitting constructor

Body::~Body() Destructor

void Body::operator() (Range& subrange) const Accumulate results from
subrange

void Body::join(Body& rhs); Merge result of rhs into
the result of this.

Numerical Integration Example

static long num steps=100000;
double step, pi;

void main (int argc, char¥*
argv[])

{

int 1i;
double x, sum = 0.0;

step = 1.0/ (double) num steps;
for (i=0; i< num steps; i++) {
= (1+0.5) *step;
sum += 4.0/(1.0 + x*x);
}
pi = step * sum;
printf (“Pi = $f\n”,pi);

parallel reduce Example

blue = original code
#include "tbb/parallel reduce.h" green = provided by TBB
#include "tbb/task_scheduler init.h" red = boilerplate for library
#include "tbb/blocked range.h"

using namespace tbb;

int main(int argc, char* argv|[])

{
double pi;
double width = 1./ (double)num steps;
MyPi step((double *const) &width) ;
task scheduler init init;

parallel reduce (blocked range<size t>(0,num steps), step,
auto_partitioner())

pi = step.sum*width;

printf ("The value of PI is %15.12f\n",pi);
return O;

parallel reduce Example

blue = original code

class MyPi { green = provided by TBB
double *const my step; red = boilerplate for library
public:

double sum;
void operator() (const blocked range<size t>& r) {
double step = *my step;
double x;
for (size t i=r.begin(); i'=r.end(); ++i)
{

x = (i + .5)*step; accumulate results
sum += 4.0/ (1.+ x*x);

}

MyPi(MyPi& x, split) : my step(x.my step), sum(0) {}

void join(const MyPi& y) {sum += y.sum;} join
MyPi (double *const step) : my step(step), sum(0) {}

};

Scalable Memory Allocators

< Serial memory allocation can easily become a bottleneck
In multithreaded applications
» Threads require mutual exclusion into shared heap

< False sharing - threads accessing the same cache line
= Even accessing distinct locations, cache line can ping-pong

< Intel® Threading Building Blocks offers two choices for
scalable memory allocation
= Similar to the STL template class std: :allocator
" scalable allocator

» Offers scalability, but not protection from false sharing
* Memory is returned to each thread from a separate pool

" cache aligned allocator
» Offers both scalability and false sharing protection

Concurrent Containers

« TBB Library provides highly concurrent containers

= STL containers are not concurrency-friendly: attempt to modify
them concurrently can corrupt container

= Standard practice is to wrap a lock around STL containers
* Turns container into serial bottleneck

% Library provides fine-grained locking or lockless
implementations
= Worse single-thread performance, but better scalability.
= Can be used with the library, OpenMP, or native threads.

Synchronization Primitives

< Parallel tasks must sometimes touch shared data

= When data updates might overlap, use mutual exclusion to avoid
race

< High-level generic abstraction for HW atomic operations
= Atomically protect update of single variable

< Critical regions of code are protected by scoped locks
* The range of the lock is determined by its lifetime (scope)

» |Leaving lock scope calls the destructor, making it exception safe
= Minimizing lock lifetime avoids possible contention
= Several mutex behaviors are available

Atomic Execution

< atomic<T>
» T should be integral type or pointer type
» Full type-safe support for 8, 16, 32, and 64-bit integers

Operations
‘=x"and'x =’ read/write value of x
x.fetch_and_store (y) Z=X,X=Y, return z
x.fetch_and_add (y) Z=X,X+=Yy, return z
x.compare_and_swap (Y,p) z = X, if (x==p) x=y; return z

atomic <int> 1i;

int z = i.fetch _and add(2);

Mutex Concepts

+Mutexes are C++ objects based on scoped locking

pattern

<+ Combined with locks, provide mutual exclusion

M()

Construct unlocked mutex

~M()

Destroy unlocked mutex

typename M::scoped_lock

Corresponding scoped_lock type

M::scoped_lock ()

Construct lock w/out acquiring a mutex

::scoped_lock (M&)

Construct lock and acquire lock on mutex

::~scoped_lock ()

Release lock if acquired

::scoped_lock::acquire (M&)

Acquire lock on mutex

22X

::scoped_lock::release ()

Release lock

Mutex Flavors

» Spin_mutex
= Non-reentrant, unfair, spins in the user space

= VERY FAST in lightly contended situations; use if you need to
protect very few instructions

* queuing_mutex
= Non-reentrant, fair, spins in the user space
» Use Queuing_Mutex when scalability and fairness are important
* queuing_rw_mutex
= Non-reentrant, fair, spins in the user space
* spin_rw_mutex
= Non-reentrant, fair, spins in the user space

» Use ReaderWriterMutex to allow non-blocking read for multiple
threads

spin mutex Example

blue = original code

#include "tbb/spin mutex.h" green = provided by TBB
Node* Freelist; red = boilerplate for library

typedef spin mutex FreeListMutexType;
FreelistMutexType FreelistMutex;

Node* AllocateNode () {
Node* n;

{
FreelistMutexType: :scoped lock mylock (FreeListMutex) ;

n = Freelist;

if (n) Freelist = n->next;
}
if ('n) n = new Node();
return n;

void FreeNode(Node* n) {
FreelistMutexType: :scoped lock mylock (FreeListMutex) ;
n->next = Freelist; B
FreelList = n;

One last question...

How do | know how many threads are available?

% Do not ask!

= Not even the scheduler knows how many threads really are
available

* There may be other processes running on the machine
= Routine may be nested inside other parallel routines

< Focus on dividing your program into tasks of sufficient
size
» Task should be big enough to amortize scheduler overhead

» Choose decompositions with good depth-first cache locality and
potential breadth-first parallelism

< Let the scheduler do the mapping

Lithe: Enabling Efficient Composition
of Parallel Libraries

Heidi Pan, Benjamin Hindman, Krste Asanovi¢

xoxo@mit.edu ¢ {benh, krste}@eecs.berkeley.edu
Massachusetts Institute of Technology ¢ UC Berkeley

ParLab Boot Camp ¢ August 19, 2009

42

Real-World Parallel Composition Example

Sparse QR Factorization
(Tim Davis, Univ of Florida)

Column
Elimination
Tree

Hardware C%

System Stack Software Architecture

Out-of-the-Box Performance

Performance of SPQR on 16-core Machine

Out-of-the-Box

3.5- 25 85 1200 -
311 20111 8041 1000
— %
Q' 2.5 i i 800
L — 1 751
2_/
o 600
E sl i i
= 1 107 70(-
1 4001
0.5_/— 5'/_ 65/_ 200 12
0 ' 0 - 60 ; 0
landmark deltaX ESOC

Input Matrix

Rucci

Out-of-the-Box Libraries Oversubscribe the
Resources

EEEEEEE

virtualized kernel threads

Hardware

MKL Quick Fix

Using Intel MKL with Threaded Applications

http://www.intel.com/support/performancetools/libraries/mkl/sb/CS-017177.htm

Software Products

Intel® Math Kernel Library (Intel® MKL)
Using Intek® MKL with Threaded Applications

Page Contents:

allocated and not released

library with Intel MKL. In this case, the safe approach is to set
OMP_NUM_THREADS=1.

Multiple programs are running on a multiple-CPU system. In cluster
applications, the parallel program can run separate instances of the
program on each processor. However, the threading software will see
multiple processors on the system even though each processor has a
separate process running on it. In this case OMP_NUM_THREADS should be
setto 1.

® If the variable OMP_NUM_THREADS environment variable is not set, then
the default number of threads will be assumed 1.

Setting the Number of Threads for OpenMP* (OMP)

printf(*rowita\tc\n");
for (=0:i<10:i+
Yod:\t%f

%An", i, a[i*SIZE], cfi*SIZE]):

omp_set_num_threads(1)

for(i=0; i<SIZE: i+
J<SIZE: =)
double)(i+j)
double)(i"j):
c[i*SIZE+]]= (double)0

the Nun;
se Intel M,

Memory Allocation MKI M
some Intel® MKL routjpes
One of the advantagesff us|

occurs once ime
allocation persists uifl the 3|

will allocate a stacl ual to

===p=A that threading in Intel MKL be turned off.

Using Thread'l‘ with BLA]
Intel MKL is threaded in a
Level 3 BLA: FTs, and

We list them here with recon
the problem fhdsts is approp|

* If more than one thread calls Intel MKL and the
====f function being called is threaded, it is important

s Set OMP NUM THREADS=1 in the environment.

If the use;l\reads the prolarr\ using OpenMP directives and uses the Int=l® Compilers to
compile th program, Intel MKL and the user program will both use the same threading library
Intel MKLytrie: stegffine it is in a parallel region in the program, and # it is, it does not
spread ijf operations over muitiple threads. But Intel MKL can be aware that it is in a parallel
region only if the thyffaded program and Intel MKL are using the same threading library. If the
user prffgram is thr€aded by some other means, Intel MKL may operate in muttithreaded
mode 8nd the cophputations may be corrupted. Here are several cases and our
recommendatioffs:

¥ serblreads the p ogram using OS threads (pthreads on Linux*, Win32*
theads on Windows*). If more than one thread calls Intel MKL and the
fffiction being called is threaded, it is important that threading in Intel MKL
be turned off. Set OMP_NUM_THREADS=1 in the environment.

® User threads the program using OpenMP directives and/or pragmas and
compiles the program using a compiler other than a compiler from Intel.
This is more problematic because setting OMP_NUM_THREADS in the
environment affects both the compiler’s threading library and the threading

void main(int args. char *argvll{

double *a, "b, "c:
a = new double [SIZE'SI
b = new double [SIZE™
© = new double [SIZE"

double alpha=1, beta=1
IZE. n=SIZE,
char transa="ri, transb:

IZE, Ida=SIZE, Idb=SIZE, kc=SIZE. i=0, j=0;

for(i=0: i<SIZE: i++){

chlas_dgemm({CblasRowMsajor. CblasNoTrans, CblasNoTrans
m, n, k, alpha, a, Ida, b, kib, beta, c. Idc):

) a[*SIZE],
c[i"SIZE]):

}

Can | use Intel MKL if | thread my application?

The Intel Math Kernel Library is designed and compied for thread safety so it can be called
from programs that are threaded. Calling Intel MKL routines that are threaded from muitiple
application threads can lead to confict (including incorrect answers or program failures), if the
calling library differs from the Intel MKL threading library.

Sequential MKL in SPQR

OpenMP
0S

Hardware

Sequential MKL Performance

Time (sec)

Performance of SPQR on 16-core Machine

Out-of-the-Box

o
o o

= N w
- N W o

landmark

25;

20;

151

10

- Sequential MKL

deltaX

85;

801

75

70;

65;

60-

ESOC

Input Matrix

1200

1000

800

600

400

2001

Rucci

SPQR Wants to Use Parallel MKL

No task-level parallelism!

Want to exploit
matrix-level parallelism.

Share Resources Cooperatively

Core Core Core Core
0 1 2 3

Hardware

Tim Davis manually tunes libraries to effectively partition the resources.

Manually Tuned Performance

Time (sec)

Performance of SPQR on 16-core Machine

ot
o o

= N w
- N W o

landmark

Out-of-the-Box

25;

20;

151

10

- Sequential MKL

deltaX

85;

801

75

70;

65;

60-

ESOC

Input Matrix

1200

1000

800

600

400

2001

0.

. Manually Tuned

Rucci

Manual Tuning Destroys

Black Box Abstractions

. . AN
Tim Davis :0/ OMP_NUM THREADS = 4

Manual Tuning Destroys

Code Reuse and Modular Updates

SPQR

Virtualized Threads are Bad

B App 1 (TBB) [] App 1 (OpenMP) [App 2

EEE

OS

Core 0 Core1 Core2 Core 3 Core4 Core5 Core6 Core?7

Different codes compete unproductively for resources.

Harts: Hardware Thread Contexts

Harts

<+ Represent real hw resources.
<+ Requested, not created.
<+ OS doesn’t manage harts for app.

Core 0 Core1 Core2 Core 3 Core4 Core5 Core6 Core?7

Sharing Harts

Hart O Hart 1 Hart 2 Hart 3

time

Hardware
Partition

Hierarchical Cooperative Scheduling

Column Elimination Tree

LAPACK
Hierarchical,
Cooperative MKL

TBB Sched OpenMP Sched

Direct Control
OS (Harts) of Resources

Hardware

Standard Lithe ABI

TBB| . Scheduler Caller
register | unregister call \return
interface for sharing harts interface for exchanging values
call return
OpenMP, ;. Scheduler Callee

< Analogous to function call ABI for enabling interoperable codes.

<+ Mechanism for sharing harts, not policy.

SPQR with Lithe

call
req
nter
nter
X nter
1el
< rerd jelq 2yield
<: « \\zi ret
S0 &
/\ / A

time

SPQR with Lithe

call call call call
req req req req
ret ret ret ret

Performance of SPQR with Lithe

.
d

Time (sec)

o = N w
O U A TN WO A

- Out-of-the-Box

landmark

30;

25

20

151

104

deltaX

- Manually Tuned

120,
100-
80-
60-
40
20-
0-

ESOC

Input Matrix

600
500
400
300:
200
100

Lithe

Rucci

Questions?

SPQR
7 P mMKE
TBBLithe N

\ N\

Hardware

Lithe: Enabling Efficient Composition of Parallel Libraries

Acknowledgements

We would like to thank George Necula and the rest of Berkeley
Par Lab for their feedback on this work.

Research supported by Microsoft (Award #024263) and Intel
(Award #024894) funding and by matching funding by U.C.
Discovery (Award #DIG07-10227). This work has also been

in part supported by a National Science Foundation Graduate
Research Fellowship. Any opinions, findings, conclusions, or
recommendations expressed in this publication are those of the
authors and do not necessarily reflect the views of the National
Science Foundation. The authors also acknowledge the support
of the Gigascale Systems Research Focus Center, one of five
research centers funded under the Focus Center Research
Program, a Semiconductor Research Corporation program.

Microsoft: (inteD GSRC

