
 

 

 

Parallel Training of a  

Multi‐Layer Perceptron  

on a GPU 

 

Chris Oei, Gerald Friedland, and Adam Janin
 

 

TR‐09‐008 

October 2009 

 

Abstract 

 

This report presents a parallelized implementation of a back propagation training 

algorithm running on the NVIDIA graphics card GPU and compares it with several CPU 

implementations, including highly optimized software packages that do their work on 

the CPU.  



Parallel Training of a Multi-Layer Perceptron on
a GPU

Chris Oei, Gerald Friedland, Adam Janin

October 7, 2009

Abstract

This report presents a parallelized implementation of a back propa-
gation training algorithm running on the NVIDIA graphics card GPU
and compares it with several CPU implementations, including highly op-
timized software packages that do their work on the CPU.

1 Introduction

Speed has always been the Achilles heel of artificial neural networks. For many
problems, MLPs are too slow to provide viable solutions. However, these al-
gorithms are highly parallelizable, and modern-day graphics processing units
(GPUs) can offer tremendous speed gains at relatively low cost. We compare
the speeds of a GPU implementation of a back propagation learning algorithm
against highly optimized CPU implementations.

In the sections that follow, we (2) review related work by other researchers,
(3) outline our approach and hardware setup, (4) normalizing the file formats
across neural network tools, (5) discuss floating point representation problems,
and (5) provide results of timing tests.

2 Related Work

QuickNet, developed at ICSI [1], is a highly optimized multi-threaded imple-
mentation of a MLP designed specifically for speech-related learning tasks. As
such, both the program and its data files have features that are important for
speech processing, but are not typically used in the typical benchmarks and
sample problems for MLPs. It takes some processing to convert the file format
used in PROBEN1 into the QuickNet pfile format.

Aside from QuickNet and the CUDA back propagation software, the fastest
implementation known to the authors is the Fast Artificial Neural Network
Library (FANN) by Steffen Nissen [4]. Most research on back propagation op-
timization occurred around that time; this was before GPUs became popular
enough and advanced enough to make high-performance computing easy to do.

1



At that same time, Moore’s law still held true; CPUs were getting faster expo-
nentially, and there was less of a need to go through the trouble to parallelize.
Today, however, CPUs have stopped getting faster, and performance increases
can only be achieved by parallelization.

FANN relies on optimized inner loops and cache optimization and (in their
fixed point implementation) and a lookup function for doing sigmoids.

We used the FANN version 2.0.0 Debian / Ubuntu binary packages [4] to
test against our benchmarks.

We also benchmarked a popular toolkit for machine learning, The Waikato
Environment for Knowledge Analysis (WEKA) [2, 3] which was written in Java.
Although this toolkit is not optimized, we thought it was worthwhile comparing;
since it is popular and easy to use, it may be a good choice for problems smaller
than a certain size. For the very largest problems we tested, however, WEKA
was two orders of magnitude slower than the CUDA implementation.

3 Our Approach

Our approach relies on two key items. The first is the highly parallelized matrix
operations (BLAS) provided by NVIDIA’s CUDA (CUBLAS). We use primarily
the sgemm (level 3) functions, which multiply a 2 dimensional matrix by a 2
dimensional matrix.

The second is a fast exponential algorithm used in the sigmoid nonlinearities
and softmax functions. Although for very large networks, these O(N) tasks are
dominated by the O(N2) matrix multiplies, for most practical pursposes these
exponentials take a significant fraction of the total time.

Whereas FANN under the fastest settings uses a piecewise linear activation
function, and QuickNet uses an approximation that relies on the IEEE float
format [6], we use the CUDA exponentiation. If we have enough GPU cores,
this step is an O(1) computation instead of O(N).

methodology

Table 1: Comparing Neural Net Packages
Neural Network Matrix Multiplies Exponentiation

FANN internal library internal library
QuickNet ATLAS BLAS Schraudolph
mlp cuda CUBLAS CUDA provided

3.1 Our Hardware and Setup

• NVIDIA GTX 280 graphics card.

• Lenovo D10

2



– 2 GB RAM
– Dual Quad core Xeon 2GHz

• Ubuntu 8.04 32-bit

Note that we are using a 32-bit operating system on our 64-bit machine.
At the time we were doing the experiment, we had stability problems with the
64-bit version of CUDA, and so we downgraded our operating system and the
CUDA software to the 32-bit versions.

3.2 Power Supply

One of the trickier parts of using high-end graphics cards is that they draw a lot
of power and may overwhelm the computer’s power supply. In order to be most
cost effective, entry-level desktops are often configured with a power supply that
is sufficient for powering the pre-installed components and little else.

And even if the power supply is capable of handling the load, the graphics
card may have multiple power cables to spread the load; each power cable and
power rail must be able to hold up its share of the load. Also, the graphics
card may have power connectors that are incompatible with the motherboard’s
power connectors, and adapters must be used; furthermore, some adapters will
take two power sockets on the motherboard and convert them to a single power
connector on the graphics card.

Given these complexities, we were initially uncertain that all of our compo-
nents – from the power supply to the rails to the connectors – could handle the
load from the graphics card. Our bios had a temperature monitoring system,
and we checked that temperature under various GPU loads to make certain we
did not overheat. We did not do lengthy unsupervised computations until we
were certain.

3.3 Benchmark

We chose the PROBEN1 benchmark [5] as our primary benchmark because it
has been used by a number of other machine learning software packages, and
because the author has a wide range of “real-world” problems as test cases.

The PROBEN1 benchmark, however, is too small for the economies of scale
of CUBLAS and QuickNet to show their power. Much of the optimization for
mlp-cuda and QuickNet are for the O(N2) component, which is not entirely
dominant when N is around 10 or so. The O(N) components include exponen-
tiation.

In order to explore larger net and data sizes, we used the Tandem 29 corpus,
which mapped to a network of 378 input neurons and 71 output neurons. We
chose to have a single hidden layer consisting of 2048 neurons, and a bunch size
of 8192.

3



4 Format Normalization

Converting the PROBEN1 data file format into the formats that FANN and
WEKA use was straightforward. The FANN format is described in [4] and the
WEKA format is described in [3, 2].

The pfile format has two columns that are not typically used by other neural
network software: sentence number and frame number. In order to convert the
PROBEN1 data to the pfile format, we assume that the data is a single sentence
composed of many, many frames. The opposite choice (assuming many, many
sentences with a single frame each) does not produce the same behavior, since
QuickNet shuffles frames within a sentence, but does not shuffle sentences.

In the PROBEN1 test set, there are two different types of problems. Quick-
Net handles each rather differently. These types are:

1. classification Each input frame maps to exactly one category, and there
are a finite number of categories. For example: detecting a person’s gender
from the sound of their voice, determining whether a mushroom is edible
or not, and the classical 2-bit XOR problem. For these problems, we use
QuickNet’s ”hard target” training.

2. estimation each input frame maps to a vector of real numbers. For exam-
ple, converting Fahrenheit to Celsius, or calculating the fuel efficiency of
a car. For these problems, we use QuickNet’s ”soft target” training.

Mathematically speaking, the difference between the two types are blurred,
since we can create an approximate representation of a real number using a
large but finite number of categories; and of course that is what a computer
does. However, estimation problems typically have some sort of smoothness
in the mapping, such that the accuracy can be represented by the L2 norm.
Categorization problems typically do not have such a topology – all items in the
set are equidistant.

For classification problems, we feed the input data as a feature file and the
target data as a label file.

For estimation problems, we feed the input data as a feature file, and the
target data as a separate feature file. Label files can only contain discrete
targets, and are therefore unsuitable for estimation problems.

Now that we have described the setup of our experiment, we discuss some
of the difficulties

5 Floating Point Representation

Back propagation is, for the most part, a numerically robust algorithm. A small
amount of noise caused by roundoff errors do not typically affect the result very
much; for this reason, we are able to use single-precision floats instead of double
precision. There are three major exceptions, all of which involve overflows or
underflows of some sort.

4



5.1 NaN

As we increase the bunch size, the system appears to become more numerically
unstable. Sometimes, this reduces the final score that the network gets, and
sometimes this causes the results to be partially or even entirely invalid.

Part of the problem is that floating point overflows cause NaNs to ap-
pear in the calculations. And since a NaN multiplied, divided, added, or sub-
tracted from another NaN results in another NaN, these errors eventually spread
throughout all the weights and biases of the network, rendering the results un-
usable.

Lowering the learning rate helps avoid these NaNs, but of course this can
increase the number of epochs it takes to learn the pattern.

We believe that the root cause of the NaNs are the exponential functions
we use in calculating the sigmoid and softmax nonlinearities. We could solve
the problem by capping the maximum value of the exponential function that
we use, and this is what we tried at first. However, this approach come with
a price: it makes ex = ey for all x and y greater than the cutoff; this distorts
the parameter space for learning and it also causes problems in the scoring of
softmax problems.

Detecting these NaNs is another issue. If we attempt to detect them at all
times in all calculations, we will take a performance hit. If we ignore them
entirely, we can end up with spurrious results.

5.2 Subnormals

Another issue can cause the neural network to slow dramatically, even though
it gets the correct results. Floating point numbers too small to be represented
are flagged by the CPU as subnormals. They are for practical purposes equal to
zero and behave mathematically as such, yet they take far longer than ordinary
floats to perform computations on.

We can deal with this problem in several different ways. We could once
again choose a cutoff value and set all scalar values smaller than that cutoff
to zero. Or we could also set a compiler flag which turns off the processing of
subnormals in the CPU.

5.3 Saturation

In the reverse propagation, the deltas (errors) are multiplied by a nonlinearity
as they pass through the hidden layer. If y is the value of the sigmoid, the factor
is:

y(1− y)

But if the argument of the sigmoid is too large y will be either 0 or 1,
the factor will be 0, and therefore no more ”learning” will take place for that
particular hidden unit. This means that once a hidden unit saturates, it will no
longer learn properly.

5



5.4 Re-implementation of softmax

For the reasons mentioned in the previous sections, we came up with a slightly
different method of calculating softmax.

To get some intuition on how NaNs arise, here are some example calculations.
For x sufficiently large:

expf(x) = inf

expf(x) + expf(x) = inf

expf(x)− expf(x) = NaN

expf(x)/expf(x) = NaN

1/expf(x) = 0

Softmax is typically calculated using:

sn =
exp(xn)∑
i exp(xi)

If exp(xi) = inf for any i, then some of these values will be NaN. We propose
to fix this problem using the following.

Let xmax be the largest value of x in the set. If we divide each of the terms
in both the numerator and the denominator in the equation above, we get:

sn =
exp(xn − xmax)∑

exp(xi − xmax)

Although this approach is susceptible to a slow-down due to subnormals, it
is well-behaved in that it does not generate NaNs and the system assigns sn ≈ 1
and the rest to zero if xn is much larger than all the other x values.

6 Results

We measured the speed of our network in millions of connection updates per
second (MCUPS). The results are in Table 1. Note that the performance gains
seen in the CUDA implementation are only visible in the largest problems. For
small problems, CUDA’s overhead (such as initializing the kernel and copying
memory back and forth between CPU memory and GPU memory) wipe out the
performance gains of the fast matrix multiply and exponentiation.

The code that we used, as well as our test data, can be downloaded from
http://www.icsi.berkeley.edu/chrisoei.

From these results, we see that QuickNetoutperforms FANNby signifcant
amounts only on the Tandem 29, mushroom, and gene problems above; these
are the three largest test sets.

6



Timing Tests

Table 2: MCUPS
Test suite test name WEKA FANN QuickNet QuickNet(8 threads) mlp-cuda

PROBEN1 building 18 64 82 85
cancer 16 33 39 31 2
card 26 153 223 204 41
diabetes 11 31 38 29 2
flare 23 98 130 112
gene 28 214 497 769 198
glass 8 36 41 39 3
heart 29 122 178 164 21
horse 28 159 193 174 46
mushroom 28 212 544 893 201
soybean 28 129 307 289 136
thyroid 26 70 135 146 9

Tandem 29 226 1355 5251 11000

7 Conclusion and Future Work

The problems we faced with NaNs, infs, subnormals, and saturation are not
specifically CUDA or GPU problems; these problems exist in the CPU imple-
mentations as well. However, a solution that works for the CPU implementation
may not work in CUDA, as CUDA floats are not entirely IEEE-compliant. Also,
since we are using the GPU implementation to explore larger data sets than we
could before, we are more likely to run into these problems. Back propagation
involves summing over matrix elements along a particular dimension, and then
exponentiating that sum; the more elements we add together, the more likely
we will spill over the floating point capacity. Part of our future work will involve
finding ways to eliminate these floating point problems.

References

[1] P. Farber. Quicknet on multispert: fast parallel neural network training.
Technical report, Tech. Rep. TR-97-047, ICSI, 1997, 1997.

[2] S.R. Garner. Weka: The waikato environment for knowledge analysis. In
Proc. of the New Zealand Computer Science Research Students Conference,
pages 57–64. Citeseer, 1995.

[3] G. Holmes, A. Donkin, and I.H. Witten. Weka: A machine learning work-
bench. In Proceedings of the Second Australia and New Zealand Conference
on Intelligent Information Systems, pages 357–361. Citeseer, 1994.

7



[4] S. Nissen. Implementation of a fast artificial neural network library
(fann). Report, Department of Computer Science University of Copenhagen
(DIKU), 31, 2003.

[5] L. Prechelt. Proben1—a set of neural network benchmark problems and
benchmarking rules. Fakultat fur Informatik, Universit at Karlsruhe, 76128,
1994.

[6] N.N. Schraudolph. A fast, compact approximation of the exponential func-
tion. Neural Computation, 11(4):853–862, 1999.

8


	TR-09-008 cover
	TR-09-008 no cover

