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Summary

New set of communication-optimal algorithms for symmetric eigenproblem, SVD,
nonsymmetric eigenproblem and generalized eigenproblem
•Optimal for sequential and parallel machines

– minimizes both words and messages moved
• Asymptotically less communication than standard algorithms

– constant factor more arithmetic
•Use divide-and-conquer approach with randomization
•Use matrix multiplication and QR decomposition as subroutines

Note: a completely different approach, using Successive Band Reduction, minimizes
the number of words moved on a sequential machine in solving the symmetric eigen-
problem or computing the SVD without increasing the arithmetic (very much)

Motivation

Sequential algorithms
Communication lower bounds:
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Factors exceeding lower bounds:
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Parallel algorithms
Communication lower bounds:
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)
Factors exceeding lower bounds:
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Divide and Conquer Algorithm

Goal of divide and conquer step is to divide the spectrum along a curve in the com-
plex plane and orthogonally transform the matrix to block triangular in order to com-
pute the eigenvalues of the diagonal blocks as subproblems

Algorithm 1: Splitting the spectrum of a matrix A along unit circle

1: Implicit Repeated Squaring of A−1

2: Compute invariant subspace of
(
I + (A−1)2k

)−1

3: Apply orthogonal transformation to A so that QTAQ =

[
A11 A21

ε A22

]

. Similar algorithm works for generalized eigenproblem

Möbius transformations
• In order to split the spectrum along any line or circle, we can use transformations

of the form f (z) = (αz + β)−1(γz + δ), for complex constants α, β, γ, δ
•Repeatedly square (implicitly) (αA + βI)−1(γA + δI) at first step of Algorithm 1
•Choose constants differently at each step of divide and conquer

Implicit Repeated Squaring (IRS)

•No inverses computed
• Algorithm 2 yields for each j,

Cj
−1Dj =

(
Cj−1

−1Dj−1

)2
=

(
C−1D

)2j

• For divide and conquer step, set

C = αA + βI, D = γA + δI

from Möbius transformation

Algorithm 2: IRS of C−1D

Input: C0 = C, D0 = D
1: repeat

2:

[
Q11 Q12

Q21 Q22

]
·
[
Rj

0

]
= qr

([
Dj

−Cj

])
3: Cj+1 = Q12

∗ · Cj
4: Dj+1 = Q22

∗ ·Dj

5: until Rj converges
Output: Cj, Dj

Generalized Randomized Rank-Revealing Decomposition (GRURV)

Algorithm 3: GRURV of C−1D

Input: C, D
1: generate random matrix B
2: V ·R = qr(B)
3: Q ·R2 = qr(D · V ∗)
4: R1 · U = rq(Q∗ · C)

Output: U , (R1, R2, V )

•No inverses computed

• Algorithm 3 yields

C−1D = U∗(R1
−1R2)V

•Rank-revealing with high probability
assuming C−1D has a gap in its sin-
gular values (from IRS)

Randomized Bisection

One divide and conquer step can make progress either by splitting the spectrum or
by reducing the search space. Use randomized bisection to choose a splitting line:
• bisection limits the number of steps necessary
• randomization ensures progress with high probability

Symmetric/SVD case

1. Find bounding interval

2. Set range around midpoint

3. Pick random split within range

Nonsymmetric case

1. Find bounding circle

2. Set range around midpoint

3. Pick random slope

4. Pick random perpendicular within
range

Numerical Experiments

Convergence criteria

Algorithm 4: R convergence

1: A0 = A, B0 = I

2: repeat

3:
[
Q11 Q12

Q21 Q22

]
·
[
Rj

0

]
= qr

([
Bj

−Aj

])
4: Aj+1 = Q12

∗ · Aj

5: Bj+1 = Q22
∗ ·Bj

6: until ‖Rj−Rj−1‖
‖Rj−1‖

is small
7: U = GRURV(Aj +Bj, Aj)

8: Anew = U · A · U ∗ =

[
A11 A12

E21 A22

]

Algorithm 5: E convergence

1: A0 = A, B0 = I

2: repeat

3:
[
Q11 Q12

Q21 Q22

]
·
[
Rj

0

]
= qr

([
Bj

−Aj

])
4: Aj+1 = Q12

∗ · Aj

5: Bj+1 = Q22
∗ ·Bj

6: U = GRURV(Aj +Bj, Aj)

7: Anew = U · A · U ∗ =

[
A11 A12

E21 A22

]
8: until ‖E21‖

‖A‖ is small

Convergence plots
Random eigenvalues (left), half just outside unit circle (distance 10−5) and half around 0 (right)
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Half the eigenvalues are just outside unit circle and half are just inside (distance 10−5)
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Half the eigenvalues form Jordan block at 1.3 and other half are clustered around 0
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. Green curve shows convergence restarting after 10 iterations (setting Aj = Anew, Bj = I)


