
Partitioned Global Address
Space Programming

with
Unified Parallel C (UPC)

Kathy Yelick
Associate Laboratory Director for Computing Sciences

and Acting NERSC Director
Lawrence Berkeley National Laboratory

EECS Professor, UC Berkeley

HPC: From Vector Supercomputers to
Massively Parallel Systems

Programmed by
“annotating”
serial programs

Programmed by
completely rethinking
algorithms and
software for parallelism

25% industrial use 50%

3 8/17/2012

0

2

4

6

8

10

12

0
200
400
600
800

1000
1200
1400
1600
1800
2000

1 2 3 6 12

768 384 256 128 64

M
em

or
y

pe
r N

od
e

(G
B

)

Ti
m

e
(s

ec
)

OpenMP threads / MPI tasks

"Running Time"
"Memory per Node"- Insufficient memory: user level

data and internal buffers
- Runtime overheads: copying and

synchronization
• OpenMP, Pthreads, or other

shared memory models
- No control over locality, e.g., Non-

Uniform Memory Access
- No explicit memory movement,

e.g., accelerators or NVRAM
• Tuning is non-obvious

- Tradeoff between speed and
memory footprint

Limitations of Existing Programming Models

• We can run 1 MPI process per core, but there are
problems with 6-12+ cores/socket:

Nick Wright, John Shalf et al, NERSC/Cray Center of Excellence
5

Shared Memory vs. Message Passing

Shared Memory
• Advantage: Convenience

- Can share data structures
- Just annotate loops
- Closer to serial code

• Disadvantages
- No locality control
- Does not scale
- Race conditions

Message Passing
• Advantage: Scalability

- Locality control
- Communication is all explicit

in code (cost transparency)
• Disadvantage

- Need to rethink entire
application / data structures

- Lots of tedious pack/unpack
code

- Don’t know when to say
“receive” for some problems

8/17/2012 6

Programming Challenges and Solutions

Message Passing Programming
Divide up domain in pieces
Each compute one piece
Exchange (send/receive) data

PVM, MPI, and many libraries

7

Global Address Space Programming
Each start computing
Grab whatever you need whenever

Global Address Space Languages
and Libraries

8/17/2012

8/17/2012 8

PGAS Languages

• Global address space: thread may directly read/write remote data
• Hides the distinction between shared/distributed memory

• Partitioned: data is designated as local or global
• Does not hide this: critical for locality and scaling

G
lo

ba
l a

dd
re

ss
 s

pa
ce

x: 1
y:

l: l: l:

g: g: g:

x: 5
y:

x: 7
y: 0

p0 p1 pn
• UPC, CAF, Titanium: Static parallelism (1 thread per proc)

• Does not virtualize processors
• X10, Chapel and Fortress: PGAS,but not static (dynamic threads)

8/17/2012 9

UPC Outline

1. Background
2. UPC Execution Model
3. Basic Memory Model: Shared vs. Private Scalars
4. Synchronization
5. Collectives
6. Data and Pointers
7. Dynamic Memory Management
8. Performance
9. Beyond UPC

History of UPC
• Initial Tech. Report from IDA in collaboration with LLNL

and UCB in May 1999 (led by IDA).
- Based on Split-C (UCB), AC (IDA) and PCP (LLNL)

• UPC consortium participants (past and present) are:
- ARSC, Compaq, CSC, Cray Inc., Etnus, GMU, HP, IDA CCS,

Intrepid Technologies, LBNL, LLNL, MTU, NSA, SGI, Sun
Microsystems, UCB, U. Florida, US DOD

- UPC is a community effort, well beyond UCB/LBNL
• Design goals: high performance, expressive, consistent

with C goals, …, portable
• UPC Today

- Multiple vendor and open compilers (Cray, HP, IBM, SGI, gcc-upc
from Intrepid, Berkeley UPC)

- “Pseudo standard” by moving into gcc trunk
- Most widely used on irregular / graph problems today
8/17/2012 10

8/17/2012 11

UPC Execution
Model

8/17/2012 12

UPC Execution Model

• A number of threads working independently in a SPMD
fashion
- Number of threads specified at compile-time or run-time;

available as program variable THREADS
- MYTHREAD specifies thread index (0..THREADS-1)
- upc_barrier is a global synchronization: all wait
- There is a form of parallel loop that we will see later

• There are two compilation modes
- Static Threads mode:

• THREADS is specified at compile time by the user
• The program may use THREADS as a compile-time constant

- Dynamic threads mode:
• Compiled code may be run with varying numbers of threads

8/17/2012 13

Hello World in UPC

• Any legal C program is also a legal UPC program
• If you compile and run it as UPC with P threads, it will

run P copies of the program.
• Using this fact, plus the identifiers from the previous

slides, we can parallel hello world:

#include <upc.h> /* needed for UPC extensions */
#include <stdio.h>

main() {
 printf("Thread %d of %d: hello UPC world\n",
 MYTHREAD, THREADS);
}

8/17/2012 14

Example: Monte Carlo Pi Calculation

• Estimate Pi by throwing darts at a unit square
• Calculate percentage that fall in the unit circle

- Area of square = r2 = 1
- Area of circle quadrant = ¼ * π r2 = π/4

• Randomly throw darts at x,y positions
• If x2 + y2 < 1, then point is inside circle
• Compute ratio:

- # points inside / # points total
- π = 4*ratio

r =1

8/17/2012 15

Each thread calls “hit” separately

Initialize random in
math library

Each thread can use
input arguments

Each thread gets its own
copy of these variables

Pi in UPC

• Independent estimates of pi:
 main(int argc, char **argv) {
 int i, hits, trials = 0;
 double pi;

 if (argc != 2)trials = 1000000;
 else trials = atoi(argv[1]);

 srand(MYTHREAD*17);

 for (i=0; i < trials; i++) hits += hit();
 pi = 4.0*hits/trials;
 printf("PI estimated to %f.", pi);
 }

8/17/2012 16

Helper Code for Pi in UPC

• Required includes:
 #include <stdio.h>
 #include <math.h>
 #include <upc.h>

• Function to throw dart and calculate where it hits:
 int hit(){
 int const rand_max = 0xFFFFFF;
 double x = ((double) rand()) / RAND_MAX;
 double y = ((double) rand()) / RAND_MAX;
 if ((x*x + y*y) <= 1.0) {
 return(1);
 } else {
 return(0);
 }
 }

8/17/2012 17

Shared vs. Private
Variables

8/17/2012 18

Private vs. Shared Variables in UPC

• Normal C variables and objects are allocated in the
private memory space for each thread.

• Shared variables are allocated only once, with thread 0
 shared int ours; // use sparingly: performance
 int mine;

• Shared variables may not have dynamic lifetime: may not
occur in a function definition, except as static. Why?

Shared

G
lo

ba
l a

dd
re

ss

sp
ac

e

Private
mine: mine: mine:

Thread0 Thread1 Threadn

ours:

8/17/2012 19

Pi in UPC: Shared Memory Style

• Parallel computing of pi, but with a bug
 shared int hits;
 main(int argc, char **argv) {
 int i, my_trials = 0;
 int trials = atoi(argv[1]);
 my_trials = (trials + THREADS - 1)/THREADS;
 srand(MYTHREAD*17);
 for (i=0; i < my_trials; i++)
 hits += hit();
 upc_barrier;
 if (MYTHREAD == 0) {
 printf("PI estimated to %f.", 4.0*hits/trials);
 }
 }

shared variable to
record hits

divide work up evenly

accumulate hits

What is the problem with this program?

8/17/2012 20

Shared Arrays Are Cyclic By Default

• Shared scalars always live in thread 0
• Shared arrays are spread over the threads
• Shared array elements are spread across the threads

shared int x[THREADS] /* 1 element per thread */
shared int y[3][THREADS] /* 3 elements per thread */
shared int z[3][3] /* 2 or 3 elements per thread */

• In the pictures below, assume THREADS = 4
- Red elts have affinity to thread 0

x

y

z

As a 2D array, y is
logically blocked
by columns

Think of linearized
C array, then map
in round-robin

z is not

8/17/2012 21

Pi in UPC: Shared Array Version

• Alternative fix to the race condition
• Have each thread update a separate counter:

- But do it in a shared array
- Have one thread compute sum

shared int all_hits [THREADS];
main(int argc, char **argv) {
 … declarations an initialization code omitted
 for (i=0; i < my_trials; i++)
 all_hits[MYTHREAD] += hit();
 upc_barrier;
 if (MYTHREAD == 0) {
 for (i=0; i < THREADS; i++) hits += all_hits[i];
 printf("PI estimated to %f.", 4.0*hits/trials);
 }
}

all_hits is
shared by all
processors,
just as hits was

update element
with local affinity

8/17/2012 22

UPC
Synchronization

8/17/2012 23

UPC Global Synchronization

• UPC has two basic forms of barriers:
- Barrier: block until all other threads arrive

 upc_barrier

- Split-phase barriers
 upc_notify; this thread is ready for barrier
 do computation unrelated to barrier
 upc_wait; wait for others to be ready

• Optional labels allow for debugging
#define MERGE_BARRIER 12
if (MYTHREAD%2 == 0) {
 ...
 upc_barrier MERGE_BARRIER;
} else {
 ...
 upc_barrier MERGE_BARRIER;
}

8/17/2012 24

Synchronization - Locks

• Locks in UPC are represented by an opaque type:
upc_lock_t

• Locks must be allocated before use:
upc_lock_t *upc_all_lock_alloc(void);

 allocates 1 lock, pointer to all threads
upc_lock_t *upc_global_lock_alloc(void);

 allocates 1 lock, pointer to one thread
• To use a lock:

void upc_lock(upc_lock_t *l)
void upc_unlock(upc_lock_t *l)

 use at start and end of critical region
• Locks can be freed when not in use

void upc_lock_free(upc_lock_t *ptr);

8/17/2012 25

Pi in UPC: Shared Memory Style

• Parallel computing of pi, without the bug
 shared int hits;
 main(int argc, char **argv) {
 int i, my_hits, my_trials = 0;
 upc_lock_t *hit_lock = upc_all_lock_alloc();
 int trials = atoi(argv[1]);
 my_trials = (trials + THREADS - 1)/THREADS;
 srand(MYTHREAD*17);
 for (i=0; i < my_trials; i++)
 my_hits += hit();
 upc_lock(hit_lock);
 hits += my_hits;
 upc_unlock(hit_lock);
 upc_barrier;
 if (MYTHREAD == 0)
 printf("PI: %f", 4.0*hits/trials);
 }

create a lock

accumulate hits
locally

accumulate
across threads

8/17/2012 26

Recap: Private vs. Shared Variables in UPC

• We saw several kinds of variables in the pi example
- Private scalars (my_hits)
- Shared scalars (hits)
- Shared arrays (all_hits)
- Shared locks (hit_lock)

Shared

G
lo

ba
l a

dd
re

ss

sp
ac

e

Private
my_hits: my_hits: my_hits:

Thread0 Thread1 Threadn

all_hits[0]:

hits:

all_hits[n]: all_hits[1]:

hit_lock:

where:
n=Threads-1

8/17/2012 27

UPC Collectives

8/17/2012 28

UPC Collectives in General

• The UPC collectives interface is in the language spec:
- http://upc.lbl.gov/docs/user/upc_spec_1.2.pdf

• It contains typical functions:
- Data movement: broadcast, scatter, gather, …
- Computational: reduce, prefix, …

• Interface has synchronization modes:
- Avoid over-synchronizing (barrier before/after is simplest

semantics, but may be unnecessary)
- Data being collected may be read/written by any thread

simultaneously
• Simple interface for collecting scalar values (int, double,…)

- Berkeley UPC value-based collectives
- Works with any compiler
- http://upc.lbl.gov/docs/user/README-collectivev.txt

8/17/2012 29

Pi in UPC: Data Parallel Style

• The previous version of Pi works, but is not scalable:
- On a large # of threads, the locked region will be a bottleneck

• Use a reduction for better scalability

 #include <bupc_collectivev.h>
 // shared int hits;
 main(int argc, char **argv) {
 ...
 for (i=0; i < my_trials; i++)
 my_hits += hit();
 my_hits = // type, input, thread, op
 bupc_allv_reduce(int, my_hits, 0, UPC_ADD);
 // upc_barrier;
 if (MYTHREAD == 0)
 printf("PI: %f", 4.0*my_hits/trials);
 }

 Berkeley collectives
no shared variables

barrier implied by collective

8/17/2012 30

UPC (Value-Based) Collectives in General

• General arguments:
- rootthread is the thread ID for the root (e.g., the source of a broadcast)
- All 'value' arguments indicate an l-value (i.e., a variable or array element, not a literal

or an arbitrary expression)
- All 'TYPE' arguments should the scalar type of collective operation
- upc_op_t is one of: UPC_ADD, UPC_MULT, UPC_AND, UPC_OR, UPC_XOR,

UPC_LOGAND, UPC_LOGOR, UPC_MIN, UPC_MAX
• Computational Collectives

- TYPE bupc_allv_reduce(TYPE, TYPE value, int rootthread, upc_op_t reductionop)
- TYPE bupc_allv_reduce_all(TYPE, TYPE value, upc_op_t reductionop)
- TYPE bupc_allv_prefix_reduce(TYPE, TYPE value, upc_op_t reductionop)

• Data movement collectives
- TYPE bupc_allv_broadcast(TYPE, TYPE value, int rootthread)
- TYPE bupc_allv_scatter(TYPE, int rootthread, TYPE *rootsrcarray)
- TYPE *bupc_allv_gather(TYPE, TYPE value, int rootthread, TYPE *rootdestarray)

• Gather a 'value' (which has type TYPE) from each thread to 'rootthread', and place them (in
order by source thread) into the local array 'rootdestarray' on 'rootthread'.

- TYPE *bupc_allv_gather_all(TYPE, TYPE value, TYPE *destarray)
- TYPE bupc_allv_permute(TYPE, TYPE value, int tothreadid)

• Perform a permutation of 'value's across all threads. Each thread passes a value and a
unique thread identifier to receive it - each thread returns the value it receives.

8/17/2012 31

local

shared

Full UPC Collectives
- Value-based collectives pass in and return scalar values
- But sometimes you want to collect over arrays
- When can a collective argument begin executing?

• Arguments with affinity to thread i are ready when thread i calls the
function; results with affinity to thread i are ready when thread i returns.

• This is appealing but it is incorrect: In a broadcast, thread 1 does not
know when thread 0 is ready.

0 2 1

dst dst dst

src src src

Slide source: Steve Seidel, MTU

8/17/2012 32

UPC Collective: Sync Flags

• In full UPC Collectives, blocks of data may be collected
• A extra argument of each collective function is the sync mode of type

upc_flag_t.
• Values of sync mode are formed by or-ing together a constant of the form

UPC_IN_XSYNC and a constant of the form UPC_OUT_YSYNC, where X
and Y may be NO, MY, or ALL.

• If sync_mode is (UPC IN_XSYNC | UPC OUT YSYNC), then if X is:
- NO the collective function may begin to read or write data when the first thread

has entered the collective function call,
- MY the collective function may begin to read or write only data which has

affinity to threads that have entered the collective function call, and
- ALL the collective function may begin to read or write data only after all threads

have entered the collective function call
• and if Y is

- NO the collective function may read and write data until the last thread has
returned from the collective function call,

- MY the collective function call may return in a thread only after all reads and
writes of data with affinity to the thread are complete3, and

- ALL the collective function call may return only after all reads and writes of data
are complete.

8/17/2012 33

Work Distribution
Using upc_forall

8/17/2012 34

Example: Vector Addition

 /* vadd.c */
 #include <upc_relaxed.h>

#define N 100*THREADS

shared int v1[N], v2[N], sum[N];
void main() {
 int i;
 for(i=0; i<N; i++)

 if (MYTHREAD == i%THREADS)
 sum[i]=v1[i]+v2[i];
}

• Questions about parallel vector additions:
• How to layout data (here it is cyclic)
• Which processor does what (here it is “owner computes”)

cyclic layout

owner computes

8/17/2012 35

• The idiom in the previous slide is very common
- Loop over all; work on those owned by this proc

• UPC adds a special type of loop
 upc_forall(init; test; loop; affinity)
 statement;

• Programmer indicates the iterations are independent
- Undefined if there are dependencies across threads

• Affinity expression indicates which iterations to run on each thread.
It may have one of two types:
- Integer: affinity%THREADS is MYTHREAD
- Pointer: upc_threadof(affinity) is MYTHREAD

• Syntactic sugar for loop on previous slide
- Some compilers may do better than this, e.g.,

 for(i=MYTHREAD; i<N; i+=THREADS)

- Rather than having all threads iterate N times:
 for(i=0; i<N; i++) if (MYTHREAD == i%THREADS)

Work Sharing with upc_forall()

8/17/2012 36

Vector Addition with upc_forall

#define N 100*THREADS

shared int v1[N], v2[N], sum[N];

void main() {
 int i;
 upc_forall(i=0; i<N; i++; i)

 sum[i]=v1[i]+v2[i];
}

• The vadd example can be rewritten as follows
• Equivalent code could use “&sum[i]” for affinity
• The code would be correct but slow if the affinity

expression were i+1 rather than i.

The cyclic data
distribution may
perform poorly on
some machines

8/17/2012 37

Distributed Arrays
in UPC

8/17/2012 38

Blocked Layouts in UPC

#define N 100*THREADS
shared int [*] v1[N], v2[N], sum[N];

void main() {
 int i;
 upc_forall(i=0; i<N; i++; &sum[i])

 sum[i]=v1[i]+v2[i];
}

• If this code were doing nearest neighbor averaging (3pt stencil) the
cyclic layout would be the worst possible layout.

• Instead, want a blocked layout
• Vector addition example can be rewritten as follows using a blocked

layout

blocked layout

8/17/2012 39

Layouts in General

• All non-array objects have affinity with thread zero.
• Array layouts are controlled by layout specifiers:

- Empty (cyclic layout)
- [*] (blocked layout)
- [0] or [] (indefinite layout, all on 1 thread)
- [b] or [b1][b2]…[bn] = [b1*b2*…bn] (fixed block size)

• The affinity of an array element is defined in terms of:
- block size, a compile-time constant
- and THREADS.

• Element i has affinity with thread
 (i / block_size) % THREADS

• In 2D and higher, linearize the elements as in a C
representation, and then use above mapping

8/17/2012 40

2D Array Layouts in UPC

• Array a1 has a row layout and array a2 has a block row
layout.

 shared [m] int a1 [n][m];
 shared [k*m] int a2 [n][m];

• If (k + m) % THREADS = = 0 them a3 has a row layout
 shared int a3 [n][m+k];
• To get more general HPF and ScaLAPACK style 2D

blocked layouts, one needs to add dimensions.
• Assume r*c = THREADS;
 shared [b1][b2] int a5 [m][n][r][c][b1][b2];
• or equivalently
 shared [b1*b2] int a5 [m][n][r][c][b1][b2];

8/17/2012 41

Pointers to Shared vs. Arrays

#define N 100*THREADS
shared int v1[N], v2[N], sum[N];
void main() {

int i;
shared int *p1, *p2;

p1=v1; p2=v2;
for (i=0; i<N; i++, p1++, p2++)

 if (i %THREADS= = MYTHREAD)
 sum[i]= *p1 + *p2;
}

• In the C tradition, array can be access through pointers
• Here is the vector addition example using pointers

v1

p1

8/17/2012 42

UPC Pointers

Local Shared
Private p1 p2

Shared p3 p4

Where does the pointer point?

Where
does the
pointer
reside?

int *p1; /* private pointer to local memory */
shared int *p2; /* private pointer to shared space */
int *shared p3; /* shared pointer to local memory */
shared int *shared p4; /* shared pointer to
 shared space */
Shared to local memory (p3) is not recommended.

8/17/2012 43

UPC Pointers

int *p1; /* private pointer to local memory */
shared int *p2; /* private pointer to shared space */
int *shared p3; /* shared pointer to local memory */
shared int *shared p4; /* shared pointer to
 shared space */

Shared

G
lo

ba
l

ad
dr

es
s

sp
ac

e

Private
p1:

Thread0 Thread1 Threadn

p2:

p1:

p2:

p1:

p2:

p3:

p4:

p3:

p4:

p3:

p4:

Pointers to shared often require more storage and are more costly to
dereference; they may refer to local or remote memory.

8/17/2012 44

Common Uses for UPC Pointer Types

int *p1;
• These pointers are fast (just like C pointers)
• Use to access local data in part of code performing local work
• Often cast a pointer-to-shared to one of these to get faster

access to shared data that is local
shared int *p2;
• Use to refer to remote data
• Larger and slower due to test-for-local + possible

communication
int *shared p3;
• Not recommended
shared int *shared p4;
• Use to build shared linked structures, e.g., a linked list

8/17/2012 45

UPC Pointers

• In UPC pointers to shared objects have three fields:
- thread number
- local address of block
- phase (specifies position in the block)

• Example: Cray T3E implementation

Phase Thread Virtual Address

0 37 38 48 49 63

Virtual Address Thread Phase

8/17/2012 46

UPC Pointers

• Pointer arithmetic supports blocked and non-blocked
array distributions

• Casting of shared to private pointers is allowed but
not vice versa !

• When casting a pointer-to-shared to a pointer-to-local,
the thread number of the pointer to shared may be
lost

• Casting of shared to local is well defined only if the
object pointed to by the pointer to shared has affinity
with the thread performing the cast

8/17/2012 47

Special Functions

• size_t upc_threadof(shared void *ptr);
returns the thread number that has affinity to the pointer
to shared

• size_t upc_phaseof(shared void *ptr);
returns the index (position within the block)field of the
pointer to shared

• shared void *upc_resetphase(shared void *ptr); resets
the phase to zero

8/17/2012 48

Dynamic Memory Allocation in UPC

• Dynamic memory allocation of shared memory is
available in UPC

• Functions can be collective or not
- A collective function has to be called by every

thread and will return the same value to all of them

8/17/2012 49

Global Memory Allocation
shared void *upc_global_alloc(size_t nblocks,

size_t nbytes);

 nblocks : number of blocks
 nbytes : block size

• Non-collective: called by one thread
• The calling thread allocates a contiguous memory space in the

shared space with the shape:
 shared [nbytes] char[nblocks * nbytes]

shared void *upc_all_alloc(size_t nblocks,
size_t nbytes);

• The same result, but must be called by all threads together
• All the threads will get the same pointer
void upc_free(shared void *ptr);
•Non-collective function; frees the dynamically allocated shared
memory pointed to by ptr

8/17/2012 50

Distributed Arrays Directory Style

• Many UPC programs avoid the UPC style arrays in
factor of directories of objects

typedef shared [] double *sdblptr;
shared sdblptr directory[THREADS];
directory[i]=upc_alloc(local_size*sizeof(double));

directory

• These are also more general:
• Multidimensional, unevenly distributed
• Ghost regions around blocks

physical and
conceptual
3D array
layout

8/17/2012 51

Memory Consistency in UPC

• The consistency model defines the order in which one thread may
see another threads accesses to memory

- If you write a program with unsychronized accesses, what
happens?

- Does this work?
data = … while (!flag) { };
flag = 1; … = data; // use the data

• UPC has two types of accesses:
- Strict: will always appear in order
- Relaxed: May appear out of order to other threads

• There are several ways of designating the type, commonly:
- Use the include file:

#include <upc_relaxed.h>

- Which makes all accesses in the file relaxed by default
- Use strict on variables that are used as synchronization (flag)

8/17/2012 52

Synchronization- Fence

• Upc provides a fence construct
- Equivalent to a null strict reference, and has the

syntax
• upc_fence;

- UPC ensures that all shared references issued
before the upc_fence are complete

8/17/2012 53

Performance of
UPC

Berkeley UPC Compiler

Compiler-generated C code

UPC Runtime system

GASNet Communication System

Network Hardware

Platform-
independent

Network-
independent

Language-
independent

Compiler-
independent

UPC Code UPC Compiler
Used by bupc and

gcc-upc

Used by Cray
UPC, CAF,

Chapel, Titanium,
and others

8/17/2012 55

PGAS Languages have Performance Advantages
Strategy for acceptance of a new language
• Make it run faster than anything else

Keys to high performance
• Parallelism:

- Scaling the number of processors
• Maximize single node performance

- Generate friendly code or use tuned libraries
(BLAS, FFTW, etc.)

• Avoid (unnecessary) communication cost
- Latency, bandwidth, overhead
- Berkeley UPC and Titanium use GASNet

communication layer
• Avoid unnecessary delays due to dependencies

- Load balance; Pipeline algorithmic dependencies

8/17/2012 56

One-Sided vs Two-Sided

• A one-sided put/get message can be handled directly by a network
interface with RDMA support

- Avoid interrupting the CPU or storing data from CPU (preposts)
• A two-sided messages needs to be matched with a receive to

identify memory address to put data
- Offloaded to Network Interface in networks like Quadrics
- Need to download match tables to interface (from host)
- Ordering requirements on messages can also hinder bandwidth

address

message id

data payload

data payload

one-sided put message

two-sided message

network
 interface

memory

host
CPU

8/17/2012 57

One-Sided vs. Two-Sided: Practice

• InfiniBand: GASNet vapi-conduit and OSU MVAPICH 0.9.5
• Half power point (N ½) differs by one order of magnitude
• This is not a criticism of the implementation!

Joint work with Paul Hargrove and Dan Bonachea

(u
p

is
 g

oo
d)

 NERSC Jacquard
machine with
Opteron
processors

Ping Pong Latency on a Cray XE6 (Hopper)

1

10

100

1000

10000

Ti
m

e
(u

s)

UPC MPI - Large Pages MPI - Regular Pages

8/17/2012 58

Bandwidths on Cray XE6 (Hopper)

0

1000

2000

3000

4000

5000

6000

7000

B
an

dw
id

th
 (M

B
/s

)

Message Size (Bytes)

UPC MPI Large MPI

8/17/2012 59

8/17/2012 60

GASNet: Portability and High-Performance
(d

ow
n

is
 g

oo
d)

GASNet better for latency across machines

Joint work with UPC Group; GASNet design by Dan Bonachea

8/17/2012 62

(u
p

is
 g

oo
d)

GASNet excels at mid-range sizes: important for overlap

GASNet: Portability and High-Performance

Joint work with UPC Group; GASNet design by Dan Bonachea

FFT Performance on BlueGene/P

HPC Challenge Peak as of July 09 is
~4.5 Tflops on 128k Cores

• UPC implementation
consistently outperform
MPI

• Uses highly optimized local
FFT library on each node

• UPC version avoids
send/receive
synchronization

• Lower overhead
• Better overlap
• Better bisection

bandwidth
• Numbers are getting close

to HPC record on BG/P

0

500

1000

1500

2000

2500

3000

3500

256 512 1024 2048 4096 8192 16384 32768

G
Fl

op
s

Num. of Cores

Slabs
Slabs (Collective)
Packed Slabs (Collective)
MPI Packed Slabs

66

G
O
O
D

8/17/2012

FFT Performance on Cray XT4

• 1024 Cores of the Cray XT4
- Uses FFTW for local FFTs
- Larger the problem size the more effective the overlap

67

G
O
O
D

Event Driven LU in UPC

• DAG Scheduling before it’s time
• Assignment of work is static; schedule is dynamic
• Ordering needs to be imposed on the schedule

- Critical path operation: Panel Factorization
• General issue: dynamic scheduling in partitioned memory

- Can deadlock in memory allocation
- “memory constrained” lookahead

some edges omitted

8/17/2012 69

UPC HPL Performance

• Comparison to ScaLAPACK on an Altix, a 2 x 4 process grid
- ScaLAPACK (block size 64) 25.25 GFlop/s (tried several block sizes)
- UPC LU (block size 256) - 33.60 GFlop/s, (block size 64) - 26.47 GFlop/s

• n = 32000 on a 4x4 process grid
- ScaLAPACK - 43.34 GFlop/s (block size = 64)
- UPC - 70.26 Gflop/s (block size = 200)

•MPI HPL numbers
from HPCC
database

•Large scaling:
• 2.2 TFlops on 512p,
• 4.4 TFlops on 1024p
(Thunder)

Joint work with Parry Husbands

MILC (QCD) Performance in UPC

• MILC is Lattice Quantum Chromo-Dynamics application
• UPC scales better than MPI when carefully optimized
8/17/2012 70

A Family of PGAS Languages
• UPC based on C philosophy / history

- http://upc-lang.org
- Free open source compiler: http://upc.lbl.gov
- Also a gcc variant: http://www.gccupc.org

• Java dialect: Titanium
- http://titanium.cs.berkeley.edu

• Co-Array Fortran
- Part of Stanford Fortran (subset of features)
- CAF 2.0 from Rice: http://caf.rice.edu

• Chapel from Cray (own base language better than Java)
- http://chapel.cray.com (open source)

• X10 from IBM also at Rice (Java, Scala,…)
- http://www.research.ibm.com/x10/

• Phalanx from Echelon projects at NVIDIA, LBNL,…
- C++ PGAS languages with CUDA-like features for GPU clusters

• Coming soon…. PGAS for Python, aka PyGAS
8/17/2012 71

http://upc-lang.org
http://upc.lbl.gov
http://www.gccupc.org
http://titanium.cs.berkeley.edu
http://caf.rice.edu
http://chapel.cray.com

Application Work in PGAS

• Network simulator in UPC (Steve Hofmeyr, LBNL)
• Real-space multigrid (RMG) quantum mechanics

(Shirley Moore, UTK)
• Landscape analysis, i.e., “Contributing Area

Estimation” in UPC (Brian Kazian, UCB)
• GTS Shifter in CAF (Preissl, Wichmann,
Long, Shalf, Ethier,
Koniges, LBNL,
Cray, PPPL)

8/17/2012 72

Arrays in a Global Address Space

• Key features of Titanium arrays
- Generality: indices may start/end and any point
- Domain calculus allow for slicing, subarray,

transpose and other operations without data copies
• Use domain calculus to identify ghosts and iterate:

 foreach (p in gridA.shrink(1).domain()) ...

• Array copies automatically work on intersection
 gridB.copy(gridA.shrink(1));

gridA gridB

“restricted” (non-
ghost) cells

ghost
cells

intersection (copied
area)

Joint work with Titanium group

Useful in grid
computations
including AMR

8/17/2012 73

Languages Support Helps Productivity

C++/Fortran/MPI AMR
• Chombo package from LBNL
• Bulk-synchronous comm:

- Pack boundary data between procs
- All optimizations done by programmer

Titanium AMR
• Entirely in Titanium
• Finer-grained communication

- No explicit pack/unpack code
- Automated in runtime system

• General approach
- Language allow programmer optimizations
- Compiler/runtime does some automatically

Work by Tong Wen and Philip Colella; Communication optimization
8/17/2012 74

Particle/Mesh Method: Heart Simulation

• Elastic structures in an incompressible fluid.
- Blood flow, clotting, inner ear, embryo growth, …

• Complicated parallelization
- Particle/Mesh method, but “Particles” connected

into materials (1D or 2D structures)
- Communication patterns irregular between particles

(structures) and mesh (fluid)

Joint work with Ed Givelberg, Armando Solar-Lezama, Charlie Peskin, Dave McQueen

2D Dirac Delta Function

Code Size in Lines
Fortran Titanium

8000 4000

Note: Fortran code is not parallel

8/17/2012 75

8/17/2012 76

Bringing Users Along: UPC Experience

• Ecosystem:
- Users with a need (fine-grained random access)
- Machines with RDMA (not full hardware GAS)
- Common runtime; Commercial and free software
- Sustained funding and Center procurements

• Success models:
- Adoption by users: vectors  MPI, Python and Perl, UPC/CAF
- Influence traditional models: MPI 1-sided; OpenMP locality control
- Enable future models: Chapel, X10,… 77

1991
Active Msgs
are fast

1992 First Split-C
(compiler class)

1992
First AC
(accelerators +
split memory)

1993
Split-C funding
(DOE)

1997
First UPC
Meeting

“best of” AC,
Split-C, PCP

2001
First UPC
Funding

2003 Berkeley
Compiler release

2001
gcc-upc at Intrepid

2006
UPC in NERSC
procurement

2002 GASNet
Spec

2010
Hybrid MPI/UPC

Other GASNet-based languages

8/17/2012 78

Summary

• UPC designed to be consistent with C
- Ability to use pointers and arrays interchangeably

• Designed for high performance
- Memory consistency explicit; Small implementation
- Transparent runtime

• gcc version of UPC:
http://www.gccupc.org/

• Berkeley compiler
http://upc.lbl.gov

• Language specification and other documents
http://upc.gwu.edu

• Vendor compilers: Cray, IBM, HP, SGI,…

http://upc.lbl.gov/
http://upc.gwu.edu

	Slide Number 1
	HPC: From Vector Supercomputers to Massively Parallel Systems
	Limitations of Existing Programming Models
	Shared Memory vs. Message Passing
	Programming Challenges and Solutions
	PGAS Languages
	UPC Outline	
	History of UPC
	UPC Execution Model
	UPC Execution Model
	Hello World in UPC
	Example: Monte Carlo Pi Calculation
	Pi in UPC
	Helper Code for Pi in UPC
	Shared vs. Private Variables
	Private vs. Shared Variables in UPC
	Pi in UPC: Shared Memory Style
	Shared Arrays Are Cyclic By Default
	Pi in UPC: Shared Array Version
	UPC Synchronization
	UPC Global Synchronization
	Synchronization - Locks
	Pi in UPC: Shared Memory Style
	Recap: Private vs. Shared Variables in UPC
	UPC Collectives
	UPC Collectives in General
	Pi in UPC: Data Parallel Style
	UPC (Value-Based) Collectives in General
	Full UPC Collectives
	UPC Collective: Sync Flags
	Work Distribution Using upc_forall
	Example: Vector Addition
	Work Sharing with upc_forall()
	Vector Addition with upc_forall
	Distributed Arrays in UPC
	Blocked Layouts in UPC
	Layouts in General
	2D Array Layouts in UPC
	Pointers to Shared vs. Arrays
	UPC Pointers
	UPC Pointers
	Common Uses for UPC Pointer Types
	UPC Pointers
	UPC Pointers
	Special Functions
	Dynamic Memory Allocation in UPC
	Global Memory Allocation
	Distributed Arrays Directory Style
	Memory Consistency in UPC
	Synchronization- Fence
	Performance of UPC
	Berkeley UPC Compiler
	PGAS Languages have Performance Advantages
	One-Sided vs Two-Sided
	One-Sided vs. Two-Sided: Practice
	Ping Pong Latency on a Cray XE6 (Hopper)
	Bandwidths on Cray XE6 (Hopper)
	GASNet: Portability and High-Performance
	GASNet: Portability and High-Performance
	FFT Performance on BlueGene/P
	FFT Performance on Cray XT4
	Event Driven LU in UPC
	UPC HPL Performance
	MILC (QCD) Performance in UPC
	A Family of PGAS Languages
	Application Work in PGAS
	Arrays in a Global Address Space
	Languages Support Helps Productivity
	Particle/Mesh Method: Heart Simulation
	Slide Number 76
	Bringing Users Along: UPC Experience
	Summary

