
Partitioned Global Address  
Space Programming 

with  
Unified Parallel C (UPC) 

Kathy Yelick 
Associate Laboratory Director for Computing Sciences 

and Acting NERSC Director  
Lawrence Berkeley National Laboratory 

 
EECS Professor, UC Berkeley 

 



HPC: From Vector Supercomputers to 
Massively Parallel Systems 

Programmed by 
“annotating” 
serial programs 

Programmed by 
completely rethinking 
algorithms and 
software for parallelism 

25%                            industrial use                         50%   

3 8/17/2012 



0

2

4

6

8

10

12

0
200
400
600
800

1000
1200
1400
1600
1800
2000

1 2 3 6 12

768 384 256 128 64

M
em

or
y 

pe
r N

od
e 

(G
B

) 

Ti
m

e 
(s

ec
) 

OpenMP threads / MPI tasks 

"Running Time"
"Memory per Node"- Insufficient memory: user level 

data and internal buffers 
- Runtime overheads: copying and 

synchronization  
• OpenMP, Pthreads, or other 

shared memory models 
- No control over locality, e.g., Non-

Uniform Memory Access  
- No explicit memory movement, 

e.g., accelerators or NVRAM 
• Tuning is non-obvious  

- Tradeoff between speed and 
memory footprint 

 
 

Limitations of Existing Programming Models 

• We can run 1 MPI process per core, but there are 
problems with 6-12+ cores/socket: 

Nick Wright, John Shalf et al, NERSC/Cray Center of Excellence 
5 



Shared Memory vs. Message Passing 

Shared Memory 
• Advantage: Convenience 

- Can share data structures 
- Just annotate loops 
- Closer to serial code 

• Disadvantages 
- No locality control 
- Does not scale 
- Race conditions 

Message Passing 
• Advantage: Scalability 

- Locality control 
- Communication is all explicit 

in code (cost transparency) 
• Disadvantage 

- Need to rethink entire 
application / data structures 

- Lots of tedious pack/unpack 
code 

- Don’t know when to say 
“receive” for some problems 
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Programming Challenges and Solutions 

Message Passing Programming  
Divide up domain in pieces 
Each compute one piece 
Exchange (send/receive) data 
 
PVM, MPI, and many libraries 

7 

Global Address Space Programming 
Each start computing 
Grab whatever you need whenever 
 
Global Address Space Languages 
and Libraries  
 

8/17/2012 
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PGAS Languages 

• Global address space: thread may directly read/write remote data  
• Hides the distinction between shared/distributed memory 

• Partitioned: data is designated as local or global 
• Does not hide this: critical for locality and scaling 
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y:  

l:  l:  l:  

g:  g:  g:  

x: 5 
y:  

x: 7 
y: 0 

p0 p1 pn 
• UPC, CAF, Titanium: Static parallelism (1 thread per proc)  

• Does not virtualize processors 
• X10, Chapel and Fortress: PGAS,but not static (dynamic threads) 
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UPC Outline  

1. Background 
2. UPC Execution Model 
3. Basic Memory Model: Shared vs. Private Scalars 
4. Synchronization 
5. Collectives 
6. Data and Pointers 
7. Dynamic Memory Management 
8. Performance 
9. Beyond UPC 



History of UPC 
• Initial Tech. Report from IDA in collaboration with LLNL 

and UCB in May 1999 (led by IDA). 
- Based on Split-C (UCB), AC (IDA) and PCP (LLNL) 

• UPC consortium participants (past and present) are:  
- ARSC, Compaq, CSC, Cray Inc., Etnus, GMU, HP, IDA CCS, 

Intrepid Technologies, LBNL, LLNL, MTU, NSA, SGI, Sun 
Microsystems, UCB, U. Florida, US DOD 

- UPC is a community effort, well beyond UCB/LBNL 
• Design goals: high performance, expressive, consistent 

with C goals, …, portable 
• UPC Today 

- Multiple vendor and open compilers (Cray, HP, IBM, SGI, gcc-upc 
from Intrepid, Berkeley UPC) 

- “Pseudo standard” by moving into gcc trunk 
- Most widely used on irregular / graph problems today 
8/17/2012 10 
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UPC Execution 
Model 
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UPC Execution Model 

• A number of threads working independently in a SPMD 
fashion 
- Number of threads specified at compile-time or run-time; 

available as program variable THREADS 
- MYTHREAD specifies thread index (0..THREADS-1) 
- upc_barrier is a global synchronization: all wait 
- There is a form of parallel loop that we will see later 

• There are two compilation modes 
- Static Threads mode: 

• THREADS is specified at compile time by the user 
• The program may use THREADS as a compile-time constant 

- Dynamic threads mode: 
• Compiled code may be run with varying numbers of threads 
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Hello World in UPC 

• Any legal C program is also a legal UPC program 
• If you compile and run it as UPC with P threads, it will 

run P copies of the program. 
• Using this fact, plus the identifiers from the previous 

slides, we can parallel hello world: 
 

#include <upc.h>  /* needed for UPC extensions */ 
#include <stdio.h> 
 
main() { 
  printf("Thread %d of %d: hello UPC world\n",  
         MYTHREAD, THREADS); 
} 
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Example: Monte Carlo Pi Calculation 

• Estimate Pi by throwing darts at a unit square 
• Calculate percentage that fall in the unit circle 

- Area of square = r2 = 1 
- Area of circle quadrant = ¼ * π r2 = π/4  

• Randomly throw darts at x,y positions 
• If x2 + y2 < 1, then point is inside circle 
• Compute ratio: 

- # points inside / # points total 
-  π = 4*ratio  

r =1 
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Each thread calls “hit” separately 

Initialize random in 
math library 

Each thread can use 
input arguments 

Each thread gets its own 
copy of these variables 

Pi in UPC  

• Independent estimates of pi: 
  main(int argc, char **argv) { 
    int i, hits, trials = 0; 
    double pi; 
 
    if (argc != 2)trials = 1000000; 
    else trials = atoi(argv[1]); 
 
    srand(MYTHREAD*17); 
 
    for (i=0; i < trials; i++) hits += hit(); 
    pi = 4.0*hits/trials; 
    printf("PI estimated to %f.", pi); 
  } 
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Helper Code for Pi in UPC 

• Required includes: 
    #include <stdio.h> 
    #include <math.h>  
    #include <upc.h>  

 
• Function to throw dart and calculate where it hits: 
  int hit(){ 
    int const rand_max = 0xFFFFFF; 
    double x = ((double) rand()) / RAND_MAX; 
    double y = ((double) rand()) / RAND_MAX; 
    if ((x*x + y*y) <= 1.0) { 
         return(1); 
    } else { 
         return(0); 
    } 
  } 
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Shared vs. Private 
Variables 
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Private vs. Shared Variables in UPC 

• Normal C variables and objects are allocated in the 
private memory space for each thread. 

• Shared variables are allocated only once, with thread 0 
     shared int ours;  // use sparingly: performance 
     int mine; 

• Shared variables may not have dynamic lifetime:  may not 
occur in a function definition, except as static.  Why? 

Shared 
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Private 
mine:  mine:  mine:  

Thread0   Thread1                                       Threadn 

ours:  
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Pi in UPC: Shared Memory Style 

• Parallel computing of pi, but with a bug 
  shared int hits; 
  main(int argc, char **argv) { 
      int i, my_trials = 0; 
      int trials = atoi(argv[1]); 
      my_trials = (trials + THREADS - 1)/THREADS; 
      srand(MYTHREAD*17); 
      for (i=0; i < my_trials; i++)    
        hits += hit(); 
      upc_barrier; 
      if (MYTHREAD == 0) { 
        printf("PI estimated to %f.", 4.0*hits/trials); 
      } 
   } 

shared variable to 
record hits 

divide work up evenly 

accumulate hits 

What is the problem with this program? 
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Shared Arrays Are Cyclic By Default 

• Shared scalars always live in thread 0 
• Shared arrays are spread over the threads 
• Shared array elements are spread across the threads 

shared int x[THREADS]        /* 1 element per thread */ 
shared int y[3][THREADS] /* 3 elements per thread */ 
shared int z[3][3]               /* 2 or 3 elements per thread */ 

• In the pictures below, assume THREADS = 4 
- Red elts have affinity to thread 0 

x 

y 

z 

As a 2D array, y is 
logically blocked 
by columns 

Think of linearized 
C array, then map 
in round-robin 

z is not 
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Pi in UPC: Shared Array Version 

• Alternative fix to the race condition  
• Have each thread update a separate counter: 

- But do it in a shared array 
- Have one thread compute sum 

shared int all_hits [THREADS]; 
main(int argc, char **argv) { 
  … declarations an initialization code omitted 
  for (i=0; i < my_trials; i++)  
    all_hits[MYTHREAD] += hit(); 
  upc_barrier; 
  if (MYTHREAD == 0) { 
    for (i=0; i < THREADS; i++) hits += all_hits[i]; 
    printf("PI estimated to %f.", 4.0*hits/trials); 
  } 
} 

all_hits is 
shared by all 
processors, 
just as hits was 

update element 
with local affinity 
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UPC 
Synchronization 
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UPC Global Synchronization 

• UPC has two basic forms of barriers: 
- Barrier: block until all other threads arrive  

 upc_barrier 

- Split-phase barriers 
   upc_notify;  this thread is ready for barrier 
      do computation unrelated to barrier 
   upc_wait;      wait for others to be ready 

• Optional labels allow for debugging 
#define MERGE_BARRIER 12 
if (MYTHREAD%2 == 0) { 
     ... 
     upc_barrier MERGE_BARRIER;   
} else { 
     ... 
     upc_barrier MERGE_BARRIER; 
} 
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Synchronization - Locks 

• Locks in UPC are represented by an opaque type: 
upc_lock_t 

• Locks must be allocated before use: 
upc_lock_t *upc_all_lock_alloc(void); 

   allocates 1 lock, pointer to all threads 
upc_lock_t *upc_global_lock_alloc(void); 

     allocates 1 lock, pointer to one thread 
• To use a lock: 

void upc_lock(upc_lock_t *l) 
void upc_unlock(upc_lock_t *l) 

  use at start and end of critical region 
• Locks can be freed when not in use 

void upc_lock_free(upc_lock_t *ptr); 
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Pi in UPC: Shared Memory Style 

• Parallel computing of pi, without the bug 
  shared int hits; 
  main(int argc, char **argv) { 
      int i, my_hits, my_trials = 0; 
  upc_lock_t *hit_lock = upc_all_lock_alloc(); 
      int trials = atoi(argv[1]); 
      my_trials = (trials + THREADS - 1)/THREADS; 
      srand(MYTHREAD*17); 
      for (i=0; i < my_trials; i++)  
         my_hits += hit(); 
      upc_lock(hit_lock); 
      hits += my_hits; 
      upc_unlock(hit_lock); 
      upc_barrier; 
      if (MYTHREAD == 0)  
        printf("PI: %f", 4.0*hits/trials); 
   } 

create a lock 

accumulate hits 
locally 

accumulate 
across threads 
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Recap: Private vs. Shared Variables in UPC 

• We saw several kinds of variables in the pi example 
- Private scalars (my_hits) 
- Shared scalars (hits) 
- Shared arrays (all_hits) 
- Shared locks (hit_lock) 

Shared 
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Private 
my_hits:  my_hits:  my_hits:  

Thread0   Thread1                                       Threadn 

all_hits[0]: 

hits:  

all_hits[n]: all_hits[1]: 

hit_lock:  

where: 
n=Threads-1 
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UPC Collectives 
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UPC Collectives in General 

• The UPC collectives interface is in the language spec: 
- http://upc.lbl.gov/docs/user/upc_spec_1.2.pdf 

• It contains typical functions: 
- Data movement: broadcast, scatter, gather, … 
- Computational: reduce, prefix, … 

• Interface has synchronization modes: 
- Avoid over-synchronizing (barrier before/after is simplest 

semantics, but may be unnecessary) 
- Data being collected may be read/written by any thread 

simultaneously 
• Simple interface for collecting scalar values (int, double,…) 

- Berkeley UPC value-based collectives  
- Works with any compiler 
- http://upc.lbl.gov/docs/user/README-collectivev.txt 
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Pi in UPC: Data Parallel Style 

• The previous version of Pi works, but is not scalable: 
- On a large # of threads, the locked region will be a bottleneck 

• Use a reduction for better scalability 
   
  #include <bupc_collectivev.h> 
  // shared int hits; 
  main(int argc, char **argv) { 
      ... 
      for (i=0; i < my_trials; i++)  
         my_hits += hit(); 
      my_hits =         // type, input, thread, op 
         bupc_allv_reduce(int, my_hits, 0, UPC_ADD);  
      // upc_barrier; 
      if (MYTHREAD == 0)  
        printf("PI: %f", 4.0*my_hits/trials); 
   } 

 Berkeley collectives 
no shared variables 

barrier implied by collective 
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UPC (Value-Based) Collectives in General 

• General arguments: 
- rootthread is the thread ID for the root (e.g., the source of a broadcast) 
- All 'value' arguments indicate an l-value (i.e., a variable or array element, not a literal 

or an arbitrary expression)  
- All 'TYPE' arguments should the scalar type of collective operation 
- upc_op_t is one of: UPC_ADD, UPC_MULT, UPC_AND, UPC_OR, UPC_XOR, 

UPC_LOGAND, UPC_LOGOR, UPC_MIN, UPC_MAX  
•  Computational Collectives 

- TYPE bupc_allv_reduce(TYPE, TYPE value, int rootthread, upc_op_t reductionop)  
- TYPE bupc_allv_reduce_all(TYPE, TYPE value, upc_op_t reductionop)  
- TYPE bupc_allv_prefix_reduce(TYPE, TYPE value, upc_op_t reductionop)   

• Data movement collectives 
- TYPE bupc_allv_broadcast(TYPE, TYPE value, int rootthread)  
- TYPE bupc_allv_scatter(TYPE, int rootthread, TYPE *rootsrcarray)  
- TYPE *bupc_allv_gather(TYPE, TYPE value, int rootthread, TYPE *rootdestarray)  

• Gather a 'value' (which has type TYPE) from each thread to 'rootthread', and place them (in 
order by source thread) into the local array 'rootdestarray' on 'rootthread'.  

- TYPE *bupc_allv_gather_all(TYPE, TYPE value, TYPE *destarray)  
- TYPE bupc_allv_permute(TYPE, TYPE value, int tothreadid)  

• Perform a permutation of 'value's across all threads. Each thread passes a value and a 
unique thread identifier to receive it - each thread returns the value it receives.  
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local 

shared 

Full UPC Collectives 
- Value-based collectives pass in and return scalar values  
- But sometimes you want to collect over arrays 
- When can a collective argument begin executing? 

• Arguments with affinity to thread i are ready when thread i calls the 
function; results with affinity to thread i are ready when thread i returns. 

• This is appealing but it is incorrect: In a broadcast, thread 1 does not 
know when thread 0 is ready. 

0 2 1 

dst dst dst 

src src src 

Slide source: Steve Seidel, MTU 
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UPC Collective: Sync Flags  

• In full UPC Collectives, blocks of data may be collected 
• A extra argument of each collective function is the sync mode of type 

upc_flag_t.  
• Values of sync mode are formed by or-ing together a constant of the form 

UPC_IN_XSYNC and a constant of the form UPC_OUT_YSYNC, where X 
and Y may be NO, MY, or ALL. 

• If sync_mode is (UPC IN_XSYNC | UPC OUT YSYNC), then if X is: 
- NO the collective function may begin to read or write data when the first thread 

has entered the collective function call, 
- MY the collective function may begin to read or write only data which has 

affinity to threads that have entered the collective function call, and 
- ALL the collective function may begin to read or write data only after all threads 

have entered the collective function call 
• and if Y is 

- NO the collective function may read and write data until the last thread has 
returned from the collective function call, 

- MY the collective function call may return in a thread only after all reads and 
writes of data with affinity to the thread are complete3, and 

- ALL the collective function call may return only after all reads and writes of data 
are complete. 
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Work Distribution 
Using upc_forall 
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Example: Vector Addition 

 /* vadd.c */ 
 #include <upc_relaxed.h> 

#define N 100*THREADS 
 
shared int v1[N], v2[N], sum[N]; 
void main() { 
 int i; 
 for(i=0; i<N; i++) 

   if (MYTHREAD == i%THREADS)  
   sum[i]=v1[i]+v2[i]; 
} 

• Questions about parallel vector additions:  
• How to layout data (here it is cyclic) 
• Which processor does what (here it is “owner computes”) 

cyclic layout 

owner computes 
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• The idiom in the previous slide is very common 
- Loop over all; work on those owned by this proc 

• UPC adds a special type of loop 
    upc_forall(init; test; loop; affinity) 
      statement; 

• Programmer indicates the iterations are independent 
- Undefined if there are dependencies across threads 

• Affinity expression indicates which iterations to run on each thread.  
It may have one of two types: 
- Integer: affinity%THREADS is MYTHREAD 
- Pointer: upc_threadof(affinity) is MYTHREAD 

• Syntactic sugar for loop on previous slide 
- Some compilers may do better than this, e.g.,  

   for(i=MYTHREAD; i<N; i+=THREADS) 

- Rather than having all threads iterate N times: 
      for(i=0; i<N; i++) if (MYTHREAD == i%THREADS) 
 

Work Sharing with upc_forall() 



8/17/2012 36 

Vector Addition with upc_forall 

#define N 100*THREADS 
 
shared int v1[N], v2[N], sum[N]; 
 
void main() { 
 int i; 
 upc_forall(i=0; i<N; i++; i) 

                 sum[i]=v1[i]+v2[i]; 
} 

• The vadd example can be rewritten as follows 
• Equivalent code could use “&sum[i]” for affinity 
• The code would be correct but slow if the affinity 

expression were i+1 rather than i. 

The cyclic data 
distribution may 
perform poorly on 
some machines 
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Distributed Arrays 
in UPC 
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Blocked Layouts in UPC 

#define N 100*THREADS 
shared int [*] v1[N], v2[N], sum[N]; 
 
void main() { 
 int i; 
 upc_forall(i=0; i<N; i++; &sum[i])  
     

                 sum[i]=v1[i]+v2[i]; 
} 

• If this code were doing nearest neighbor averaging (3pt stencil) the 
cyclic layout would be the worst possible layout. 

• Instead, want a blocked layout 
• Vector addition example can be rewritten as follows using a blocked 

layout 

blocked layout 
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Layouts in General 

• All non-array objects have affinity with thread zero. 
• Array layouts are controlled by layout specifiers: 

- Empty (cyclic layout) 
- [*] (blocked layout) 
- [0] or [] (indefinite layout, all on 1 thread) 
- [b] or [b1][b2]…[bn] = [b1*b2*…bn] (fixed block size) 

• The affinity of an array element is defined in terms of: 
- block size, a compile-time constant 
- and THREADS.   

• Element i has affinity with thread  
        (i / block_size) % THREADS 

• In 2D and higher, linearize the elements as in a C 
representation, and then use above mapping 
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2D Array Layouts in UPC 

• Array a1 has a row layout and array a2 has a block row 
layout. 

           shared [m] int a1 [n][m];  
      shared [k*m] int a2 [n][m]; 
 

• If (k + m) % THREADS = = 0 them a3 has a row layout 
     shared int a3 [n][m+k]; 
• To get more general HPF and ScaLAPACK style 2D 

blocked layouts, one needs to add dimensions.   
• Assume r*c = THREADS; 
   shared [b1][b2] int a5 [m][n][r][c][b1][b2]; 
• or equivalently 
    shared [b1*b2] int a5 [m][n][r][c][b1][b2]; 
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Pointers to Shared vs. Arrays 

#define N 100*THREADS 
shared int v1[N], v2[N], sum[N]; 
void main() { 

int i; 
shared int *p1, *p2; 
 
p1=v1; p2=v2; 
for (i=0; i<N; i++, p1++, p2++ )  

     if (i %THREADS= = MYTHREAD) 
  sum[i]= *p1 + *p2; 
} 

• In the C tradition, array can be access through pointers 
• Here is the vector addition example using pointers 

v1 

p1 



8/17/2012 42 

UPC Pointers  

Local Shared 
Private p1 p2 

Shared p3 p4 

Where does the pointer point? 

Where 
does the 
pointer 
reside? 

int *p1;        /* private pointer to local memory */ 
shared int *p2; /* private pointer to shared space */ 
int *shared p3; /* shared pointer to local memory */ 
shared int *shared p4; /* shared pointer to  
                           shared space */ 
Shared to local memory (p3) is not recommended. 



8/17/2012 43 

UPC Pointers  

int *p1;        /* private pointer to local memory */ 
shared int *p2; /* private pointer to shared space */ 
int *shared p3; /* shared pointer to local memory */ 
shared int  *shared p4; /* shared pointer to   
                           shared space */ 

Shared 
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Private 
p1:  

Thread0   Thread1                                       Threadn 

p2:  

p1:  

p2:  

p1:  

p2:  

p3:  

p4:  

p3:  

p4:  

p3:  

p4:  

Pointers to shared often require more storage and are more costly to 
dereference; they may refer to local or remote memory. 
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Common Uses for UPC Pointer Types  

int *p1;  
• These pointers are fast (just like C pointers) 
• Use to access local data in part of code performing local work 
• Often cast a pointer-to-shared to one of these to get faster 

access to shared data that is local 
shared int *p2;  
• Use to refer to remote data 
• Larger and slower due to test-for-local + possible 

communication  
int *shared p3;  
• Not recommended 
shared int  *shared p4;  
• Use to build shared linked structures, e.g., a linked list 
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UPC Pointers  

• In UPC pointers to shared objects have three fields:  
- thread number  
- local address of block 
- phase (specifies position in the block) 

 
 

• Example: Cray T3E implementation 

Phase Thread Virtual Address 

0 37 38 48 49 63 

Virtual Address Thread Phase 



8/17/2012 46 

UPC Pointers 

• Pointer arithmetic supports blocked and non-blocked 
array distributions 

• Casting of shared to private pointers is allowed but 
not vice versa ! 

• When casting a pointer-to-shared to a pointer-to-local, 
the thread number of the pointer to shared may be 
lost 

• Casting of shared to local is well defined only if the 
object pointed to by the pointer to shared has affinity 
with the thread performing the cast 
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Special Functions 

• size_t upc_threadof(shared void *ptr); 
returns the thread number that has affinity to the pointer 
to shared 

• size_t upc_phaseof(shared void *ptr); 
returns the index (position within the block)field of the 
pointer to shared 

• shared void *upc_resetphase(shared void *ptr); resets 
the phase to zero 
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Dynamic Memory Allocation in UPC 

• Dynamic memory allocation of shared memory is 
available in UPC 

• Functions can be collective or not 
- A collective function has to be called by every 

thread and will return the same value to all of them 
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Global Memory Allocation  
shared void *upc_global_alloc(size_t nblocks, 

size_t nbytes); 

   nblocks : number of blocks 
    nbytes : block size 

• Non-collective: called by one thread  
• The calling thread allocates a contiguous memory space in the 

shared space with the shape: 
    shared [nbytes] char[nblocks * nbytes] 

shared void *upc_all_alloc(size_t nblocks,   
size_t nbytes); 

• The same result, but must be called by all threads together 
• All the threads will get the same pointer  
void upc_free(shared void *ptr); 
•Non-collective function; frees the dynamically allocated shared 
memory pointed to by ptr 
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Distributed Arrays Directory Style 

• Many UPC programs avoid the UPC style arrays in 
factor of directories of objects 

typedef shared [] double *sdblptr; 
shared sdblptr directory[THREADS]; 
directory[i]=upc_alloc(local_size*sizeof(double)); 

directory 

• These are also more general: 
• Multidimensional, unevenly distributed 
• Ghost regions around blocks 

physical and 
conceptual 
3D array 
layout 
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Memory Consistency in UPC 

• The consistency model defines the order in which one thread may 
see another threads accesses to memory 

- If you write a program with unsychronized accesses, what 
happens? 

- Does this work? 
data = …            while (!flag) { }; 
flag = 1;           … = data;   // use the data 

• UPC has two types of accesses:  
- Strict: will always appear in order 
- Relaxed: May appear out of order to other threads 

• There are several ways of designating the type, commonly: 
- Use the include file: 

#include <upc_relaxed.h> 

- Which makes all accesses in the file relaxed by default  
- Use strict on variables that are used as synchronization (flag) 
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Synchronization- Fence 

• Upc provides a fence construct 
- Equivalent to a null strict reference, and has the 

syntax 
• upc_fence; 

- UPC ensures that all shared references issued 
before the upc_fence are complete 
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Performance of 
UPC 



Berkeley UPC Compiler  

Compiler-generated C code 

UPC Runtime system 

GASNet Communication System 

Network Hardware 

Platform- 
independent 

Network- 
independent 

Language- 
independent 

Compiler- 
independent 

UPC Code UPC Compiler 
Used by bupc and 

gcc-upc 

Used by Cray 
UPC, CAF, 

Chapel, Titanium, 
and others  
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PGAS Languages have Performance Advantages 
Strategy for acceptance of a new language 
• Make it run faster than anything else 
 
Keys to high performance 
• Parallelism: 

- Scaling the number of processors 
• Maximize single node performance 

- Generate friendly code or use tuned libraries 
(BLAS, FFTW, etc.) 

• Avoid (unnecessary) communication cost 
- Latency, bandwidth, overhead 
- Berkeley UPC and Titanium use GASNet 

communication layer 
• Avoid unnecessary delays due to dependencies 

- Load balance; Pipeline algorithmic dependencies 
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One-Sided vs Two-Sided 

• A one-sided put/get message can be handled directly by a network 
interface with RDMA support 

- Avoid interrupting the CPU or storing data from CPU (preposts) 
• A two-sided messages needs to be matched with a receive to 

identify memory address to put data 
- Offloaded to Network Interface in networks like Quadrics 
- Need to download match tables to interface (from host) 
- Ordering requirements on messages can also hinder bandwidth 

address 

message id 

data payload 

data payload 

one-sided put message 

two-sided message 

network 
 interface 

memory 

host 
CPU 
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One-Sided vs. Two-Sided: Practice 

• InfiniBand: GASNet vapi-conduit and OSU MVAPICH 0.9.5 
• Half power point (N ½ ) differs by one order of magnitude 
• This is not a criticism of the implementation! 

Joint work with Paul Hargrove and Dan Bonachea 
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 NERSC Jacquard 
machine with 
Opteron 
processors 



Ping Pong Latency on a Cray XE6 (Hopper) 
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Bandwidths on Cray XE6 (Hopper) 
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GASNet: Portability and High-Performance 
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GASNet better for latency across machines 

Joint work with UPC Group; GASNet design by Dan Bonachea 
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GASNet excels at mid-range sizes: important for overlap 

GASNet: Portability and High-Performance 

Joint work with UPC Group; GASNet design by Dan Bonachea 



FFT Performance on BlueGene/P 

HPC Challenge Peak as of July 09 is 
~4.5 Tflops on 128k Cores 

• UPC implementation 
consistently outperform 
MPI 

• Uses highly optimized local 
FFT library on each node 

• UPC version avoids 
send/receive 
synchronization 

• Lower overhead 
• Better overlap 
• Better bisection 

bandwidth 
• Numbers are getting close 

to HPC record on BG/P 
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FFT Performance on Cray XT4 

• 1024 Cores of the Cray XT4 
- Uses FFTW for local FFTs 
- Larger the problem size the more effective the overlap 
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Event Driven LU in UPC 

• DAG Scheduling before it’s time 
• Assignment of work is static; schedule is dynamic 
• Ordering needs to be imposed on the schedule 

- Critical path operation: Panel Factorization 
• General issue: dynamic scheduling in partitioned memory 

- Can deadlock in memory allocation 
- “memory constrained” lookahead 
 

some edges omitted 



8/17/2012 69 

UPC HPL Performance 

• Comparison to ScaLAPACK on an Altix, a 2 x 4 process grid 
- ScaLAPACK (block size 64) 25.25 GFlop/s (tried  several block sizes) 
- UPC LU (block size 256) - 33.60 GFlop/s, (block size 64) - 26.47 GFlop/s 

• n = 32000 on a 4x4 process grid 
- ScaLAPACK - 43.34 GFlop/s (block size = 64)  
- UPC - 70.26 Gflop/s (block size = 200) 

•MPI HPL numbers 
from HPCC 
database 

•Large scaling:  
• 2.2 TFlops on 512p,  
• 4.4 TFlops on 1024p 
(Thunder) 

 

Joint work with Parry Husbands 



MILC (QCD) Performance in UPC 

• MILC is Lattice Quantum Chromo-Dynamics application 
• UPC scales better than MPI when carefully optimized 
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A Family of PGAS Languages 
• UPC based on C philosophy / history 

- http://upc-lang.org 
- Free open source compiler: http://upc.lbl.gov 
- Also a gcc variant: http://www.gccupc.org 

• Java dialect: Titanium 
- http://titanium.cs.berkeley.edu 

• Co-Array Fortran 
- Part of Stanford Fortran (subset of features) 
- CAF 2.0 from Rice: http://caf.rice.edu 

• Chapel from Cray (own base language better than Java) 
- http://chapel.cray.com (open source) 

• X10 from IBM also at Rice (Java, Scala,…) 
- http://www.research.ibm.com/x10/ 

• Phalanx from Echelon projects at NVIDIA, LBNL,… 
- C++ PGAS languages with CUDA-like features for GPU clusters 

• Coming soon…. PGAS for Python, aka PyGAS 
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Application Work in PGAS 

• Network simulator in UPC (Steve Hofmeyr, LBNL) 
• Real-space multigrid (RMG) quantum mechanics 

(Shirley Moore, UTK) 
• Landscape analysis, i.e., “Contributing Area 

Estimation” in UPC (Brian Kazian, UCB) 
• GTS Shifter in CAF (Preissl, Wichmann, 
Long, Shalf, Ethier,  
Koniges, LBNL,  
Cray, PPPL)  
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Arrays in a Global Address Space 

• Key features of Titanium arrays 
- Generality: indices may start/end and any point 
- Domain calculus allow for slicing, subarray, 

transpose and other operations without data copies 
• Use domain calculus to identify ghosts and iterate: 

   foreach (p in gridA.shrink(1).domain()) ... 

• Array copies automatically work on intersection 
   gridB.copy(gridA.shrink(1)); 

gridA gridB 

“restricted” (non-
ghost) cells  

ghost 
cells  

intersection (copied 
area) 

Joint work with Titanium group 

Useful in grid 
computations 
including AMR 
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Languages Support Helps Productivity 

C++/Fortran/MPI AMR 
• Chombo package from LBNL 
• Bulk-synchronous comm: 

- Pack boundary data between procs 
- All optimizations done by programmer 

Titanium AMR 
• Entirely in Titanium 
• Finer-grained communication 

- No explicit pack/unpack code 
- Automated in runtime system 

• General approach 
- Language allow programmer optimizations 
- Compiler/runtime does some automatically 

Work by Tong Wen and Philip Colella; Communication optimization      
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Particle/Mesh Method: Heart Simulation 

• Elastic structures in an incompressible fluid. 
- Blood flow, clotting, inner ear, embryo growth, … 

• Complicated parallelization 
- Particle/Mesh method, but  “Particles” connected 

into materials (1D or 2D structures) 
- Communication patterns irregular between particles 

(structures) and mesh (fluid) 

Joint work with Ed Givelberg, Armando Solar-Lezama, Charlie Peskin, Dave McQueen 

2D Dirac Delta Function 

Code Size in Lines 
Fortran Titanium 

8000 4000 

Note: Fortran code is not parallel 
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Bringing Users Along: UPC Experience 

• Ecosystem:  
- Users with a need (fine-grained random access) 
- Machines with RDMA (not full hardware GAS) 
- Common runtime; Commercial and free software 
- Sustained funding and Center procurements 

• Success models: 
- Adoption by users: vectors  MPI, Python and Perl, UPC/CAF 
- Influence traditional models: MPI 1-sided; OpenMP locality control 
- Enable future models: Chapel, X10,… 77 

 

1991 
Active Msgs 
are fast 

1992 First Split-C 
(compiler class) 

1992 
First AC 
(accelerators + 
split memory) 

1993 
Split-C funding 
(DOE) 

1997 
First UPC 
Meeting 

“best of” AC, 
Split-C, PCP 

2001 
First UPC 
Funding 

2003 Berkeley 
Compiler release 

2001 
gcc-upc at Intrepid 

2006 
UPC in NERSC 
procurement 

2002 GASNet 
Spec 

2010 
Hybrid MPI/UPC 

Other GASNet-based languages 



8/17/2012 78 

Summary 

• UPC designed to be consistent with C 
- Ability to use pointers and arrays interchangeably 

• Designed for high performance 
- Memory consistency explicit; Small implementation 
- Transparent runtime  

• gcc version of UPC: 
http://www.gccupc.org/ 

• Berkeley compiler 
http://upc.lbl.gov 

• Language specification and other documents 
http://upc.gwu.edu 

• Vendor compilers: Cray, IBM, HP, SGI,… 

http://upc.lbl.gov/
http://upc.gwu.edu
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