Cloud Computing using
MapReduce, Hadoop, Spark

Andy Konwinski
andyk@cs.berkeley.edu

lab

Why this talk?

e From parallel to distributed
— “Big Data” too big to fit on one computer

« SPMD might not be best for your ...

— Application (compute bound vs. data bound)
— Environment (public clouds)

Outline

e Cloud Overview

* MapReduce

* MapReduce Examples
 Introduction to Hadoop
* Beyond MapReduce
 Summary

What is Cloud Computing?

scalable
self-service

virtualized

utility

managed elastic

economic

pay-as-you-go

What is Cloud Computing?

* Cloud: large Internet services running on 10,000s of machines
(Amazon, Google, Microsoft, etc.)

* Cloud computing: services that let external customers rent
cycles and storage

— Amazon EC2: virtual machines at 8.5¢/hour, billed hourly
— Amazon S3: storage at 15¢/GB/month
— Google AppEngine: free up to a certain quota

Core Cloud Concepts

e Virtualization
* Self-service (personal credit card) & pay-as-you-go

e Economic incentives
— Provider: Sell unused resources

— Customer: no upfront capital costs building data
centers, buying servers, etc

Core Cloud Concepts

e Infinite scale ...

From: Andy Konwinskl <andykiics. berkeley.edu>
To:

Cc:

Sent: Wed May 05 12:31: 24 2010
Subject: Re: Question on recent AWS usage

Hi I

Hope things are well with you. I'm not sure if anybody from the RAD Lab has been in touch with you about this, but a big paper deadline is
coming up and several projects in the RAD Lab are using EC2 extensively for research experiments and we are hitting our limit. The
deadline is Friday and I'm wondering if we can get the limit increased temporarily until Friday. | think our limit may currently be 500
instances, could we getitincreased to a 1000 or 20007

Andy
CS Graduate Student
UC Berkeley

Core Cloud Concepts

* Always available ...

tujitter" Search Q Home Profile Messages Who To Follow

@4sqSupport

&
We're down due to the current Amazon
#EC2 outage. Please bear with us!

CoTweet Favaorite Retweet Reply

Retweeted by cjschris and 39 others

Tl I N AR IR g A B

About Help Blog Status Jobs Terms Privacy Advertisers Businesses Media Developers Resources © 2011 Twitter

Amazon ROS (M. virginia) '# & ﬂ "-I:.- -

Moving Target

Infrastructure as a Service (virtual machines)
=>» Platforms/Software as a Service

Why?
* Managing lots of machines is still hard
* Programming with failures is still hard

Solution: higher-level frameworks, abstractions

Cloud Environment Challenges

* Cheap nodes fail, especially when you have many

— Mean time between failures for 1 node = 3 years
— MTBF for 1000 nodes =1 day

— Solution: Restrict programming model so you can
efficiently "build-in" tault-tolerance (art)

* Commodity network = low bandwidth
— Solution: Push computation to the data

HPC/MPI in the Cloud

« EC2 provides virtual machines, so you can run MPI

e Fault-tolerance:

— Not standard in most MPI distributions (to the
best of my knowledge)

— Recent restart/checkpointing techniques®, but need
the checkpoints to be replicated as well

e Communication?

* https://ftg.lbl.gov/projects/CheckpointRestart

HPC/MPI in the Cloud

* LBLN 138pg report on cloud HPC*

* New HPC specific EC2 instance sizes
— 10 Gbps Ethernet, GPUs

Amazon's cloud is the world's 42nd fastest
supercomputer

Amazon used its EC2 service to build one of the world's fastest HPC clusters

by Jon Brodkin - Nov 15 2011, 7:35am PST

The list of the world's 500 fastest supercomputers came out yesterday with a top 10 that was
unchanged from the previous ranking issued in June. But further down the list, a familiar name is
making a charge: Amazon, with its Elastic Compute Cloud service, built a 17,024-core, 240-teraflop
cluster that now ranks as the 42nd fastest supercomputer in the world.

* tinyurl.com/magellan-report

Latency on EC2 vs Infiniband

+ EC2 mNCSA
280
L
*‘mt aMe ., # M e
.
200 5 P W, D, BT *—i{ u
o tew FAdIPUER o i g
Ty *
& 150 Yee elte e e 4
= e ¥ . ¥ o+ ¥ To¥e + ¥
— *“. 4 4 e gy * * L
"ﬁ"- 4 » "#ﬁ* 4 * M +
=
8 100
o
-
a0

Drl*ﬂ I.l1..l m u

0 200 400 600 g00 1000 1200
Message size (bytes)

Source: Edward Walker. Benchmarking Amazon EC2 for High Performance Computing. ;login:, vol. 33, no. 5, 2008.

Outline

e Cloud Overview

* MapReduce

* MapReduce Examples
 Introduction to Hadoop
* Beyond MapReduce
 Summary

What is MapReduce?

* Data-parallel programming model for
clusters of commodity machines

* Pioneered by Google
— Processes 20 B of data per day

* Popularized by Apache Hadoop project
— Used by Yahoo!, Facebook, Amazon, ...

What has MapReduce been used

for?

* At Google:
— Index building for Google Search
— Article clustering for Google News
— Statistical machine translation

e At Yahoo!:

— Index building for Yahoo! Search
— Spam detection for Yahoo! Mail

* At Facebook:
— Ad optimization
— Spam detection

What has MapReduce been used
for?

* In research:
— Analyzing Wikipedia conflicts (PARC)
— Natural language processing (CMU)
— Bioinformatics (Maryland)
— Particle physics (Nebraska)
— Ocean climate simulation (Washington)
— <Your application here>

MapReduce Goals

* Cloud Environment:
— Commodity nodes (cheap, but unreliable)
— Commodity network (low bandwidth)
— Automatic fault-tolerance (fewer admins)

* Scalability to large data volumes:
— Scan 100 TB on 1 node @ 50 MB/s =24 days
— Scan on 1000-node cluster = 35 minutes

MapReduce Programming Model

list<T, > =» list<T_ >
* Data type: key-value records

list<(K. , V.)> = list<(K_ ., V,)>

1n/

MapReduce Programming Model

Map function:

(K., V..) = list<(K,)>

1n/ inter’ mter

Reduce function:
(K. ..., list<V.

Iinter’

>) 9 liSt<(I<ou’t/ Vout)>

inter

Example: Word Count

def map(line num, line):
foreach word in line.split():
output(word, 1)

def reduce(word, counts):
output(word, sum(counts))

Example: Word Count

def map(line num, line):
foreach word in line.split():
output(word, 1)

def reduce(word, counts):
output(word, counts.size())

Input

the quick
brown
fox

the fox
ate the
mouse

how now
brown
COW

Example: Word Count

Map

Shuffle & Sort

the, 1
brown, 1
fox, 1

Reduce

ate, 1
mouse, 1

Output

brown, 2
fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1
mouse, 1
quick, 1

Optimization: Combiner

* Local “reduce” function for repeated keys
produced by same map

 For associative ops. like sum, count, max
* Decreases amount of intermediate data

* Example:

def combine(key, values):
output(key, sum(values))

Input

the quick
brown
fox

the fox
ate the
mouse

how now
brown
COW

Example: Word Count +

Combiner

Map

how, 1
now, 1
brown,

Shuffle & Sort Reduce

the, 1
brown, 1
fox, 1

1

Output

brown, 2
fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1
mouse, 1
quick, 1

MapReduce Execution Details

Data stored on compute nodes

Mappers preterentially scheduled on same node or
same rack as their input block

— Minimize network use to improve performance

Mappers save outputs to local disk before serving to
reducers

— Efficient recovery when a reducer crashes
— Allows more flexible mapping to reducers

MapReduce Execution Details

Fault Tolerance in MapReduce

1. If a task crashes:
— Retry on another node

* OK for a map because it had no dependencies
* OK for reduce because map outputs are on disk

— If the same task repeatedly fails, fail the job or
ignore that input block

» Note: For the fault tolerance to work, user
tasks must be idempotent and side-effect-free

Fault Tolerance in MapReduce

2. If a node crashes:
— Relaunch its current tasks on other nodes
— Relaunch any maps the node previously ran

* Necessary because their output files were lost
along with the crashed node

Fault Tolerance in MapReduce

3. If a task is going slowly (straggler):
— Launch second copy of task on another node

— Take the output of whichever copy finishes
first, and kill the other one

* Critical for performance in large clusters
(many possible causes of stragglers)

Takeaways

* By providing a restricted programming
model, MapReduce can control job
execution in useful ways:

— Parallelization into tasks
— Placement of computation near data

— Load balancing
— Recovery from failures & stragglers

Outline

e Cloud Overview
* MapReduce

* MapReduce Examples

 Introduction to Hadoop
* Beyond MapReduce
 Summary

1. Sort

Input: (key, value) records
Output: same records, sorted by key

Map: identity function
aardvark
ant
bee
cow
elephant

Reduce: identify function

Trick: Pick partitioning
function p such that
ki <ky=>p(ky) <p(k,) sheep yak |k

aardvark,
elephant

2. Search

e Input: (filename, line) records
e Output: lines matching a given pattern

* Map:
if (line matches pattern):
output(filename, line)

* Reduce: identity function
— Alternative: no reducer (map-only job)

3. Inverted Index

Input: (filename, text) records
Output: list of files containing each word

Map:
foreach word in text.split():
output(word, filename)

Combine: remove duplicates

Reduce:

def reduce(word, filenames):
output(word, sort(filenames))

Inverted Index Example

hamlet.txt tO, hamlet.txt

to be or \ be, hamlet.txt

not to be or, hamlet.txt \ afraid, (12th.txt)

not, hamlet.txt be, (12th.txt, hamlet.txt)
greatness, (12th.txt)

not, (12th.txt, hamlet.txt)
of, (12th.txt)

or, (hamlet.txt)

to, (hamlet.txt)

be, 12th.txt
not, 12th.txt

be .not — afraid, 12th.txt
afraid of of, 12th.txt
greatness greatness, 12th.txt

12th.txt

4. Most Popular Words

e Input: (filename, text) records
e QOutput: the 100 words occurring in most files

 Two-stage solution:
— Job 1:

e Create inverted index, giving (word, list(file)) records

— Job 2:
e Map each (word, list(file)) to (count, word)
e Sort these records by count as in sort job

e Optimizations:
— Map to (word, 1) instead of (word, file) in Job 1

5. Numerical Integration

Input: (start, end) records for sub-ranges to

integrate®
Output: integral of f(x) over entire range
Map:
def map(start, end):
sum = 0
for(x = start; x < end; x += step):
sum += f(x) * step AY

output(“”, sum)

Reduce: - \(x)_/f

def reduce(key, values):
output(key, sum(values))

*Can implement using custom InputFormat

Outline

* Cloud Overview
* MapReduce
* MapReduce Examples

 Introduction to Hadoop

* Beyond MapReduce
 Summary

Hadoop Components

 MapReduce
— Runs jobs submitted by users
— Manages work distribution & fault-tolerance

 Distributed File System (HDEFS)

— Runs on same machines!
— Replicates data 3x for fault-tolerance

i@h a[a]azln]

Typical Hadoop Cluster

Typical Hadoop cluster

Aggregation switch

<—» 8 gigabit
_ <—» 1 gigabit
Rack switch

e 40 nodes/rack, 1000-4000 nodes in cluster

e 1 Gbps bandwidth in rack, 8 Gbps out of rack

 Node specs at Facebook:
8-16 cores, 32 GB RAM, 8 X 1.5 TB disks, no RAID

Distributed File System

Files split into 128MB blocks Namenode

Blocks replicated across
several datanodes (often 3)

Namenode stores metadata
(file names, locations, etc)

Optimized for large files,
sequential reads

Files are append-only

Hadoop

Download from hadoop.apache.org

To install locally, unzip and set JAVA_HOME

Docs: hadoop.apache.org/common/docs/current

Three ways to write jobs:
— Java API

— Hadoop Streaming (for Python, Per], etc)
— Pipes API (C++)

http://hadoop.apache.org/core
http://hadoop.apache.org/common/docs/current

Word Count in Java

public static class MapClass extends MapReduceBase
implements Mapper<LongWritable, Text, Text, IntWritable> {

private final static IntWritable ONE = new IntWritable(1);

public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output,
Reporter reporter) throws IOException {
String line = value.toString();
StringTokenizer itr = new StringTokenizer(line);
while (itr.hasMoreTokens()) {
output.collect(new Text(itr.nextToken()), ONE);
}
}
}

Word Count in Java

public static class Reduce extends MapReduceBase
implements Reducer<Text, IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output,
Reporter reporter) throws IOException {
int sum = 0;
while (values.hasNext()) {
sum += values.next().get();

}
output.collect(key, new IntWritable(sum));

Word Count in Java

public static void main(String[] args) throws Exception {
JobConf conf = new JobConf(WordCount.class);
conf.setJobName("wordcount");

conf.setMapperClass(MapClass.class);
conf.setCombinerClass(Reduce.class);
conf.setReducerClass(Reduce.class);

FileInputFormat.setInputPaths(conf, args[0]);
FileOutputFormat.setOutputPath(conf, new Path(args[1]));

conf.setOutputKeyClass(Text.class); // out keys are words (strings)
conf.setOutputValueClass(IntWritable.class); // values are counts

JobClient.runJob(conf);

Word Count in Python with
Hadoop Streaming

Mapper.py: import sys
for line in sys.stdin:
for word in line.split():
print(word.lower() + "\t" + 1)

Reducer.py: import sys
counts = {}
for line in sys.stdin:
word, count = line.split("\t")
dict[word] = dict.get(word, @) + int(count)
for word, count in counts:
print(word.lower() + "\t" + 1)

Amazon Elastic MapReduce

Simplies configuring, deploying Hadoop
Web interface, command-line tools for
Hadoop jobs on EC2

Data in Amazon S3

Monitors job, shuts down machines when
finished

Elastic MapReduce Ul

Create a New Job Flow Cancel |x

O

DEFINE JOB FLOW

Creating a job floww to process your data using Amazon Elastic MapReduce is simple and quick. Let's begin by giving your job flow a name

and selecting its type. If you don't already hawve an application you'd like to run on Amazon Elastic MapReduce, samples are available to
help vou get started.

Job Flow Name*: My Job Flow

The name can be anything you like and doesn't need to be unique. It's a good idea to name the job flow something
descriptive.

Type*: (= Streaming

A Streaming job flow allows you to write single-step mapper and reducer functions in a language other than java.

() Custom Jar

A

custorm jar on the other hand gives you more complete control over the function of Hadoop but must be a
compiled java program. Amazon Elastic MapReduce supports custom jars developed for Hadoop 0.1B.3.

() Pig Program
Pig is @ SQL-like languange built on top of Hadoop. This option allows you to define a job flow that runs a Pig script,
or set up a job flow that can be used interactively via S5H to run Pig commands.

() Sample Applications

Select a sample application and click Continue. Subsequent forms will be filled with the necessary data to create a
sample Job Flow.

Frrre—— {Streaming) ,%J Word count is a Python application that counts occurrences of each word
. in provided docurments. Learn more and view license

-))
| Continue Required field

Elastic MapReduce Ul

Create a New Job Flow Cancel |x

Enter the number and type of EC2 instances you'd like to run your job flow on.

MNumber of Instances*: -4
limit request form.

Type of Instance*: | Small (m1.small} ?I

learn more about instance types

¥ Show advanced options

Back Continue * Required field

Elastic MapReduce Ul

Contact Us 2 Create an AWS Account
“ebsefyicesm About AWS Products Solutions Resources Support ¥Your Account
Home = Resources = AWS Management Conscle BETA = Amazon Elastic MapReduce Welcome, Rad Lab | Settings | Sign Out
Amazon Elastic Amazon
Amazen B2 MapReduce CloudFront

Your Elastic MapReduce Job Flows

[} showiHide || Refresh || /@ Help

Region: = Us-East v | [Create New Job Flow || (@) Terminate
Viewing: | All ‘-_H & 4 1to1of1 Job Flows
Name State Creation Date Elapsed Time Normalized Instance Hours
My Job Flow 4 STARTING 2009-08-19 14:50 PDT 0 hours 0 minutes o
1 Job Flow selected m
o Ide j-46IL0YQ7 ZPH1 Creation Date: 2009-08-19 14:50 PDT
Name: My Job Flow Start Date: -
State: STARTING End Date: -

Last State Change Reason: Starting instances
Availability Zone: us-east-1b Instance Count: 4 :

—) RN

M

© 2008 - 2009, Amazon Web Services LLC or its affiliates. All right reserved. Feedhack Support Privacy Policy Terms of Use

Outline

* Cloud Overview

* MapReduce

* MapReduce Examples
 Introduction to Hadoop

* Beyond MapReduce

 Summary

Beyond MapReduce

* Other distributed programming models for
distributed computing
— Dryad (Microsoft): general DAG of tasks
— Pregel (Google): bulk synchronous processing
— Percolator (Google): incremental computation
— 5S4 (Yahoo!): streaming computation
— Piccolo (NYU): shared in-memory state
— DryadLINQ (Microsoft): language integration
— Spark (Berkeley): ...

What is Spark?

* Fast, MapReduce-like engine

— In-memory data storage for very fast iterative
queries

— General execution graphs and rich optimizations
— 40x faster than Hadoop in real apps

e Compatible with Hadoop’s storage APIs

— Can read/write to any Hadoop-supported system,
including HDFS, HBase, SequenceFiles, etc

What is Shark?

* Port of Apache Hive to run on Spark

e Compatible with existing Hive data,
metastores, and queries (HiveQL, UDFs, etc)

e Similar speedups of up to 40x

Why go Beyond MapReduce?

 MapReduce greatly simplified big data analysis
e But as soon as it got popular, users wanted
more:

— More complex, multi-stage applications (graph
algorithms, machine learning)

— More interactive ad-hoc queries
— More real-time online processing

Why go Beyond MapReduce?

e Complex jobs, streaming, and interactive
qgueries all need one thing that MapReduce
lacks:

o Efficient primitives for data sharing

i-u-

Iterative algorithm Interactive data mining

Why go Beyond MapReduce?

e Complex jobs, streaming, and interactive
gueries all need one thing that MapReduce
lacks:

o Efficient primitives for data sharing

—>
s = ™

In MapReduce, the only way to share data across
jobs is stable storage (e.g. HDFS) -> slow!

Iterative algorithm Interactive data mining

How Spark Solves This

e Let applications share data in memory
through “resilient distributed datasets” (RDDs)

e Support general graphs of operators in a

query

Iterative algorithm Interactive data mining

Why Sharing is Fundamental

 “Funnels” view of data lifecycle:

. o

data

SU”"ﬂa”es , Ad-hoc queries
ETL and ‘ L
real-time | /’Iif:::fil\\ \ ;
— [| l©\:\

Why Sharing is Fundamental

 “Funnels” view of data lifecycle:

data \7 .
S Summaries
/ T \\ ll

\Il \\
ETL and 7 - L
. e ! Nl e
real-time

-
St ="

What Hadoop
was designed for

P

90% of
Hadoop jobs

Spark Programming Interface

 Clean language-integrated API in Scala
e Usable interactively from Scala interpreter
e Java and SQL also in the works

Example: Log Mining

Load error messages from a log into memory, then
interactively search for various patterns

lines = spark.textFile(*“hdfs://...")
errors = lines.Tilter(.startsWith(““ERROR™))
messages = errors.map(_.split(°\t’)(2))
cachedMsgs = messages.cache()

cachedMsgs.fTilter(.contains(“foo’)).count
cachedMsgs.fTilter(.contains(“bar’)).count

Result: scaled to 1 TB data in 5-7 sec
(vs 170 sec for on-disk data)

Example: Logistic Regression

Goal: find best line separating two sets of points

random initial line

targe

Logistic Regression Performance

4000
_ 3500 110 s [iteration
“ 3000 j
Q
£ 2500
E” 2000 Hadoop
E 1500 W Spark
2 1000 '\

500
; — first iteration 8o s

further iterations 6 s
1 5 10 20

Number of Iterations

Other Engine Features

* Controllable data partitioning to minimize
communication

PageRank Performance

N

o

o
|

1? w Hadoop

[EEN

U1

o
I

W Basic Spark

Spark + Controlled
23 Partitioning

U
o

Iteration time (s)
[
o
S

o

Beyond Spark

Mesos, letting it
efficiently share
ARSIl o< | Node | Node | Node

with Spark, Hadoop &
others

* Write your own
framework using

WWW.Imesos-project.org

http://www.mesos-project.org

Outline

* Cloud Overview

* MapReduce

* MapReduce Examples
 Introduction to Hadoop
* Beyond MapReduce

* Summary

sumimary

 MapReduce’s data-parallel programming model
hides complexity of distribution and fault tolerance

* Principal philosophies:
— Make 1t scale, so you can throw hardware at problems

— Make it cheap, saving hardware, programmer and
administration costs (but necessitating fault tolerance)

* MapReduce is not suitable for all problems, new
programming models and frameworks still being
created

Resources

Hadoop: http://hadoop.apache.org/common

Video tutorials: www.cloudera.com/hadoop-
trammg

Amazon Elastic MapReduce:
http://docs.amazonwebservices.com/ElasticMapRe
duce/latest/GettmgStartedGu1de/

Spark: http://spark-project.org

Mesos: http://mesos-project.org

http://hadoop.apache.org/common
http://www.cloudera.com/hadoop-training
http://www.cloudera.com/hadoop-training
http://docs.amazonwebservices.com/ElasticMapReduce/latest/GettingStartedGuide/
http://docs.amazonwebservices.com/ElasticMapReduce/latest/GettingStartedGuide/
http://spark-project.org
http://spark-project.org
http://spark-project.org
http://mesos-project.org
http://mesos-project.org
http://mesos-project.org

Thanks!

HPC Cloud Projects

e Magellan (DOE, Argonne, LBNL)

— 720 nodes, 5760 cores, InfiniBand network

— Goals: explore suitability of cloud model, APIs and
hardware to scientific computing, and implications on
security and cost

« SGI HPC Cloud (“Cyclone”)

— Commercial on-demand HPC offering
— Includes CPU and GPU nodes
— Includes “software as a service” for select domains

* Probably others as well

Outline

MapReduce architecture
Sample applications
Introduction to Hadoop

Higher-level query languages: Pig & Hive

Cloud programming research
Clouds and HPC

Motivation

* MapReduce is powerful: many algorithms
can be expressed as a series of MR jobs

 Butit s fairly low-level: must think about
keys, values, partitioning, etc.

* Can we capture common “job patterns”?

Pig

e Started at Yahoo! Research

* Runs about 50% ot Yahoo!’s jobs

* Features:
— Expresses sequences of MapReduce jobs
— Data model: nested “bags” of items

— Provides relational (SQL) operators
(JOIN, GROUP BY, etc)

— Easy to plug in Java functions

An Example Problem

Suppose you have etV Load Pages

user data in one file, |
website data in
another, and you
need to find the top
5 most visited pages
by users aged 18-25.

1—
cuponun
ottt
oy i
TaketopS

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt

In MapReduce

reporter.setStatus("OK"

import java.ic.IOExceptio lp.setOutputKeyClass(Text.class);

import java.util.ArrayList; i lp.setoutputValueclass (Text.class)
import java.util.Iterateor; lp.setMapperclass(LoadPages.class);
import java.util.Listj // Do the crose product and collect the values FileInputFormat.addInputPath(lp, new
for (String s1 : first) { Fath("/user/gates/pages~));
import org.apache.hadocp.fa.Path; for (String 82 : second) { FileoutputFormat.setoutputPath{lp,
import org.apache.hadoop.io.LongWritable; String outval = key + %, % + s1 + %, + s2; new Path{®/user/gates/tmp/indexed pages=<});
import org.apache.hadoop.io.Text; oo.collect(null, new Text{outval)); 1p.setHumReduceTasks (0);
import org.apache.hadocp.ic.Writable; reporter.setEtatus("OK"); Job loadPages = new Job(lp);:
import org.apache.hadocp.io.WritableComparable; ¥
import org.apache.hadoop.mapred.Filelnputformat; 3} JobConf 1fu = new JobConf (MEExample.class);
impert erg.apache.hadocp.mapred.FiletutputFormat; ¥ lfu.setJobNama("Load and Filter Users"
import org.apache.hadocp.mapred.JobConf 3 3 lfu.setInputFormat {TextInputFormat . class] H
import org.apache.hadoop.mapred.KeyValueTextInputFormat public static class LoadJoined extends MapReduceBase 1fu.setoutputKeyClass|Text.class);
import org.apache.hadoop.mapred.Mapper; implements Mapper<Text, Text, Text, LongWritable> { 1fu.setoutputValueClass(Text.class);
import org.apache.hadocp.mapred.MapheduceBase; lfu.setMapperclass(LoadAndFilterUsers.class);
import org.apache.hadoop.mapred.outputCollector; public void map(FileInputFormat.add InputPath{lfu, new
import org.apache.hadoop.mapred.fecordReader; Text k, Bath("/user/gates/users")};
import org.apache.hadoop.mapred.Reducer; Text wval, FileoutputFormat.setoutputPath(lfu,

import org.apache.hadoop.mapred.Reporter;

import org.apache.hadoop.mapred.SequencefilelnputFormat;
import org.apache.hadoop.mapred.SequenceFiletutputFormat ;
impoert org.apashe.hadoop.mapred. TextInputFarmat

import org.apache.hadoop.mapred.jobsontrol.Job;

cutputCollector<Text, LongWritable> oc,
Reporter reporter) throws I0Exception {
/4 Find the url
string line = wal.tesString();:
int firstComma = line.indexOLf(',");

new Path(*/user/gates/emp/filtered_usera"));
1fu.setNumReduceTasks (0] ;
Job leadusers = new Job{lfu);

JobCenf join = new JobConf(MRExample.clase)j

import org.apache.hadoop.mapred.jobsontrol.dobs cntrol; int secondComma = line.indexof(',', first Comma); join.setJobName(=Join Users and Pages®);
impert org.apache.hadocp.mapred.lib.IdentityMapper; string key = line.substring({firstComma, secondComma); jein.setInputFormat (KeyValueTextInputFormat.class);
// drop the rest of the record, I don't need it anymore, join.setoutputKeyClass (Text.clasa);
publis slase MEExample { /4 just pass a 1 for the L.cnmb.ine:.l’zeduc:: to sum instead. jein.setoubputValuetlass (Text.class);
public static class LoadPages extends MapReduceBase Text cutKey = new Text(key join.setMapperclass(IdentityMap per.class);
implements Mapper<LongWritable, Text, Text, Text> { oc.collect (outKey, new Lonqk‘ritabLe(lL]). Join.setReducerClass (Join.clasa);
3 FileInputFormat.addIinputPath(join, new
public veid map(LongWritable k, Text wval, i3 Fath{"/user/gates/tmp/indexed_pagas"));
outputCollector<Taxt, Text> oo, public statiz class 1s d FileInputFormat.addInputPath(join, new
Reporter reporter) throws IOException { implements Reducer<Text, LongWritable, WritableComparable, Path{"/user/gates/tmp/filtered usara<));
// Pull the key out Writable> { FileCutputFormat.setoutputPath(join, new
string line = val.teString(): FPath{"/user/gates/tmp/joined"));
int firstComma = line.indexOf(',"); public velid reduce(jein.setNumReduceTasks (50);
String key = line.substring(0, firstComma); Text key, Jeb joindob = new Jeb{jein);
string valus = line.substring(firstComma + 1); Iterator<LongWritable® iter, jeinJob.addbependingdob(loadPages);
Text cutKey = new Text(key); cutputCollector<WritableComparable, Writable> oc, jeindok.addbependingJob(loadUsers);
Ff Prepend an index to the value so we know which file Reporter reporter) throws [0Exception {
/4 it came from. /¢ Add up all the values we ses Joboonf group = new JobConf (MRE xample.class);
Taxt outVal = new Text("l" + valum); group.setJobName ("Group URLS™);
oc.collect (outKey, cutVal); leng sum = 0 group.setInputFormat (KeyValueTextInputFormat.class);
1 while (itec.hasMext(}) { group.setOutputleyClass (Text.class);
1 sum += iter.next{).get{); group.setoutputValueclass (LongWritable.class);
public static class LoadAndFilterUsers extends MapReduceBase reporter.setstatus("0K") group,. setiutputFormat { Sequencerl leoutputFormat .clasa);
implemente Mapper<LongWeitable, Text, Text, Text> { 3} group.setMapperClass|LoadJoined.class);
group.setCombinerclass (ReduceUrls.class);
public void map{LengWritakls k, Text wval, oz.oollect (key, new LongWritable({sum)); group.setReducerclass (ReduceUrls.class);
outputCollector<Text, Text> o, } FileInputFormat.addInputPath(group, new
Reporter reporter) throws IOException { T Fath("/user/gates/tmp/joined"));
/¢ Pull the key cut public static class LeadClicks extends MapReduceBase FileOutputFormat . setOutputPath (group, new
String lime = val.toString(); implements Mapper<WritableCemparable, Writable, LongWritable, Path{"/user/gates/tmp/groupad"));
int firstComma = line.indexOf{', "} Text> { group. setNumBeduceTasks (S0);
string valus = line.substring{ firstComma + 1); Job groupdob = new Job(group);
int age = Integer.paraelnt(value); public vold map(grouplob. addbependingJob{jeindob);
if (age < 18 || age = 25) return; WritableComparable kKey,
String key = line.substring{0, firstComma); Writable wal, JobConf topl0l = new JobConf (MEExample.clas=s);
Taxt cutKay = new Taxt(key); cutputfollector<longWritable, Text> oo, toplll. setobName("Top 100 sites");
// Prepend an index to the value so we know which file Reporter reporter) throws I[OException | topl0n.setInputFormat {SegquencerileInputFormat.clasa);
Ff it came from. oc.collect | (LongWritablejval, (Textlkey); toplil.setoutputkeyClass (LongWritable.class))
Text cutVal = new Text("2~ + value); 3 topl0l.setoutputValueClass (Text.class);
oc.collect (outKey, cutVal); ¥ toplol.setoutputFormat (SequenceFileCutputF ormat.class);
3 public static slass LimitClicks extends MapReduceBase toplil.setMapperclass (Loadtlicks.class);
3} implements Reducer<LongWritable, Text, LongWritable, Texts> { topl0l.setfombinerclass (Limitclicks.class);
public static class Join extends MapReduceBase toplol.setReducerclass (Limitclicka.clasa);
implements Reducer<Text, Text, Text, Text> (int count = 0; FileInputFormat.addInputPath(toplold, new
public void reduce(Path{"/user/gates/tmp/grouped”) ;
public void reduce(Text key, LongWritable key, FileoutputFormat.sat0utputPath (toplod, naw
Iterator<Text> iter, Tterator<Text> iter, Path{"/user/gates/topli0sitesforuseraslBto25"));
cutputfollector<Text, Text> oo, outputfollector<LongWritable, Text> oo, topl0l.setNumReduceTasks (1) ;
Reporter reporter) throws IOException { Reporter reporter) throws IOException { Job limit = new Job(toploo);
/¢ For each value, figure cut which file it's from and limit.addbependinglob{grouplob) ;
store it /4 oOnly output the first 100 records
// accordingly. while (count < 100 && iter.hasNext{)) { JobContrel o = new JobControl (*Find top 100 sites for users
List<String> first = new ArrayList<string=(); oc.collect(key, iter.next()); 18 ko 23");
List=String> second = new ArrayList<sString=(}; countte; de.addJob(loadPages) ;
3} jo.adddob{ loadUsers)
while (iter.hasMext(}) { 1 je.adddob{jeindab);
Text t = lter.mext(); } dc.addJob{groupdob);
string value = t.tosString(); public static veoid main(String[] args) throws I0Exception { jo.adddob(limit);
if (value.charRt{0) == ‘'1°} JobConf lp = new JobConf (MRExample.class); Je.run{);
first.add(value.substring(1y); 1p.=satJobNames | "Load Pages"); ¥
else second.add(value.substring(l)); lp.setInputFormat (TextInputFormat.clasa); 3}

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt

Users =
Filtered =

Pages =
Joined =
Grouped =
Summed =

Sorted =
Top5

store Top5

In P1g Latin

load ‘users’ as (name, age);
filter Users by
age >= 18 and age <= 25;
load ‘pages’ as (user, url);
join Filtered by name, Pages by user;
group Joined by url;
foreach Grouped generate group,
count(Joined) as clicks;
order Summed by clicks desc;
limit Sorted 5;

into ‘topS5sites’;

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt

Translation to MapReduce

Notice how naturally the components of the job translate into Pig Latin.

| *User‘s = load ..
- »Filtered = filter ..

| 7 \\Pages = load ..

_ *Joined = join ..
l_/>Gr‘ouped = group ..

| Summed = .. count()..
_/Sorted = order ..

|

e Top5 = limit ..

'

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt

Translation to MapReduce

Notice how naturally the components of the job translate into Pig Latin.

—~ Users = load ..
t—>Filtered = filter ..
\\Pages = load ..
*Joined = join ..
__———Grouped = group ..
/////»Summed = .. count()..
Sorted = order ..
Top5 = limit ..

Job 3

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt

Hive

* Developed at Facebook
* Used for most Facebook jobs
* Relational database built on Hadoop

— Maintains table schemas

— SQL-like query language (which can also
call Hadoop Streaming scripts)
— Supports table partitioning,

complex data types, sampling,
some query optimization

	Cloud Computing using�MapReduce, Hadoop, Spark
	Why this talk?
	Outline
	What is Cloud Computing?
	What is Cloud Computing?
	Core Cloud Concepts
	Core Cloud Concepts
	Core Cloud Concepts
	Moving Target
	Cloud Environment Challenges
	HPC/MPI in the Cloud
	HPC/MPI in the Cloud
	Latency on EC2 vs Infiniband
	Outline
	What is MapReduce?
	What has MapReduce been used for?
	What has MapReduce been used for?
	MapReduce Goals
	MapReduce Programming Model
	MapReduce Programming Model
	Example: Word Count
	Example: Word Count
	Example: Word Count
	Optimization: Combiner
	Example: Word Count + Combiner
	MapReduce Execution Details
	MapReduce Execution Details
	Fault Tolerance in MapReduce
	Fault Tolerance in MapReduce
	Fault Tolerance in MapReduce
	Takeaways
	Outline
	1. Sort
	2. Search
	3. Inverted Index
	Inverted Index Example
	4. Most Popular Words
	5. Numerical Integration
	Outline
	Hadoop Components
	Typical Hadoop Cluster
	Typical Hadoop cluster
	Distributed File System
	Hadoop
	Word Count in Java
	Word Count in Java
	Word Count in Java
	Word Count in Python with�Hadoop Streaming
	Amazon Elastic MapReduce
	Elastic MapReduce UI
	Elastic MapReduce UI
	Elastic MapReduce UI
	Outline
	Beyond MapReduce
	What is Spark?
	What is Shark?
	Why go Beyond MapReduce?
	Why go Beyond MapReduce?
	Why go Beyond MapReduce?
	How Spark Solves This
	Why Sharing is Fundamental
	Why Sharing is Fundamental
	Spark Programming Interface
	Example: Log Mining
	Example: Logistic Regression
	Logistic Regression Performance
	Other Engine Features
	Beyond Spark
	Outline
	Summary
	Resources
	Thanks!
	HPC Cloud Projects
	Outline
	Motivation
	Pig
	An Example Problem
	In MapReduce
	In Pig Latin
	Translation to MapReduce
	Translation to MapReduce
	Hive

