
Cloud Computing using
MapReduce, Hadoop, Spark

Andy Konwinski
andyk@cs.berkeley.edu

Why this talk?

• From parallel to distributed
– “Big Data” too big to fit on one computer

• SPMD might not be best for your …
– Application (compute bound vs. data bound)
– Environment (public clouds)

Outline

• Cloud Overview
• MapReduce
• MapReduce Examples
• Introduction to Hadoop
• Beyond MapReduce
• Summary

What is Cloud Computing?

self-service
scalable

economic

elastic

virtualized

managed

utility

pay-as-you-go

What is Cloud Computing?
• Cloud: large Internet services running on 10,000s of machines

(Amazon, Google, Microsoft, etc.)

• Cloud computing: services that let external customers rent
cycles and storage
– Amazon EC2: virtual machines at 8.5¢/hour, billed hourly
– Amazon S3: storage at 15¢/GB/month
– Google AppEngine: free up to a certain quota

Core Cloud Concepts
• Virtualization

• Self-service (personal credit card) & pay-as-you-go

• Economic incentives

– Provider: Sell unused resources
– Customer: no upfront capital costs building data

centers, buying servers, etc

Core Cloud Concepts

• Infinite scale …

Core Cloud Concepts

• Always available …

Moving Target

Infrastructure as a Service (virtual machines)
  Platforms/Software as a Service

Why?
• Managing lots of machines is still hard
• Programming with failures is still hard

Solution: higher-level frameworks, abstractions

Cloud Environment Challenges
• Cheap nodes fail, especially when you have many

– Mean time between failures for 1 node = 3 years
– MTBF for 1000 nodes = 1 day
– Solution: Restrict programming model so you can

efficiently “build-in” fault-tolerance (art)

• Commodity network = low bandwidth
– Solution: Push computation to the data

HPC/MPI in the Cloud
• EC2 provides virtual machines, so you can run MPI

• Fault-tolerance:

– Not standard in most MPI distributions (to the
best of my knowledge)

– Recent restart/checkpointing techniques*, but need
the checkpoints to be replicated as well

• Communication?

* https://ftg.lbl.gov/projects/CheckpointRestart

HPC/MPI in the Cloud
• LBLN 138pg report on cloud HPC*
• New HPC specific EC2 instance sizes

– 10 Gbps Ethernet, GPUs

* tinyurl.com/magellan-report

Latency on EC2 vs Infiniband

Source: Edward Walker. Benchmarking Amazon EC2 for High Performance Computing. ;login:, vol. 33, no. 5, 2008.

Outline

• Cloud Overview
• MapReduce
• MapReduce Examples
• Introduction to Hadoop
• Beyond MapReduce
• Summary

What is MapReduce?

• Data-parallel programming model for
clusters of commodity machines

• Pioneered by Google
– Processes 20 PB of data per day

• Popularized by Apache Hadoop project
– Used by Yahoo!, Facebook, Amazon, …

What has MapReduce been used
for?

• At Google:
– Index building for Google Search
– Article clustering for Google News
– Statistical machine translation

• At Yahoo!:
– Index building for Yahoo! Search
– Spam detection for Yahoo! Mail

• At Facebook:
– Ad optimization
– Spam detection

What has MapReduce been used
for?

• In research:
– Analyzing Wikipedia conflicts (PARC)
– Natural language processing (CMU)
– Bioinformatics (Maryland)
– Particle physics (Nebraska)
– Ocean climate simulation (Washington)
– <Your application here>

MapReduce Goals

• Cloud Environment:
– Commodity nodes (cheap, but unreliable)
– Commodity network (low bandwidth)
– Automatic fault-tolerance (fewer admins)

• Scalability to large data volumes:

– Scan 100 TB on 1 node @ 50 MB/s = 24 days
– Scan on 1000-node cluster = 35 minutes

MapReduce Programming Model

list<Tin>  list<Tout>

• Data type: key-value records

list<(Kin, Vin)>  list<(Kout, Vout)>

MapReduce Programming Model

Map function:
(Kin, Vin)  list<(Kinter, Vinter)>

Reduce function:

(Kinter, list<Vinter>)  list<(Kout, Vout)>

Example: Word Count

def map(line_num, line):
 foreach word in line.split():
 output(word, 1)

def reduce(word, counts):
 output(word, sum(counts))

Example: Word Count

def map(line_num, line):
 foreach word in line.split():
 output(word, 1)

def reduce(word, counts):
 output(word, counts.size())

Example: Word Count

the quick
brown

fox

the fox
ate the
mouse

how now
brown

cow

Map

Map

Map

Reduce

Reduce

brown, 2
fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1

mouse, 1
quick, 1

the, 1
brown, 1

fox, 1

quick, 1

the, 1
fox, 1
the, 1

how, 1
now, 1

brown, 1
ate, 1

mouse, 1

cow, 1

Input Map Shuffle & Sort Reduce Output

Optimization: Combiner

• Local “reduce” function for repeated keys
produced by same map

• For associative ops. like sum, count, max
• Decreases amount of intermediate data

• Example:
def combine(key, values):
 output(key, sum(values))

Example: Word Count +
Combiner

the quick
brown

fox

the fox
ate the
mouse

how now
brown

cow

Map

Map

Map

Reduce

Reduce

brown, 2
fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1

mouse, 1
quick, 1

the, 1
brown, 1

fox, 1

quick, 1

how, 1
now, 1

brown, 1
ate, 1

mouse, 1

cow, 1

Input Map Shuffle & Sort Reduce Output

the, 1

the, 1
fox, 1
the, 2

MapReduce Execution Details
• Data stored on compute nodes

• Mappers preferentially scheduled on same node or

same rack as their input block
– Minimize network use to improve performance

• Mappers save outputs to local disk before serving to

reducers
– Efficient recovery when a reducer crashes
– Allows more flexible mapping to reducers

MapReduce Execution Details

Block 1

Block 2

Block 3

Driver

Fault Tolerance in MapReduce

1. If a task crashes:
– Retry on another node

• OK for a map because it had no dependencies
• OK for reduce because map outputs are on disk

– If the same task repeatedly fails, fail the job or
ignore that input block

Note: For the fault tolerance to work, user
tasks must be idempotent and side-effect-free

Fault Tolerance in MapReduce

2. If a node crashes:
– Relaunch its current tasks on other nodes
– Relaunch any maps the node previously ran

• Necessary because their output files were lost
along with the crashed node

Fault Tolerance in MapReduce

3. If a task is going slowly (straggler):
– Launch second copy of task on another node
– Take the output of whichever copy finishes

first, and kill the other one

• Critical for performance in large clusters
(many possible causes of stragglers)

Takeaways

• By providing a restricted programming
model, MapReduce can control job
execution in useful ways:
– Parallelization into tasks
– Placement of computation near data
– Load balancing
– Recovery from failures & stragglers

Outline

• Cloud Overview
• MapReduce
• MapReduce Examples
• Introduction to Hadoop
• Beyond MapReduce
• Summary

1. Sort
• Input: (key, value) records
• Output: same records, sorted by key

• Map: identity function
• Reduce: identify function

• Trick: Pick partitioning

function p such that
k1 < k2 => p(k1) < p(k2)

pig
sheep
yak
zebra

aardvark
ant

bee
cow
elephant

Map

Map

Map

Reduce

Reduce

ant, bee

zebra

aardvark,
elephant

cow

pig

sheep, yak

[A-M]

[N-Z]

2. Search
• Input: (filename, line) records
• Output: lines matching a given pattern

• Map:
 if (line matches pattern):
 output(filename, line)

• Reduce: identity function

– Alternative: no reducer (map-only job)

3. Inverted Index
• Input: (filename, text) records
• Output: list of files containing each word

• Map:
 foreach word in text.split():
 output(word, filename)

• Combine: remove duplicates

• Reduce:
 def reduce(word, filenames):
 output(word, sort(filenames))

Inverted Index Example

afraid, (12th.txt)
be, (12th.txt, hamlet.txt)
greatness, (12th.txt)
not, (12th.txt, hamlet.txt)
of, (12th.txt)
or, (hamlet.txt)
to, (hamlet.txt)

to be or
not to be

hamlet.txt

be not
afraid of
greatness

12th.txt

to, hamlet.txt
be, hamlet.txt
or, hamlet.txt
not, hamlet.txt

be, 12th.txt
not, 12th.txt
afraid, 12th.txt
of, 12th.txt
greatness, 12th.txt

4. Most Popular Words
• Input: (filename, text) records
• Output: the 100 words occurring in most files

• Two-stage solution:

– Job 1:
• Create inverted index, giving (word, list(file)) records

– Job 2:
• Map each (word, list(file)) to (count, word)
• Sort these records by count as in sort job

• Optimizations:

– Map to (word, 1) instead of (word, file) in Job 1

5. Numerical Integration
• Input: (start, end) records for sub-ranges to

integrate*
• Output: integral of f(x) over entire range
• Map:

 def map(start, end):
 sum = 0
 for(x = start; x < end; x += step):
 sum += f(x) * step
 output(“”, sum)

• Reduce:
 def reduce(key, values):
 output(key, sum(values))

*Can implement using custom InputFormat

Outline

• Cloud Overview
• MapReduce
• MapReduce Examples
• Introduction to Hadoop
• Beyond MapReduce
• Summary

Hadoop Components

• MapReduce
– Runs jobs submitted by users
– Manages work distribution & fault-tolerance

• Distributed File System (HDFS)

– Runs on same machines!
– Replicates data 3x for fault-tolerance

Typical Hadoop Cluster

Typical Hadoop cluster

• 40 nodes/rack, 1000-4000 nodes in cluster
• 1 Gbps bandwidth in rack, 8 Gbps out of rack
• Node specs at Facebook:

8-16 cores, 32 GB RAM, 8×1.5 TB disks, no RAID

Aggregation switch

Rack switch

Distributed File System
• Files split into 128MB blocks
• Blocks replicated across

several datanodes (often 3)
• Namenode stores metadata

(file names, locations, etc)
• Optimized for large files,

sequential reads
• Files are append-only

Namenode

Datanodes

1
2
3
4

1
2
4

2
1
3

1
4
3

3
2
4

File1

Hadoop

• Download from hadoop.apache.org
• To install locally, unzip and set JAVA_HOME
• Docs: hadoop.apache.org/common/docs/current

• Three ways to write jobs:

– Java API
– Hadoop Streaming (for Python, Perl, etc)
– Pipes API (C++)

http://hadoop.apache.org/core
http://hadoop.apache.org/common/docs/current

Word Count in Java
 public static class MapClass extends MapReduceBase
 implements Mapper<LongWritable, Text, Text, IntWritable> {

 private final static IntWritable ONE = new IntWritable(1);

 public void map(LongWritable key, Text value,
 OutputCollector<Text, IntWritable> output,
 Reporter reporter) throws IOException {
 String line = value.toString();
 StringTokenizer itr = new StringTokenizer(line);
 while (itr.hasMoreTokens()) {
 output.collect(new Text(itr.nextToken()), ONE);
 }
 }
 }

Word Count in Java
 public static class Reduce extends MapReduceBase
 implements Reducer<Text, IntWritable, Text, IntWritable> {

 public void reduce(Text key, Iterator<IntWritable> values,
 OutputCollector<Text, IntWritable> output,
 Reporter reporter) throws IOException {
 int sum = 0;
 while (values.hasNext()) {
 sum += values.next().get();
 }
 output.collect(key, new IntWritable(sum));
 }
 }

Word Count in Java
 public static void main(String[] args) throws Exception {
 JobConf conf = new JobConf(WordCount.class);
 conf.setJobName("wordcount");

 conf.setMapperClass(MapClass.class);
 conf.setCombinerClass(Reduce.class);
 conf.setReducerClass(Reduce.class);

 FileInputFormat.setInputPaths(conf, args[0]);
 FileOutputFormat.setOutputPath(conf, new Path(args[1]));

 conf.setOutputKeyClass(Text.class); // out keys are words (strings)
 conf.setOutputValueClass(IntWritable.class); // values are counts

 JobClient.runJob(conf);
 }

Word Count in Python with
Hadoop Streaming
import sys
for line in sys.stdin:
 for word in line.split():
 print(word.lower() + "\t" + 1)

import sys
counts = {}
for line in sys.stdin:
 word, count = line.split("\t")
 dict[word] = dict.get(word, 0) + int(count)
for word, count in counts:
 print(word.lower() + "\t" + 1)

Mapper.py:

Reducer.py:

Amazon Elastic MapReduce

• Simplies configuring, deploying Hadoop
• Web interface, command-line tools for

Hadoop jobs on EC2
• Data in Amazon S3
• Monitors job, shuts down machines when

finished

Elastic MapReduce UI

Elastic MapReduce UI

Elastic MapReduce UI

Outline

• Cloud Overview
• MapReduce
• MapReduce Examples
• Introduction to Hadoop
• Beyond MapReduce
• Summary

Beyond MapReduce

• Other distributed programming models for
distributed computing
– Dryad (Microsoft): general DAG of tasks
– Pregel (Google): bulk synchronous processing
– Percolator (Google): incremental computation
– S4 (Yahoo!): streaming computation
– Piccolo (NYU): shared in-memory state
– DryadLINQ (Microsoft): language integration
– Spark (Berkeley): …

What is Spark?

• Fast, MapReduce-like engine
– In-memory data storage for very fast iterative

queries
– General execution graphs and rich optimizations
– 40x faster than Hadoop in real apps

• Compatible with Hadoop’s storage APIs
– Can read/write to any Hadoop-supported system,

including HDFS, HBase, SequenceFiles, etc

What is Shark?

• Port of Apache Hive to run on Spark
• Compatible with existing Hive data,

metastores, and queries (HiveQL, UDFs, etc)
• Similar speedups of up to 40x

• MapReduce greatly simplified big data analysis
• But as soon as it got popular, users wanted

more:
– More complex, multi-stage applications (graph

algorithms, machine learning)
– More interactive ad-hoc queries
– More real-time online processing

Why go Beyond MapReduce?

Why go Beyond MapReduce?

• Complex jobs, streaming, and interactive
queries all need one thing that MapReduce
lacks:

• Efficient primitives for data sharing
St

ag
e

3

St
ag

e
2

St
ag

e
1

Iterative algorithm

Query 1

Query 2

Query 3

Interactive data mining

St
ag

e
3

St
ag

e
2

Why go Beyond MapReduce?
St

ag
e

1

Iterative algorithm

Query 1

Query 2

Query 3

Interactive data mining

In MapReduce, the only way to share data across
jobs is stable storage (e.g. HDFS) -> slow!

• Complex jobs, streaming, and interactive
queries all need one thing that MapReduce
lacks:

• Efficient primitives for data sharing

St
ag

e
3

St
ag

e
2

How Spark Solves This

• Let applications share data in memory
through “resilient distributed datasets” (RDDs)

• Support general graphs of operators in a
query

St
ag

e
1

Iterative algorithm

Query 1

Query 2

Query 3

Interactive data mining

one-time
load

Why Sharing is Fundamental
• “Funnels” view of data lifecycle:

Ad-hoc queries

ETL and
real-time

Summaries data

Why Sharing is Fundamental
• “Funnels” view of data lifecycle:

Ad-hoc queries

ETL and
real-time

Summaries data

90% of
Hadoop jobs

What Hadoop
was designed for

Spark Programming Interface

• Clean language-integrated API in Scala
• Usable interactively from Scala interpreter
• Java and SQL also in the works

Example: Log Mining
Load error messages from a log into memory, then
interactively search for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(_.startsWith(“ERROR”))

messages = errors.map(_.split(‘\t’)(2))

cachedMsgs = messages.cache()

Block 1

Block 2

Block 3

Worker

Worker

Worker

Driver

cachedMsgs.filter(_.contains(“foo”)).count

cachedMsgs.filter(_.contains(“bar”)).count

. . .

tasks

results

Cache 1

Cache 2

Cache 3

Base RDD Transformed RDD

Action

Result: full-text search of Wikipedia in <1 sec (vs
20 sec for on-disk data)

Result: scaled to 1 TB data in 5-7 sec
(vs 170 sec for on-disk data)

Example: Logistic Regression

Goal: find best line separating two sets of points

target

random initial line

Logistic Regression Performance

110 s / iteration

first iteration 80 s
further iterations 6 s

Other Engine Features

• Controllable data partitioning to minimize
communication

171

72

23

0

50

100

150

200

Ite
ra

tio
n

tim
e

(s
)

PageRank Performance

Hadoop

Basic Spark

Spark + Controlled
Partitioning

Beyond Spark

• Write your own
framework using
Mesos, letting it
efficiently share
resources and data
with Spark, Hadoop &
others

Spark Hadoop MPI

Mesos

Node Node Node Node

…

www.mesos-project.org

http://www.mesos-project.org

Outline

• Cloud Overview
• MapReduce
• MapReduce Examples
• Introduction to Hadoop
• Beyond MapReduce
• Summary

Summary
• MapReduce’s data-parallel programming model

hides complexity of distribution and fault tolerance

• Principal philosophies:
– Make it scale, so you can throw hardware at problems
– Make it cheap, saving hardware, programmer and

administration costs (but necessitating fault tolerance)

• MapReduce is not suitable for all problems, new
programming models and frameworks still being
created

Resources
• Hadoop: http://hadoop.apache.org/common
• Video tutorials: www.cloudera.com/hadoop-

training

• Amazon Elastic MapReduce:
http://docs.amazonwebservices.com/ElasticMapRe
duce/latest/GettingStartedGuide/

• Spark: http://spark-project.org

• Mesos: http://mesos-project.org

http://hadoop.apache.org/common
http://www.cloudera.com/hadoop-training
http://www.cloudera.com/hadoop-training
http://docs.amazonwebservices.com/ElasticMapReduce/latest/GettingStartedGuide/
http://docs.amazonwebservices.com/ElasticMapReduce/latest/GettingStartedGuide/
http://spark-project.org
http://spark-project.org
http://spark-project.org
http://mesos-project.org
http://mesos-project.org
http://mesos-project.org

Thanks!

HPC Cloud Projects
• Magellan (DOE, Argonne, LBNL)

– 720 nodes, 5760 cores, InfiniBand network
– Goals: explore suitability of cloud model, APIs and

hardware to scientific computing, and implications on
security and cost

• SGI HPC Cloud (“Cyclone”)

– Commercial on-demand HPC offering
– Includes CPU and GPU nodes
– Includes “software as a service” for select domains

• Probably others as well

Outline

• MapReduce architecture
• Sample applications
• Introduction to Hadoop
• Higher-level query languages: Pig & Hive
• Cloud programming research
• Clouds and HPC

Motivation

• MapReduce is powerful: many algorithms
can be expressed as a series of MR jobs

• But it’s fairly low-level: must think about
keys, values, partitioning, etc.

• Can we capture common “job patterns”?

Pig

• Started at Yahoo! Research
• Runs about 50% of Yahoo!’s jobs
• Features:

– Expresses sequences of MapReduce jobs
– Data model: nested “bags” of items
– Provides relational (SQL) operators

(JOIN, GROUP BY, etc)
– Easy to plug in Java functions

An Example Problem

 Suppose you have
user data in one file,
website data in
another, and you
need to find the top
5 most visited pages
by users aged 18-25.

Load Users Load Pages

Filter by age

Join on name

Group on url

Count clicks

Order by clicks

Take top 5

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt

In MapReduce

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt

Users = load ‘users’ as (name, age);
Filtered = filter Users by
 age >= 18 and age <= 25;
Pages = load ‘pages’ as (user, url);
Joined = join Filtered by name, Pages by user;
Grouped = group Joined by url;
Summed = foreach Grouped generate group,
 count(Joined) as clicks;
Sorted = order Summed by clicks desc;
Top5 = limit Sorted 5;

store Top5 into ‘top5sites’;

In Pig Latin

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt

Translation to MapReduce
Notice how naturally the components of the job translate into Pig Latin.

Load Users Load Pages

Filter by age

Join on name

Group on url

Count clicks

Order by clicks

Take top 5

Users = load …
Filtered = filter …
Pages = load …
Joined = join …
Grouped = group …
Summed = … count()…
Sorted = order …
Top5 = limit …

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt

Translation to MapReduce
Notice how naturally the components of the job translate into Pig Latin.

Load Users Load Pages

Filter by age

Join on name

Group on url

Count clicks

Order by clicks

Take top 5

Users = load …
Filtered = filter …
Pages = load …
Joined = join …
Grouped = group …
Summed = … count()…
Sorted = order …
Top5 = limit …

Job 1

Job 2

Job 3

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt

Hive
• Developed at Facebook
• Used for most Facebook jobs
• Relational database built on Hadoop

– Maintains table schemas
– SQL-like query language (which can also

call Hadoop Streaming scripts)
– Supports table partitioning,

complex data types, sampling,
some query optimization

	Cloud Computing using�MapReduce, Hadoop, Spark
	Why this talk?
	Outline
	What is Cloud Computing?
	What is Cloud Computing?
	Core Cloud Concepts
	Core Cloud Concepts
	Core Cloud Concepts
	Moving Target
	Cloud Environment Challenges
	HPC/MPI in the Cloud
	HPC/MPI in the Cloud
	Latency on EC2 vs Infiniband
	Outline
	What is MapReduce?
	What has MapReduce been used for?
	What has MapReduce been used for?
	MapReduce Goals
	MapReduce Programming Model
	MapReduce Programming Model
	Example: Word Count
	Example: Word Count
	Example: Word Count
	Optimization: Combiner
	Example: Word Count + Combiner
	MapReduce Execution Details
	MapReduce Execution Details
	Fault Tolerance in MapReduce
	Fault Tolerance in MapReduce
	Fault Tolerance in MapReduce
	Takeaways
	Outline
	1. Sort
	2. Search
	3. Inverted Index
	Inverted Index Example
	4. Most Popular Words
	5. Numerical Integration
	Outline
	Hadoop Components
	Typical Hadoop Cluster
	Typical Hadoop cluster
	Distributed File System
	Hadoop
	Word Count in Java
	Word Count in Java
	Word Count in Java
	Word Count in Python with�Hadoop Streaming
	Amazon Elastic MapReduce
	Elastic MapReduce UI
	Elastic MapReduce UI
	Elastic MapReduce UI
	Outline
	Beyond MapReduce
	What is Spark?
	What is Shark?
	Why go Beyond MapReduce?
	Why go Beyond MapReduce?
	Why go Beyond MapReduce?
	How Spark Solves This
	Why Sharing is Fundamental
	Why Sharing is Fundamental
	Spark Programming Interface
	Example: Log Mining
	Example: Logistic Regression
	Logistic Regression Performance
	Other Engine Features
	Beyond Spark
	Outline
	Summary
	Resources
	Thanks!
	HPC Cloud Projects
	Outline
	Motivation
	Pig
	An Example Problem
	In MapReduce
	In Pig Latin
	Translation to MapReduce
	Translation to MapReduce
	Hive

