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Why this talk? 

• From parallel to distributed 
– “Big Data” too big to fit on one computer 

• SPMD might not be best for your … 
– Application (compute bound vs. data bound) 
– Environment (public clouds) 



Outline 

• Cloud Overview 
• MapReduce 
• MapReduce Examples 
• Introduction to Hadoop 
• Beyond MapReduce 
• Summary 



What is Cloud Computing? 

self-service 
scalable 

economic 

elastic 

virtualized 

managed 

utility 

pay-as-you-go 



What is Cloud Computing? 
• Cloud: large Internet services running on 10,000s of machines 

(Amazon, Google, Microsoft, etc.) 
 

• Cloud computing: services that let external customers rent 
cycles and storage 
– Amazon EC2: virtual machines at 8.5¢/hour, billed hourly 
– Amazon S3: storage at 15¢/GB/month 
– Google AppEngine: free up to a certain quota 

 



Core Cloud Concepts 
• Virtualization 

 
• Self-service (personal credit card) & pay-as-you-go 

 
• Economic incentives 

– Provider: Sell unused resources 
– Customer: no upfront capital costs building data 

centers, buying servers, etc 



Core Cloud Concepts 

• Infinite scale … 



Core Cloud Concepts 

• Always available … 



Moving Target 

Infrastructure as a Service (virtual machines) 
      Platforms/Software as a Service  
 
Why? 
• Managing lots of machines is still hard 
• Programming with failures is still hard 
 
Solution: higher-level frameworks, abstractions 

 
 



Cloud Environment Challenges 
• Cheap nodes fail, especially when you have many 

– Mean time between failures for 1 node = 3 years 
– MTBF for 1000 nodes = 1 day 
– Solution: Restrict programming model so you can 

efficiently “build-in” fault-tolerance (art) 
 

• Commodity network = low bandwidth 
– Solution: Push computation to the data 

 



HPC/MPI in the Cloud 
• EC2 provides virtual machines, so you can run MPI 

 
• Fault-tolerance: 

– Not standard in most MPI distributions (to the 
best of my knowledge) 

– Recent restart/checkpointing techniques*, but need 
the checkpoints to be replicated as well 

 
• Communication? 

 

* https://ftg.lbl.gov/projects/CheckpointRestart 
 



HPC/MPI in the Cloud 
• LBLN 138pg report on cloud HPC* 
• New HPC specific EC2 instance sizes 

– 10 Gbps Ethernet, GPUs 

* tinyurl.com/magellan-report 



Latency on EC2 vs Infiniband 

Source: Edward Walker. Benchmarking Amazon EC2 for High Performance Computing. ;login:, vol. 33, no. 5, 2008. 
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What is MapReduce? 

• Data-parallel programming model for 
clusters of commodity machines 
 

• Pioneered by Google 
– Processes 20 PB of data per day 

• Popularized by Apache Hadoop project 
– Used by Yahoo!, Facebook, Amazon, … 



What has MapReduce been used 
for? 

• At Google: 
– Index building for Google Search 
– Article clustering for Google News 
– Statistical machine translation 

• At Yahoo!: 
– Index building for Yahoo! Search 
– Spam detection for Yahoo! Mail 

• At Facebook: 
– Ad optimization 
– Spam detection 

 



What has MapReduce been used 
for? 

• In research: 
– Analyzing Wikipedia conflicts (PARC) 
– Natural language processing (CMU)  
– Bioinformatics (Maryland) 
– Particle physics (Nebraska) 
– Ocean climate simulation (Washington) 
– <Your application here> 



MapReduce Goals 

• Cloud Environment: 
– Commodity nodes (cheap, but unreliable) 
– Commodity network (low bandwidth) 
– Automatic fault-tolerance (fewer admins) 

 
• Scalability to large data volumes: 

– Scan 100 TB on 1 node @ 50 MB/s = 24 days 
– Scan on 1000-node cluster = 35 minutes 

 



MapReduce Programming Model 

list<Tin>      list<Tout> 
 
• Data type: key-value records 
 

list<(Kin, Vin)>    list<(Kout, Vout)> 
 



MapReduce Programming Model 

Map function: 
(Kin, Vin)    list<(Kinter, Vinter)> 

 
Reduce function: 

(Kinter, list<Vinter>)  list<(Kout, Vout)> 
 



Example: Word Count 

def map(line_num, line): 
    foreach word in line.split(): 
        output(word, 1) 
 
 
def reduce(word, counts): 
    output(word, sum(counts)) 
 



Example: Word Count 

def map(line_num, line): 
    foreach word in line.split(): 
        output(word, 1) 
 
 
def reduce(word, counts): 
    output(word, counts.size()) 
 



Example: Word Count 

the quick 
brown 

fox 

the fox 
ate the 
mouse 

how now 
brown 

cow 

Map 

Map 

Map 

Reduce 

Reduce 

brown, 2 
fox, 2 
how, 1 
now, 1 
the, 3 

ate, 1 
cow, 1 

mouse, 1 
quick, 1 

the, 1 
brown, 1 

fox, 1 

quick, 1 

the, 1 
fox, 1 
the, 1 

how, 1 
now, 1 

brown, 1 
ate, 1 

mouse, 1 

cow, 1 

Input Map Shuffle & Sort Reduce Output 



Optimization: Combiner 

• Local “reduce” function for repeated keys 
produced by same map 

• For associative ops. like sum, count, max 
• Decreases amount of intermediate data 

 

• Example: 
def combine(key, values): 
    output(key, sum(values)) 
 



Example: Word Count + 
Combiner 

the quick 
brown 

fox 

the fox 
ate the 
mouse 

how now 
brown 

cow 

Map 

Map 

Map 

Reduce 

Reduce 

brown, 2 
fox, 2 
how, 1 
now, 1 
the, 3 

ate, 1 
cow, 1 

mouse, 1 
quick, 1 

the, 1 
brown, 1 

fox, 1 

quick, 1 

how, 1 
now, 1 

brown, 1 
ate, 1 

mouse, 1 

cow, 1 

Input Map Shuffle & Sort Reduce Output 

the, 1 

the, 1 
fox, 1 
the, 2 



MapReduce Execution Details 
• Data stored on compute nodes 

 
• Mappers preferentially scheduled on same node or 

same rack as their input block 
– Minimize network use to improve performance 

 
• Mappers save outputs to local disk before serving to 

reducers 
– Efficient recovery when a reducer crashes 
– Allows more flexible mapping to reducers 



MapReduce Execution Details 

Block 1 

Block 2 

Block 3 

Driver 



Fault Tolerance in MapReduce 

1. If a task crashes: 
– Retry on another node 

• OK for a map because it had no dependencies 
• OK for reduce because map outputs are on disk 

– If the same task repeatedly fails, fail the job or 
ignore that input block 

Note: For the fault tolerance to work, user 
tasks must be idempotent and side-effect-free 



Fault Tolerance in MapReduce 

2. If a node crashes: 
– Relaunch its current tasks on other nodes 
– Relaunch any maps the node previously ran 

• Necessary because their output files were lost 
along with the crashed node 



Fault Tolerance in MapReduce 

3. If a task is going slowly (straggler): 
– Launch second copy of task on another node 
– Take the output of whichever copy finishes 

first, and kill the other one 
 

• Critical for performance in large clusters 
(many possible causes of stragglers) 



Takeaways 

• By providing a restricted programming 
model, MapReduce can control job 
execution in useful ways: 
– Parallelization into tasks 
– Placement of computation near data 
– Load balancing 
– Recovery from failures & stragglers 
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• Beyond MapReduce 
• Summary 



1. Sort 
• Input: (key, value) records 
• Output: same records, sorted by key 

 
• Map: identity function 
• Reduce: identify function 

 
• Trick: Pick partitioning 

function p such that 
k1 < k2 => p(k1) < p(k2) 

pig 
sheep 
yak 
zebra 

aardvark 
ant 

bee 
cow 
elephant 

Map 

Map 

Map 

Reduce 

Reduce 

ant, bee 

zebra 

aardvark, 
elephant 

cow 

pig 

sheep, yak 

[A-M] 

[N-Z] 



2. Search 
• Input: (filename, line) records 
• Output: lines matching a given pattern 

 
• Map:  
     if (line matches pattern): 
        output(filename, line) 

 
• Reduce: identity function 

– Alternative: no reducer (map-only job) 



3. Inverted Index 
• Input: (filename, text) records 
• Output: list of files containing each word 

 
• Map:  
     foreach word in text.split(): 
        output(word, filename) 
 

• Combine: remove duplicates 
 

• Reduce: 
   def reduce(word, filenames):   
      output(word, sort(filenames)) 

 



Inverted Index Example 

afraid, (12th.txt) 
be, (12th.txt, hamlet.txt) 
greatness, (12th.txt) 
not, (12th.txt, hamlet.txt) 
of, (12th.txt) 
or, (hamlet.txt) 
to, (hamlet.txt) 

to be or 
not to be 

hamlet.txt 

be not 
afraid of 
greatness 

12th.txt 

to, hamlet.txt 
be, hamlet.txt 
or, hamlet.txt 
not, hamlet.txt 
 
 

be, 12th.txt 
not, 12th.txt 
afraid, 12th.txt 
of, 12th.txt 
greatness, 12th.txt 
 
 



4. Most Popular Words 
• Input: (filename, text) records 
• Output: the 100 words occurring in most files 

 
• Two-stage solution: 

– Job 1: 
• Create inverted index, giving (word, list(file)) records 

– Job 2: 
• Map each (word, list(file)) to (count, word) 
• Sort these records by count as in sort job 

 
• Optimizations: 

– Map to (word, 1) instead of (word, file) in Job 1 



5. Numerical Integration 
• Input: (start, end) records for sub-ranges to 

integrate* 
• Output: integral of f(x) over entire range 
• Map:  

      def map(start, end): 
         sum = 0 
         for(x = start; x < end; x += step): 
            sum += f(x) * step 
         output(“”, sum) 

• Reduce: 
  def reduce(key, values):   
      output(key, sum(values)) 

*Can implement using custom InputFormat 
 



Outline 

• Cloud Overview 
• MapReduce 
• MapReduce Examples 
• Introduction to Hadoop 
• Beyond MapReduce 
• Summary 



Hadoop Components 

• MapReduce 
– Runs jobs submitted by users 
– Manages work distribution & fault-tolerance 

 
• Distributed File System (HDFS) 

– Runs on same machines! 
– Replicates data 3x for fault-tolerance 

 



Typical Hadoop Cluster 



Typical Hadoop cluster 

• 40 nodes/rack, 1000-4000 nodes in cluster 
• 1 Gbps bandwidth in rack, 8 Gbps out of rack 
• Node specs at Facebook: 

8-16 cores, 32 GB RAM, 8×1.5 TB disks, no RAID 

Aggregation switch 

Rack switch 



Distributed File System 
• Files split into 128MB blocks 
• Blocks replicated across 

several datanodes (often 3) 
• Namenode stores metadata 

(file names, locations, etc) 
• Optimized for large files, 

sequential reads 
• Files are append-only 

Namenode 

Datanodes 

1 
2 
3 
4 

1 
2 
4 

2 
1 
3 

1 
4 
3 

3 
2 
4 

File1 



Hadoop 

• Download from hadoop.apache.org 
• To install locally, unzip and set JAVA_HOME 
• Docs: hadoop.apache.org/common/docs/current 

 
• Three ways to write jobs: 

– Java API 
– Hadoop Streaming (for Python, Perl, etc) 
– Pipes API (C++) 

http://hadoop.apache.org/core
http://hadoop.apache.org/common/docs/current


Word Count in Java 
 public static class MapClass extends MapReduceBase 
    implements Mapper<LongWritable, Text, Text, IntWritable> { 
     
    private final static IntWritable ONE = new IntWritable(1); 
     
    public void map(LongWritable key, Text value,  
                    OutputCollector<Text, IntWritable> output,  
                    Reporter reporter) throws IOException { 
      String line = value.toString(); 
      StringTokenizer itr = new StringTokenizer(line); 
      while (itr.hasMoreTokens()) { 
        output.collect(new Text(itr.nextToken()), ONE); 
      } 
    } 
  } 



Word Count in Java 
 public static class Reduce extends MapReduceBase 
    implements Reducer<Text, IntWritable, Text, IntWritable> { 
     
    public void reduce(Text key, Iterator<IntWritable> values, 
                       OutputCollector<Text, IntWritable> output,  
                       Reporter reporter) throws IOException { 
      int sum = 0; 
      while (values.hasNext()) { 
        sum += values.next().get(); 
      } 
      output.collect(key, new IntWritable(sum)); 
    } 
  } 



Word Count in Java 
 public static void main(String[] args) throws Exception { 
    JobConf conf = new JobConf(WordCount.class); 
    conf.setJobName("wordcount"); 
 
    conf.setMapperClass(MapClass.class);         
    conf.setCombinerClass(Reduce.class); 
    conf.setReducerClass(Reduce.class); 
     
    FileInputFormat.setInputPaths(conf, args[0]); 
    FileOutputFormat.setOutputPath(conf, new Path(args[1])); 
 
    conf.setOutputKeyClass(Text.class); // out keys are words (strings) 
    conf.setOutputValueClass(IntWritable.class); // values are counts 
             
    JobClient.runJob(conf); 
  } 



Word Count in Python with 
Hadoop Streaming 
import sys 
for line in sys.stdin: 
  for word in line.split(): 
    print(word.lower() + "\t" + 1) 

import sys 
counts = {} 
for line in sys.stdin: 
  word, count = line.split("\t") 
    dict[word] = dict.get(word, 0) + int(count) 
for word, count in counts: 
  print(word.lower() + "\t" + 1) 

Mapper.py: 

Reducer.py: 



Amazon Elastic MapReduce 

• Simplies configuring, deploying Hadoop 
• Web interface, command-line tools for 

Hadoop jobs on EC2 
• Data in Amazon S3 
• Monitors job, shuts down machines when 

finished 
 



Elastic MapReduce UI 



Elastic MapReduce UI 



Elastic MapReduce UI 
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Beyond MapReduce 

• Other distributed programming models for 
distributed computing 
– Dryad (Microsoft): general DAG of tasks 
– Pregel (Google): bulk synchronous processing 
– Percolator (Google): incremental computation 
– S4 (Yahoo!): streaming computation 
– Piccolo (NYU): shared in-memory state 
– DryadLINQ (Microsoft): language integration 
– Spark (Berkeley): … 



What is Spark? 

• Fast, MapReduce-like engine 
– In-memory data storage for very fast iterative 

queries 
– General execution graphs and rich optimizations 
– 40x faster than Hadoop in real apps 

• Compatible with Hadoop’s storage APIs 
– Can read/write to any Hadoop-supported system, 

including HDFS, HBase, SequenceFiles, etc 



What is Shark? 

• Port of Apache Hive to run on Spark 
• Compatible with existing Hive data, 

metastores, and queries (HiveQL, UDFs, etc) 
• Similar speedups of up to 40x 



• MapReduce greatly simplified big data analysis 
• But as soon as it got popular, users wanted 

more: 
– More complex, multi-stage applications (graph 

algorithms, machine learning) 
– More interactive ad-hoc queries 
– More real-time online processing 

Why go Beyond MapReduce?  



Why go Beyond MapReduce? 

• Complex jobs, streaming, and interactive 
queries all need one thing that MapReduce 
lacks: 

• Efficient primitives for data sharing 
St
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e 

3 
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Iterative algorithm 

Query 1 

Query 2 

Query 3 

Interactive data mining 
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Why go Beyond MapReduce? 
St

ag
e 

1 

Iterative algorithm 

Query 1 

Query 2 

Query 3 

Interactive data mining 

In MapReduce, the only way to share data across 
jobs is stable storage (e.g. HDFS) -> slow! 

• Complex jobs, streaming, and interactive 
queries all need one thing that MapReduce 
lacks: 

• Efficient primitives for data sharing 



St
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e 
3 
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e 
2 

How Spark Solves This 

• Let applications share data in memory 
through “resilient distributed datasets” (RDDs) 

• Support general graphs of operators in a 
query 

St
ag

e 
1 

Iterative algorithm 

Query 1 

Query 2 

Query 3 

Interactive data mining 

one-time 
load 



Why Sharing is Fundamental 
• “Funnels” view of data lifecycle: 

Ad-hoc queries 

ETL and 
real-time 

Summaries data 



Why Sharing is Fundamental 
• “Funnels” view of data lifecycle: 

Ad-hoc queries 

ETL and 
real-time 

Summaries data 

90% of 
Hadoop jobs 

What Hadoop 
was designed for 



Spark Programming Interface 

• Clean language-integrated API in Scala 
• Usable interactively from Scala interpreter 
• Java and SQL also in the works 



Example: Log Mining 
Load error messages from a log into memory, then 
interactively search for various patterns 

lines = spark.textFile(“hdfs://...”) 

errors = lines.filter(_.startsWith(“ERROR”)) 

messages = errors.map(_.split(‘\t’)(2)) 

cachedMsgs = messages.cache() 

Block 1 

Block 2 

Block 3 

Worker 

Worker 

Worker 

Driver 

cachedMsgs.filter(_.contains(“foo”)).count 

cachedMsgs.filter(_.contains(“bar”)).count 

. . . 

tasks 

results 

Cache 1 

Cache 2 

Cache 3 

Base RDD Transformed RDD 

Action 

Result: full-text search of Wikipedia in <1 sec (vs 
20 sec for on-disk data) 

Result: scaled to 1 TB data in 5-7 sec 
(vs 170 sec for on-disk data) 



Example: Logistic Regression 

Goal: find best line separating two sets of points 

target 

random initial line 



Logistic Regression Performance 

110 s / iteration 

first iteration 80 s 
further iterations 6 s 



Other Engine Features 

• Controllable data partitioning to minimize 
communication 
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23 
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) 

PageRank Performance 

Hadoop

Basic Spark

Spark + Controlled
Partitioning



Beyond Spark 

• Write your own 
framework using 
Mesos, letting it 
efficiently share 
resources and data 
with Spark, Hadoop & 
others 

Spark Hadoop MPI 

Mesos 

Node Node Node Node 

… 

www.mesos-project.org 
 

  

http://www.mesos-project.org
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Summary 
• MapReduce’s data-parallel programming model 

hides complexity of distribution and fault tolerance 
 

• Principal philosophies: 
– Make it scale, so you can throw hardware at problems 
– Make it cheap, saving hardware, programmer and 

administration costs (but necessitating fault tolerance) 
 

• MapReduce is not suitable for all problems, new 
programming models and frameworks still being 
created 



Resources 
• Hadoop: http://hadoop.apache.org/common  
• Video tutorials: www.cloudera.com/hadoop-

training 
 

• Amazon Elastic MapReduce: 
http://docs.amazonwebservices.com/ElasticMapRe
duce/latest/GettingStartedGuide/ 

 
• Spark: http://spark-project.org 

 
• Mesos: http://mesos-project.org 

 
 

 

http://hadoop.apache.org/common
http://www.cloudera.com/hadoop-training
http://www.cloudera.com/hadoop-training
http://docs.amazonwebservices.com/ElasticMapReduce/latest/GettingStartedGuide/
http://docs.amazonwebservices.com/ElasticMapReduce/latest/GettingStartedGuide/
http://spark-project.org
http://spark-project.org
http://spark-project.org
http://mesos-project.org
http://mesos-project.org
http://mesos-project.org


Thanks! 

 



HPC Cloud Projects 
• Magellan (DOE, Argonne, LBNL) 

– 720 nodes, 5760 cores, InfiniBand network 
– Goals: explore suitability of cloud model, APIs and 

hardware to scientific computing, and implications on 
security and cost 

 
• SGI HPC Cloud (“Cyclone”) 

– Commercial on-demand HPC offering 
– Includes CPU and GPU nodes 
– Includes “software as a service” for select domains 

 
• Probably others as well 



Outline 

• MapReduce architecture 
• Sample applications 
• Introduction to Hadoop 
• Higher-level query languages: Pig & Hive 
• Cloud programming research 
• Clouds and HPC 



Motivation 

• MapReduce is powerful: many algorithms 
can be expressed as a series of MR jobs 
 

• But it’s fairly low-level: must think about 
keys, values, partitioning, etc. 
 

• Can we capture common “job patterns”? 



Pig 

• Started at Yahoo! Research 
• Runs about 50% of Yahoo!’s jobs 
• Features: 

– Expresses sequences of MapReduce jobs 
– Data model: nested “bags” of items 
– Provides relational (SQL) operators 

(JOIN, GROUP BY, etc) 
– Easy to plug in Java functions 



An Example Problem 

    Suppose you have 
user data in one file, 
website data in 
another, and you 
need to find the top 
5 most visited pages 
by users aged 18-25. 

Load Users Load Pages 

Filter by age 

Join on name 

Group on url 

Count clicks 

Order by clicks 

Take top 5 

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt 



In MapReduce 

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt 



Users    = load ‘users’ as (name, age); 
Filtered = filter Users by  
                  age >= 18 and age <= 25;  
Pages    = load ‘pages’ as (user, url); 
Joined   = join Filtered by name, Pages by user; 
Grouped  = group Joined by url; 
Summed   = foreach Grouped generate group, 
                   count(Joined) as clicks; 
Sorted   = order Summed by clicks desc; 
Top5     = limit Sorted 5; 
 
store Top5 into ‘top5sites’; 

In Pig Latin 

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt 



Translation to MapReduce 
Notice how naturally the components of the  job translate into Pig Latin. 

Load Users Load Pages 

Filter by age 

Join on name 

Group on url 

Count clicks 

Order by clicks 

Take top 5 

Users = load … 
Filtered = filter …  
Pages = load … 
Joined = join … 
Grouped = group … 
Summed = … count()… 
Sorted = order … 
Top5 = limit … 

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt 



Translation to MapReduce 
Notice how naturally the components of the  job translate into Pig Latin. 

Load Users Load Pages 

Filter by age 

Join on name 

Group on url 

Count clicks 

Order by clicks 

Take top 5 

Users = load … 
Filtered = filter …  
Pages = load … 
Joined = join … 
Grouped = group … 
Summed = … count()… 
Sorted = order … 
Top5 = limit … 

Job 1 

Job 2 

Job 3 

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt 



Hive 
• Developed at Facebook 
• Used for most Facebook jobs 
• Relational database built on Hadoop 

– Maintains table schemas 
– SQL-like query language (which can also 

call Hadoop Streaming scripts) 
– Supports table partitioning, 

complex data types, sampling, 
some query optimization 
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