

Programming with Angelic Nondeterminism
Shaon Barman, Nicholas Tung, Joel Galenson

Future work

Refinement
● Angelic programs are refined until we create a program

free of choice statements. This means implementing an-
gels with subprograms which may themselves be angelic

● A refinement should not allow traces not allowed in the
refinee

● We need a way to link an angelic program to the refinee.

● We do this by allowing those subprograms to return
only those values that angels returned in the refinee.
This is done with queues.

Angelic entanglement
● Angelic programs can create numerous traces.

● Difficult to find insight in so many demonstrations.
● We say two choice statements are entangled if they are

not independent.

● Another way of saying this is that two choice state-
ments compensate for each other and cannot change
independently

● Entanglement can be used to classify traces, so that only
a limited number of representative traces are shown to
the programmer.

Implementing a parallel scan

Say we want to implement a parallel scan algorithm in time
O(log n).

def scan(x : Array[Int])
 y : Array[Int]
 for (step 0 until log n)←
 // this inner loop can be executed in parallel
 for (r 0 until n)←
 if (choose(true,false))
 // actual computation
 y[r] = x[r-choose(n)]+x[r-choose(n)]
 else
 y[r] = x[r]
 x = y
 return x

An example execution is shown in the figure left The outer
for loop limits the demonstrations to only use log n steps.

We can also add a counter (near the “actual computation”
comment) in order to limit the number of adds, to ask the
oracle if there exists a work efficient algorithm.

Having added this counter constraint, we found that the
angels cannot generate a demonstration using log n time
steps for the outer loop. We found that the outer loop re-
quired 2*log n steps.

Angelic programming

Motivation

Why hasn’t Moore’s Law revolutionized programming?
In model checking, cycles fuel bug discovery, improving
code quality, but programmers still write programs with
their bare hands. Can we give them a coding assistant?

Key inspiration

We learn and design algorithms by studying examples,
before understanding or writing pseudocode. Can an
oracle generate these examples for us?

Angelic nondeterminism

We developed a language that allows the programmer
to ask an oracle for demonstrations of an algorithm's
execution before the algorithm is developed.

The oracle provides values that the programmer does
not yet know how to compute. The programmer then
generalizes these executions into an algorithm.

The oracle is an angelically nondeterministic choice op-
erator (it looks into the future of the execution).

Our current implementation uses a parallel backtrack-
ing solver to find correct executions. Correctness is
defined in the program by assertions.

Example angelic program

Imagine we want to know whether to reverse a list with
a forward or backward traversal. We first ask an oracle
for a demonstration.

Angelic Program

def reverse(list) {
 while (choose(true,false)) {
 choose(Node).next = choose(Node)
 }
 reversedList = choose(Node)
 assert reversedList is reversal of list
 return reversedList
}

Demonstration

This execution right (Figure 1) is neither forward nor
backward because the oracle is too unconstrained, so
we need to revise the angelic program to walk the list in
order. This can by accessing the list using an iterator.

// v1 = new MyClass()
// v1.a = choose([-3, 3])
// v1.b = choose(true, false)

Synthesis constructs in Scala
We embedded synthesis constructs in Scala, and implement them using the
SKETCH project's CEGIS solver (which in turn uses SAT solvers).

Why Scala?

Compared with SKETCH, Scala is an general purpose language, with less non-
standard syntax. Scala is expressive, and has an advanced type system. It also uses
the JVM and interoperates with Java code.

Sketching constructs
● Data structure constructs (using type annotations),

class MyClass(a : Int @ Range(-3 to 3), b : Boolean)
val v1 : MyClass = !!

● For performance and clarity of implementation, most solving logic uses com-
piler transformations, lowering Scala to the existing SKETCH language.

Current progress
● Scala to SKETCH uses graph rewriting to do most lowering operations (rewriting

class methods as functions, converting program statements to C-like semantics).

● A Scala compiler plugin emits GXL (an XML-based graph format). Since the
program is now a graph instead of a tree, symbols are no longer special entit-
ies; they are only graph nodes.

● GrGen, a fast algebraic graph transformation framework, is used. GrGen has
an expressive language for productions (“rewrite rules”).

● SKETCH AST nodes then need to be constructed; this is done using a mini-
language, which generates appropriate Java code.

● “Hello world” programs (just recently) working.

Figure 2
A demonstration of a parallel scan with n=4

Figure 1
A demonstration of a list reversal

	Slide 1

