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The shift to parallel processing 

 Parallel processing is here 
 
 

  

Intel Processor Clock Speed 

“    This shift toward increasing parallelism 
is not a triumphant stride forward based 
on breakthroughs in novel software and 
architectures for parallelism; instead, 
this plunge into parallelism is actually a 
retreat from even greater challenges 
that thwart efficient silicon 
implementation of traditional 
uniprocessor architectures. 
               - The Berkeley View [1] 
 

“ 

[1] Krste Asanovic et al. “The Landscape of Parallel Computing 
Research: A View from Berkeley”  December 2006 
 



Writing Fast Code is Hard 
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Finding Best Implementation is Hard 

Naïve 

implementation 

Best 

performing 

Figure from R. Vuduc 

Autotuning to find parameters for best 
performance 



Productivity vs Performance 

 Domain experts prefer to use high-level languages 
such as Python or MATLAB 

 However, to achieve sufficient performance, 
computationally-intensive parts of applications must 
be rewritten in low-level languages 

 Parallel platform and input parameters determine 
the best-performing parallel implementation 

 ? 
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The Productivity-Performance Gap 
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Selective Embedded Just-In-Time Specialization  
(SEJITS)  

Key Idea: Generate, compile, and execute 
high performance parallel code at runtime 
using code transformation, introspection, 
variant selection and other features of high-
level languages [2]. 
 
Invisibly to the user. 

[2] B. Catanzaro, S. Kamil, Y. Lee, K. Asanovic, J. Demmel, K. Keutzer, J. Shalf, K. Yelick, and A. Fox. SEJITS: 
Getting productivity and performance with selective embedded JIT specialization. In Workshop on 
Programming Models for Emerging Architectures (PMEA 2009), Raleigh, NC, October 2009.  



Selective Embedded JIT Specialization (SEJITS) 
 

 Productivity-level language (PLL), e.g. Python for 
applications 

  “Specializers” generate efficiency-level language 
(ELL) code targeted to hardware 

 Specialize specific computation 

 Code generation happens at runtime 

 Specializers can incorporate autotuning 

 

 ELL performance with PLL effort 
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Selective Embedded JIT Specialization 
(SEJITS) 

Asp – A SEJITS 
for Python [3] 

[3] Asp: A SEJITS implementation for Python.  
https://github.com/shoaibkamil/asp 



Impact for programmers 

  For productivity programmers 

 Efficient performance from high-level language 

 Further improvements in performance as specializers 
are added/refined 

 More programmers can exploit parallel architectures 

 Application code far more portable & maintainable  

 

  For parallel programming experts 

 Provide useful common infrastructure for creating fast 
specializers 

 Wider impact & code reuse 



Audio Content Analysis Applications 

 Pattern recognition and information extraction from 
audio files 

 Have impact on a big market 

 Are computationally demanding 

 Require processing large sets of data 

 Have specific throughput and real-time constraints  
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Gaussian Mixture Model (GMM) 

 Probabilistic model for clustering 
data 

 Assumes the distribution of 
observations follows a set 
(mixture) of multidimensional 
Gaussian distributions 

 Each Gaussian in the mixture has a 
mean (   ) and a covariance (   ) 
parameters 

 Gaussians in the mixture are 
weighted with weight  

   

m

   

s

   

p

Example GMM in two dimensions 

(Source: www.mathworks.com) 



GMM Training using EM Algorithm 

 Given a set of observations/events – find the maximum 
likelihood estimates of the set of Gaussian Mixture 
parameters (   ,    ,     ) and classify observations 

   

m





   

p

Based on original GPU implementation by 
[4]. A. D. Pangborn. Scalable data clustering using gpus. Master’s thesis, Rochester Institute of 
Technology, 2010.  

 Expectation Maximization (EM) Algorithm 

 E step 
 Compute probabilities of events given model parameters 

 M step 
 Compute model parameters given probabilities 

 weights, mean, covariance matrix  

 Iterate until convergence 

 Covariance matrix – most computationally intensive step 



Covariance Matrix Computation 

 N – number of feature vectors, ~10K-1M 

 D – feature vector dimension, ~10-100 

 M – number of Gaussian components, ~1-128 

 Matrix is symmetric – only compute the lower D*D/2 cells 
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Covariance Matrix Computation 

 Opportunities for parallelism (independent computations): 

 Each component’s covariance matrix 

 Each cell in a covariance matrix 

 Each feature vector’s contribution to a cell in a 
covariance matrix 

 -> Multiple code variants to perform the same computation 
in different ways (here: on Nvidia GPUs) 

 

M 



Nvidia CUDA Programming Model 

 CUDA is a recent programming model, designed for 

 Manycore (GPU) architectures 

 Wide vector (SIMD*) parallelism 

 Scalability 

 CUDA provides: 

 A thread abstraction to deal with SIMD 

 Synchronization & data sharing between small 
groups of threads 

 CUDA programs are written in C + extensions 

 

 

 

*SIMD = “Single Instruction, Multiple Data” 



Threads and Thread blocks 

 Parallel kernels composed of many threads 

 all threads execute the same sequential program 

 Kernels: 
 Invoked from “Host” CPU code (C) 

 Executed on the “Device” GPU 

 

 Threads are grouped into thread blocks 

 threads in the same block can cooperate 

 

 Threads/blocks have unique IDs 

 

Thread t 

t0 t1 … tN 

Block b 



Core 

 Two levels of parallelism: 

 Cores 
 CUDA thread block 

 SIMD vector lanes within the core 
 CUDA threads 

 Per-core local memory 
 Software Programmable 

 Shared by all threads in a thread block 

Core 

Core 

Core 

C
ac

h
e

 
C

ac
h

e
 

C
ac

h
e

 

Core 

Core 

Core 

C
ach

e
 

C
ach

e
 

C
ach

e
 

Manycore Parallel Platform 

Nvidia GTX480 (Fermi) Die Photo 



Covariance Matrix Code Variants - Example 

 Code variant 1: 

 2D grid of thread blocks M x D*D/2 

 Each thread block is responsible for computing one cell 
in the covariance matrix for one component 

 Thread parallelization over feature vectors (N) 

Threads 

Thread 

Blocks 

c1 

c2 c3 

.. .. .. 

.. .. .. .. 

c7 

c8 c9 

.. .. .. 

.. .. .. .. 



Covariance Matrix Computation –  
Code Variants 

 

  for each component m in M comps 

    for each cell c in DxD/2 cells 

       

      for each f n in N features 

       

        add nth contribution to c of m 

Thread block 

Thread 

Seq. 
V1 

……… 



Covariance Matrix Computation –  
Code Variants Summary 

 

  for each component m in M comps 

    for each cell c in DxD/2 cells 

       

      for each f n in N features 

       

        add nth contribution to c of m 

  

  for each cell c in DxD/2 cells  
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  for each component m in M comps 

     

    for each cell c in DxD/2 cells 
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        add nth contribution to c of m 

 

   

  for each block b in B feature blocks 

    for each component m in M comps 

   

      for each cell c in DxD/2 cells 

       

        for each f n in N/B features 

          add nth contribution to c of m 

 

  for each component m in M comps 

    for each block b in B feature blocks 

      sum partial contributions to m from b 
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Specialization 

 Given: 

 Problem Dimensions (N, D, M) 

 Platform Parameters (targeting Nvidia GPUs) 
 Core count, local memory size, SIMD width… 

 Automatically select: 

 Optimal code variant 

 Optimal parameters (block size, number of blocks) for 
that code variant 

 



GMM Specializer: Overview 

Python on Host 
 
 
 
 

X = Read in data 
 
 

gmm = GMM() 
 
 

gmm.train(X) 

Template 
files 

CUDA on GPU 

kernel 

kernel 

kernel 

kernel 
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C sources .so’s 

C on Host 
Train(){ 
 for(){
 launch 
 launch 
 launch 
 } 
} 

CUDA 
sources 



Results – Code Variant Performance 

GTX480 



Results – Code Variant Performance 

GTX285 



Results - Code Variant Selection 

 32% average improvement in covariance matrix 
computation time using best code variant 

 compared to always using original hand-coded variant  

 D: 1 to 36, M: 1 to 128, N: 10K to 150K 

 Performance gap increases with larger problem sizes 

 75.6% for D=36, M=128, N=500,00o 

 



Results – Specializer Overhead 

 Initial invocation – 81% overhead due to complier 
invocations 

 Future runs using automatically determined optimal 
code variant achieve 17% performance improvement 
over the original GPU implementation (V1) 
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Speaker Diarization 

Estimate “who spoke when” with no prior knowledge of 

speakers, #of speakers, words, or language spoken. 

Audio track: 

Clustering: 

Segmentation: 



Speaker Diarization: Core Algorithm 
BERKELEY PAR LAB 

 Start with too many clusters (initialized randomly) 

 Purify clusters by comparing and merging similar clusters 

 Resegment and repeat until no more merging needed 

 

 

N = 100K-600K 
D = 19 
M = 5-80 

Agglomerative 
Hierarchical Clustering 

of GMMs using 
Bayesian Information 

Criterion (BIC) 



Speaker Diarization in Python 

Yes 



Speaker Diarization in Python 

Yes 

L = new_gmm_list(M,D) 

for g in L : g.train(x) 

g.train(x) 



Speaker Diarization in Python 

Python C 

….. 

g.train(x) 

new_gmm_list(M,D) 



Speaker Diarization in Python 

Python C 

….. 

15x Lines-

of-code 

reduction 



Speaker Diarization Results 

Average 71-115x Faster Than Real-
Time Performance on NVIDIA Fermi 

GPU 

Average 71-115x Faster Than 
Real-Time Performance on NVIDIA 

Fermi GPU 

Diarization Error Rate (DER) and 
faster-than-real-time factor for 

the AMI Meeting Corpus 

[6] Ekaterina Gonina, Gerald Friedland, Henry Cook, Kurt Keutzer “Fast Speaker Diarization Using a 
High-Level Scripting Language” In Proceedings of IEEE Workshop on Automatic Speech 
Recognition and Understanding (ASRU), Dec 11-15, 2011, Waikoloa, Hawaii. 
 



Results - Portability 

Average 71-115x Faster Than Real-
Time Performance on NVIDIA Fermi 

GPU 

 Faster-than-real-time factors for: 

 Specializer on Intel Westmere (12 cores/24 threads) 

 Nvidia GTX280 & GTX480 

 



Outline 

1. Parallelism & productivity-performance gap 

2. Proposed solution: a Specialization Framework 

3. Example: Gaussian mixture model (GMM) training 
specializer 

4. Example applications using GMM specializer: 

1. Speaker diarization 

2. Music recommendation system 

5. Summary 

6. Future work 

 



Content-based Music Recommendation: 
Pardora 

 Given a query song or subset of songs – return 
similar songs  

 Song recommendation system based on the 
*content* of the audio files 

 Audio segment-based features 

 No need for tedious manual tagging! 

 Can use any audio for querying 

 Your iTunes library? 

 Recording from a concert? 

 Humming your favorite song? 



Dataset 

 Million Song Dataset (MSD) from Columbia 
University: 
http://labrosa.ee.columbia.edu/millionsong/ 

 “A freely-available collection of audio features and 
metadata for a million contemporary popular music 
tracks” 

 1M song features & metadata 

 Artist & song information 

 Tags & beat information 

 MFCC-like timbre features 

 

http://labrosa.ee.columbia.edu/millionsong/


Pardora Recommendation System 

 Based on the UBM*-GMM supervector approach 
(IRCAM’10 [6]) (next slide) 

1. Offline Phase: train UBM & song models 

2. Online Phase: train query model & return top 10 
closest songs  

 

[6] C. Charbuillet, D. Tardieu, F. Cornu, and G. Peeters, “2011 IRCAM AUDIO MUSIC 
SIMILARITY SYSTEM#,” 2011. 

UBM* = Universal Background Model 

query Rec. 

songs 



Pardora – Offline Phase 

.py 

MSD means, 

covariance, 

weights 

UBM* parameters x 2  

songID => { tinySongID, 

                     artist_name, 

                     title, 

                     supervector_t, 

                     supervector_r}   

Song Data 

Train a UBM 
(rhythm & timbre) 

1 

Adapt UBM to 
Compute Song 
Supervectors 

2 

UBM* = Universal Background Model 



.py 

Pardora – Online Phase 

“jazz” 

.js 

Query Supervector 
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songID1, d1 
songID2, d2 
songID3, d3 
songID4, d4 
songID5, d5 

……….. 
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covariance, 
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MSD 
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3 

Song Data 

songID => { tinySongID, 

                     artist_name, 

                     title, 

                     supervector_t, 

                     supervector_r}   

Compute Song 
Distances to the 

Query 
Supervector 

4 

N = 250K-2.2M 
D = 12 
M = 64 



Pardora Performance Results 

 Offline Phase: ~10 minutes 

 Online Phase: 1.5-5 seconds depending on query size 
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Summary 

 Programming parallel processors is challenging 

 Selective JIT specialization can allow us to bridge the 
productivity-performance gap 

 Example: Gaussian Mixture Model specializer 

 Python-level productivity & CUDA-level performance 

 Two example applications: 

 Speaker Diarization (~100 lines of Python) 
 71-115x faster-than-real-time performance 

 Music Recommendation System (~600 lines of Python) 
 Order of seconds for online recommendation 

 Productivity meets performance 



Future Work 

 Scalability of this approach for application 
development 

 More applications using more specializers 

 Focus on productivity & performance 

 Scalability to the cloud for large datasets 

 Whole 1M songs will require cluster-level parallelism 

 Autotuning and smarter code generation/selection 

 Incorporate machine learning & heuristics 

 Specializer composition 

 Optimization & data structure selection 

 



Thank you! 

Research supported by Microsoft (Award #024263) and Intel (Award #024894) funding 
and by matching funding by U.C. Discovery (Award #DIG07-10227). Additional support 

comes from Par Lab affiliates National Instruments, Nokia, NVIDIA, Oracle, and 
Samsung. 
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SEJITS Example: Structured Grids 

 User writes code for a structured grid calculation 

 

# 3d heat equation 

def kernel(inArray, outArray): 

  for pt in inArray.interior(): 

    for x in pt.neighbors(radius=1): 

      outArray[pt] += 1/6 * inArray[x] 

51 



SEJITS Example: Structured Grids 

 When the user runs kernel(A,B): 

 Python code is transformed into optimized C code (more 
on that later)  
 Take into account # of cores, size of array (256^3) 

 

52 

int c2; 
for (c2=chunkOffset_2;c2<=255;c2+=128) { 
 int c1; 
 for (c1=chunkOffset_1;c1<=255;c1+=64) { 
  int c0; 
  for (c0=chunkOffset_0;c0<=255;c0+=256) { 
   int b2; 
   for (b2=c2 + threadOffset_2;b2<=c2 + 127;b2+=128) { 
    int b1; 
    for (b1=c1 + threadOffset_1;b1<=c1 + 31;b1+=16) { 
     int b0; 
     for (b0=c0 + threadOffset_0;b0<=c0 + 255;b0+=256) { 
      int kk; 
      for (kk=b2 + 1;kk<=b2 + 128;kk+=1) { 
       int jj; 
       for (jj=b1 + 1;jj<=b1 + 16;jj+=1) { 
        int ii; 
        for (ii=b0 + 1;ii<=b0 + 256;ii+=1) { 
         dst[_dst_Index(ii - 1,jj - 1,kk - 1)] = ...; 
}}}}}}}}}  
 



SEJITS Example: Structured Grids 

 When the user runs kernel(A,B): 

 Python code is transformed into optimized C code 
(more on that later) 

 Code is output to disk 

 Compiler runs, turns it into dynamic library 

 Library is loaded into the interpreter 

 Translated function is called & result returned to 
interpreter 

 To user, it just looks like the code ran really fast 

 

53 



Results – Version Comparison (Raw CUDA) 

NVIDIA GTX480 – Varying D 



Results – Version Comparison (Raw CUDA) 

NVIDIA GTX285 vs. 480 



Example: Speech Recognition 

 Task: recognize words and sentences from an audio file 

 Recognizing words from a large vocabulary arranged  in exponentially 
many possible permutations 

 Inferring word boundaries from the context of neighboring words 

 Viterbi decoding on Hidden Markov Models 

Jike Chong, Ekaterina Gonina, Kurt Keutzer, “Efficient Automatic Speech Recognition on the GPU” 

Chapter in GPU Computing Gems Emerald Edition, Morgan Kaufmann, Vol. 1, February 9, 2011. 



Example: Speech Recognition 

Compiled HMM Recognition Network 
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My Previous Work (1) 

Fully-parallel Speech Recognition Decoder 

 Efficient multicore and manycore implementations of 
entire decoder (InterSpeech’09) 

 Exploring  
 Algorithmic-level design space (IEEE SP 

Journal 2009)  

 Recognition network representation 
(InterSpeech’11) 



Multicore & Manycore, cont. 

Specifications Core i7 960 
 

GTX285 
 

Processing Elements 
4 cores, 4 way SIMD 

@3.2 GHz 
30 cores, 8 way SIMD 

@1.5 GHz 

Resident 
Strands/Threads 

(max) 

4 cores, 2 threads, 4 
way SIMD: 

 
32 strands 

30 cores, 32 SIMD 
vectors, 32 way 

SIMD: 
30720 threads 

SP GFLOP/s 102 1080 

Memory Bandwidth 25.6 GB/s 159 GB/s 

Register File - 1.875 MB 

Local Store - 480 kB 

Core i7 (45nm) 

GTX285 (55nm) 



a 

SIMD 

 Single Instruction Multiple Data architectures make 
use of data parallelism 

 We care about SIMD because of area and power 
efficiency concerns 

 Amortize control overhead over SIMD width 

 Parallelism exposed to programmer & compiler 

b 

c 

a2 a1 b2 b1 

c2 c1 

+ + SISD 
SIMD 
width=2 



GMM Specializer: Details 

 Python application code 

 Manipulates problem data, sets up application logic 

 C/CUDA code that runs quickly 

 Allocates GPU memory 

 Performs main EM iterative loop 

 Specializer [5] 

 Selects appropriate code variant 
(from history) based on 
parameters 

 Pulls in the template for the code 
variant, parameterizes it and 
compiles to binary 

 

[5] H. Cook, E. Gonina, S. Kamil, G. Friedland, D. Patterson, A. Fox. “CUDA-level Performance with Python-level 
Productivity for Gaussian Mixture Model Applications” In Proceedings of the 3rd USENIX conference on Hot topics 
in parallelism (HotPar'11). USENIX Association, Berkeley, CA, USA. 
 


