
A SPECIALIZATION FRAMEWORK
FOR AUDIO CONTENT ANALYSIS

Katya Gonina
with Henry Cook, Eric Battenberg, Gerald Friedland* and Kurt Keutzer

UC Berkeley ParLab, *International Computer Science Institute

January 18, 2012

The shift to parallel processing

 Parallel processing is here

Intel Processor Clock Speed

“ This shift toward increasing parallelism
is not a triumphant stride forward based
on breakthroughs in novel software and
architectures for parallelism; instead,
this plunge into parallelism is actually a
retreat from even greater challenges
that thwart efficient silicon
implementation of traditional
uniprocessor architectures.
 - The Berkeley View [1]

“

[1] Krste Asanovic et al. “The Landscape of Parallel Computing
Research: A View from Berkeley” December 2006

Writing Fast Code is Hard

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 128 256 384 512 640 768

F
ra

ct
io

n
 o

f A
ri

th
m

et
ic

 P
ea

k

Dimension of Matrices

naïve blocking

(unrolling, explicit vectorization,
few levels of blocking)

ACML (vendor-provided binary)

an optimized code

Dense Matrix Multiply (V. Volkov)

Finding Best Implementation is Hard

Naïve

implementation

Best

performing

Figure from R. Vuduc

Autotuning to find parameters for best
performance

Productivity vs Performance

 Domain experts prefer to use high-level languages
such as Python or MATLAB

 However, to achieve sufficient performance,
computationally-intensive parts of applications must
be rewritten in low-level languages

 Parallel platform and input parameters determine
the best-performing parallel implementation

 ?

Target
Application End User

HW Platform

 Hardware Architect

Application
Developer

Application domain experts make
design trade-offs without full view of

parallel performance implications

Expert
Parallel

Programmer

Expert parallel programmer with
limited knowledge of application

design trade-offs

Application

Parallel
Platform

S
W

 In
fr

a
st

ru
ct

u
re

The Productivity-Performance Gap

Outline

1. Parallelism & productivity-performance gap

2. Proposed solution: Just-in-time specialization

3. Example: Gaussian mixture model (GMM) training
specializer

4. Example applications using GMM specializer:

1. Speaker diarization

2. Music recommendation system

5. Summary

6. Future Work

Selective Embedded Just-In-Time Specialization
(SEJITS)

Key Idea: Generate, compile, and execute
high performance parallel code at runtime
using code transformation, introspection,
variant selection and other features of high-
level languages [2].

Invisibly to the user.

[2] B. Catanzaro, S. Kamil, Y. Lee, K. Asanovic, J. Demmel, K. Keutzer, J. Shalf, K. Yelick, and A. Fox. SEJITS:
Getting productivity and performance with selective embedded JIT specialization. In Workshop on
Programming Models for Emerging Architectures (PMEA 2009), Raleigh, NC, October 2009.

Selective Embedded JIT Specialization (SEJITS)

 Productivity-level language (PLL), e.g. Python for
applications

 “Specializers” generate efficiency-level language
(ELL) code targeted to hardware

 Specialize specific computation

 Code generation happens at runtime

 Specializers can incorporate autotuning

 ELL performance with PLL effort

.py

OS/HW

f() x.h()

Specializer

.c

In
te

rp
re

te
r

x.g()

SEJITS

Productivity app

HW Info

.so

cc/ld

cache

Selective Embedded JIT Specialization
(SEJITS)

Asp – A SEJITS
for Python [3]

[3] Asp: A SEJITS implementation for Python.
https://github.com/shoaibkamil/asp

Impact for programmers

 For productivity programmers

 Efficient performance from high-level language

 Further improvements in performance as specializers
are added/refined

 More programmers can exploit parallel architectures

 Application code far more portable & maintainable

 For parallel programming experts

 Provide useful common infrastructure for creating fast
specializers

 Wider impact & code reuse

Audio Content Analysis Applications

 Pattern recognition and information extraction from
audio files

 Have impact on a big market

 Are computationally demanding

 Require processing large sets of data

 Have specific throughput and real-time constraints

Outline

1. Parallelism & productivity-performance gap

2. Proposed solution: Just-in-time specialization

3. Example: Gaussian mixture model (GMM) training
specializer

4. Example applications using GMM specializer:

1. Speaker diarization

2. Music recommendation system

5. Summary

6. Future Work

Gaussian Mixture Model (GMM)

 Probabilistic model for clustering
data

 Assumes the distribution of
observations follows a set
(mixture) of multidimensional
Gaussian distributions

 Each Gaussian in the mixture has a
mean () and a covariance ()
parameters

 Gaussians in the mixture are
weighted with weight

m

s

p

Example GMM in two dimensions

(Source: www.mathworks.com)

GMM Training using EM Algorithm

 Given a set of observations/events – find the maximum
likelihood estimates of the set of Gaussian Mixture
parameters (, ,) and classify observations

m

p

Based on original GPU implementation by
[4]. A. D. Pangborn. Scalable data clustering using gpus. Master’s thesis, Rochester Institute of
Technology, 2010.

 Expectation Maximization (EM) Algorithm

 E step
 Compute probabilities of events given model parameters

 M step
 Compute model parameters given probabilities

 weights, mean, covariance matrix

 Iterate until convergence

 Covariance matrix – most computationally intensive step

Covariance Matrix Computation

 N – number of feature vectors, ~10K-1M

 D – feature vector dimension, ~10-100

 M – number of Gaussian components, ~1-128

 Matrix is symmetric – only compute the lower D*D/2 cells

M

-

my

y

m

-
*

Covariance Matrix Computation

 Opportunities for parallelism (independent computations):

 Each component’s covariance matrix

 Each cell in a covariance matrix

 Each feature vector’s contribution to a cell in a
covariance matrix

 -> Multiple code variants to perform the same computation
in different ways (here: on Nvidia GPUs)

M

Nvidia CUDA Programming Model

 CUDA is a recent programming model, designed for

 Manycore (GPU) architectures

 Wide vector (SIMD*) parallelism

 Scalability

 CUDA provides:

 A thread abstraction to deal with SIMD

 Synchronization & data sharing between small
groups of threads

 CUDA programs are written in C + extensions

*SIMD = “Single Instruction, Multiple Data”

Threads and Thread blocks

 Parallel kernels composed of many threads

 all threads execute the same sequential program

 Kernels:
 Invoked from “Host” CPU code (C)

 Executed on the “Device” GPU

 Threads are grouped into thread blocks

 threads in the same block can cooperate

 Threads/blocks have unique IDs

Thread t

t0 t1 … tN

Block b

Core

 Two levels of parallelism:

 Cores
 CUDA thread block

 SIMD vector lanes within the core
 CUDA threads

 Per-core local memory
 Software Programmable

 Shared by all threads in a thread block

Core

Core

Core

C
ac

h
e

C

ac
h

e

C
ac

h
e

Core

Core

Core

C
ach

e

C
ach

e

C
ach

e

Manycore Parallel Platform

Nvidia GTX480 (Fermi) Die Photo

Covariance Matrix Code Variants - Example

 Code variant 1:

 2D grid of thread blocks M x D*D/2

 Each thread block is responsible for computing one cell
in the covariance matrix for one component

 Thread parallelization over feature vectors (N)

Threads

Thread

Blocks

c1

c2 c3

..

..

c7

c8 c9

..

..

Covariance Matrix Computation –
Code Variants

 for each component m in M comps

 for each cell c in DxD/2 cells

 for each f n in N features

 add nth contribution to c of m

Thread block

Thread

Seq.
V1

………

Covariance Matrix Computation –
Code Variants Summary

 for each component m in M comps

 for each cell c in DxD/2 cells

 for each f n in N features

 add nth contribution to c of m

 for each cell c in DxD/2 cells

 for each f n in N features

 for each component m in M comps

 add nth contribution to c of m

 for each component m in M comps

 for each cell c in DxD/2 cells

 for each f n in N features

 add nth contribution to c of m

 for each block b in B feature blocks

 for each component m in M comps

 for each cell c in DxD/2 cells

 for each f n in N/B features

 add nth contribution to c of m

 for each component m in M comps

 for each block b in B feature blocks

 sum partial contributions to m from b

Thread

block

Thread

Thread block

Thread

Seq.

Thread

block

Thread

Seq.

Seq.

Thread

Seq

Seq.

V2 V1

V3

V4

Thread

block

Specialization

 Given:

 Problem Dimensions (N, D, M)

 Platform Parameters (targeting Nvidia GPUs)
 Core count, local memory size, SIMD width…

 Automatically select:

 Optimal code variant

 Optimal parameters (block size, number of blocks) for
that code variant

GMM Specializer: Overview

Python on Host

X = Read in data

gmm = GMM()

gmm.train(X)

Template
files

CUDA on GPU

kernel

kernel

kernel

kernel

kernel

C sources .so’s

C on Host
Train(){
 for(){
 launch
 launch
 launch
 }
}

CUDA
sources

Results – Code Variant Performance

GTX480

Results – Code Variant Performance

GTX285

Results - Code Variant Selection

 32% average improvement in covariance matrix
computation time using best code variant

 compared to always using original hand-coded variant

 D: 1 to 36, M: 1 to 128, N: 10K to 150K

 Performance gap increases with larger problem sizes

 75.6% for D=36, M=128, N=500,00o

Results – Specializer Overhead

 Initial invocation – 81% overhead due to complier
invocations

 Future runs using automatically determined optimal
code variant achieve 17% performance improvement
over the original GPU implementation (V1)

Outline

1. Parallelism & productivity-performance gap

2. Proposed solution: a Specialization Framework

3. Example: Gaussian mixture model (GMM) training
specializer

4. Example applications using GMM specializer:

1. Speaker diarization

2. Music recommendation system

5. Summary

6. Future Work

Speaker Diarization

Estimate “who spoke when” with no prior knowledge of

speakers, #of speakers, words, or language spoken.

Audio track:

Clustering:

Segmentation:

Speaker Diarization: Core Algorithm
BERKELEY PAR LAB

 Start with too many clusters (initialized randomly)

 Purify clusters by comparing and merging similar clusters

 Resegment and repeat until no more merging needed

N = 100K-600K
D = 19
M = 5-80

Agglomerative
Hierarchical Clustering

of GMMs using
Bayesian Information

Criterion (BIC)

Speaker Diarization in Python

Yes

Speaker Diarization in Python

Yes

L = new_gmm_list(M,D)

for g in L : g.train(x)

g.train(x)

Speaker Diarization in Python

Python C

…..

g.train(x)

new_gmm_list(M,D)

Speaker Diarization in Python

Python C

…..

15x Lines-

of-code

reduction

Speaker Diarization Results

Average 71-115x Faster Than Real-
Time Performance on NVIDIA Fermi

GPU

Average 71-115x Faster Than
Real-Time Performance on NVIDIA

Fermi GPU

Diarization Error Rate (DER) and
faster-than-real-time factor for

the AMI Meeting Corpus

[6] Ekaterina Gonina, Gerald Friedland, Henry Cook, Kurt Keutzer “Fast Speaker Diarization Using a
High-Level Scripting Language” In Proceedings of IEEE Workshop on Automatic Speech
Recognition and Understanding (ASRU), Dec 11-15, 2011, Waikoloa, Hawaii.

Results - Portability

Average 71-115x Faster Than Real-
Time Performance on NVIDIA Fermi

GPU

 Faster-than-real-time factors for:

 Specializer on Intel Westmere (12 cores/24 threads)

 Nvidia GTX280 & GTX480

Outline

1. Parallelism & productivity-performance gap

2. Proposed solution: a Specialization Framework

3. Example: Gaussian mixture model (GMM) training
specializer

4. Example applications using GMM specializer:

1. Speaker diarization

2. Music recommendation system

5. Summary

6. Future work

Content-based Music Recommendation:
Pardora

 Given a query song or subset of songs – return
similar songs

 Song recommendation system based on the
content of the audio files

 Audio segment-based features

 No need for tedious manual tagging!

 Can use any audio for querying

 Your iTunes library?

 Recording from a concert?

 Humming your favorite song?

Dataset

 Million Song Dataset (MSD) from Columbia
University:
http://labrosa.ee.columbia.edu/millionsong/

 “A freely-available collection of audio features and
metadata for a million contemporary popular music
tracks”

 1M song features & metadata

 Artist & song information

 Tags & beat information

 MFCC-like timbre features

http://labrosa.ee.columbia.edu/millionsong/

Pardora Recommendation System

 Based on the UBM*-GMM supervector approach
(IRCAM’10 [6]) (next slide)

1. Offline Phase: train UBM & song models

2. Online Phase: train query model & return top 10
closest songs

[6] C. Charbuillet, D. Tardieu, F. Cornu, and G. Peeters, “2011 IRCAM AUDIO MUSIC
SIMILARITY SYSTEM#,” 2011.

UBM* = Universal Background Model

query Rec.

songs

Pardora – Offline Phase

.py

MSD means,

covariance,

weights

UBM* parameters x 2

songID => { tinySongID,

 artist_name,

 title,

 supervector_t,

 supervector_r}

Song Data

Train a UBM
(rhythm & timbre)

1

Adapt UBM to
Compute Song
Supervectors

2

UBM* = Universal Background Model

.py

Pardora – Online Phase

“jazz”

.js

Query Supervector

Top 10
songID1, d1
songID2, d2
songID3, d3
songID4, d4
songID5, d5

………..

UBM parameters

means,

covariance,

weights

“jazz”

MSD

Train Query
Model

3

Song Data

songID => { tinySongID,

 artist_name,

 title,

 supervector_t,

 supervector_r}

Compute Song
Distances to the

Query
Supervector

4

N = 250K-2.2M
D = 12
M = 64

Pardora Performance Results

 Offline Phase: ~10 minutes

 Online Phase: 1.5-5 seconds depending on query size

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 500 1,000 1,500 2,000 2,500

ti
m

e
 (

se
co

n
d

s)

Number of songs

Pardora Recommendation Performance

Outline

1. Parallelism & productivity-performance gap

2. Proposed solution: a Specialization Framework

3. Example: Gaussian mixture model (GMM) training
specializer

4. Example applications using GMM specializer:

1. Speaker diarization

2. Music recommendation system

5. Summary

6. Future work

Summary

 Programming parallel processors is challenging

 Selective JIT specialization can allow us to bridge the
productivity-performance gap

 Example: Gaussian Mixture Model specializer

 Python-level productivity & CUDA-level performance

 Two example applications:

 Speaker Diarization (~100 lines of Python)
 71-115x faster-than-real-time performance

 Music Recommendation System (~600 lines of Python)
 Order of seconds for online recommendation

 Productivity meets performance

Future Work

 Scalability of this approach for application
development

 More applications using more specializers

 Focus on productivity & performance

 Scalability to the cloud for large datasets

 Whole 1M songs will require cluster-level parallelism

 Autotuning and smarter code generation/selection

 Incorporate machine learning & heuristics

 Specializer composition

 Optimization & data structure selection

Thank you!

Research supported by Microsoft (Award #024263) and Intel (Award #024894) funding
and by matching funding by U.C. Discovery (Award #DIG07-10227). Additional support

comes from Par Lab affiliates National Instruments, Nokia, NVIDIA, Oracle, and
Samsung.

Backup Slides

SEJITS Example: Structured Grids

 User writes code for a structured grid calculation

3d heat equation

def kernel(inArray, outArray):

 for pt in inArray.interior():

 for x in pt.neighbors(radius=1):

 outArray[pt] += 1/6 * inArray[x]

51

SEJITS Example: Structured Grids

 When the user runs kernel(A,B):

 Python code is transformed into optimized C code (more
on that later)
 Take into account # of cores, size of array (256^3)

52

int c2;
for (c2=chunkOffset_2;c2<=255;c2+=128) {
 int c1;
 for (c1=chunkOffset_1;c1<=255;c1+=64) {
 int c0;
 for (c0=chunkOffset_0;c0<=255;c0+=256) {
 int b2;
 for (b2=c2 + threadOffset_2;b2<=c2 + 127;b2+=128) {
 int b1;
 for (b1=c1 + threadOffset_1;b1<=c1 + 31;b1+=16) {
 int b0;
 for (b0=c0 + threadOffset_0;b0<=c0 + 255;b0+=256) {
 int kk;
 for (kk=b2 + 1;kk<=b2 + 128;kk+=1) {
 int jj;
 for (jj=b1 + 1;jj<=b1 + 16;jj+=1) {
 int ii;
 for (ii=b0 + 1;ii<=b0 + 256;ii+=1) {
 dst[_dst_Index(ii - 1,jj - 1,kk - 1)] = ...;
}}}}}}}}}

SEJITS Example: Structured Grids

 When the user runs kernel(A,B):

 Python code is transformed into optimized C code
(more on that later)

 Code is output to disk

 Compiler runs, turns it into dynamic library

 Library is loaded into the interpreter

 Translated function is called & result returned to
interpreter

 To user, it just looks like the code ran really fast

53

Results – Version Comparison (Raw CUDA)

NVIDIA GTX480 – Varying D

Results – Version Comparison (Raw CUDA)

NVIDIA GTX285 vs. 480

Example: Speech Recognition

 Task: recognize words and sentences from an audio file

 Recognizing words from a large vocabulary arranged in exponentially
many possible permutations

 Inferring word boundaries from the context of neighboring words

 Viterbi decoding on Hidden Markov Models

Jike Chong, Ekaterina Gonina, Kurt Keutzer, “Efficient Automatic Speech Recognition on the GPU”

Chapter in GPU Computing Gems Emerald Edition, Morgan Kaufmann, Vol. 1, February 9, 2011.

Example: Speech Recognition

Compiled HMM Recognition Network

aa

hh

n

HMM Acoustic
Phone Model

HOP

ON
POP

CAT

HAT

IN

THE

...

...

...

...

...

C
A

T

H
A

T

..
.

..
.

H
O

P

IN

..
.

O
N

P

O
P

..

.
T

H
E

..

.

Bigram
Language Model

…

Features
from one

frame

Gaussian Mixture Model
for One Phone State

…

…

…

…

…
 …

…

Mixture
Components Computing

distance to
each mixture
components

Computing
weighted sum
of all
components

...
HOP hh aa p
...
ON aa n
...
POP p aa p
...

Pronunciation Model

My Previous Work (1)

Fully-parallel Speech Recognition Decoder

 Efficient multicore and manycore implementations of
entire decoder (InterSpeech’09)

 Exploring
 Algorithmic-level design space (IEEE SP

Journal 2009)

 Recognition network representation
(InterSpeech’11)

Multicore & Manycore, cont.

Specifications Core i7 960

GTX285

Processing Elements
4 cores, 4 way SIMD

@3.2 GHz
30 cores, 8 way SIMD

@1.5 GHz

Resident
Strands/Threads

(max)

4 cores, 2 threads, 4
way SIMD:

32 strands

30 cores, 32 SIMD
vectors, 32 way

SIMD:
30720 threads

SP GFLOP/s 102 1080

Memory Bandwidth 25.6 GB/s 159 GB/s

Register File - 1.875 MB

Local Store - 480 kB

Core i7 (45nm)

GTX285 (55nm)

a

SIMD

 Single Instruction Multiple Data architectures make
use of data parallelism

 We care about SIMD because of area and power
efficiency concerns

 Amortize control overhead over SIMD width

 Parallelism exposed to programmer & compiler

b

c

a2 a1 b2 b1

c2 c1

+ + SISD
SIMD
width=2

GMM Specializer: Details

 Python application code

 Manipulates problem data, sets up application logic

 C/CUDA code that runs quickly

 Allocates GPU memory

 Performs main EM iterative loop

 Specializer [5]

 Selects appropriate code variant
(from history) based on
parameters

 Pulls in the template for the code
variant, parameterizes it and
compiles to binary

[5] H. Cook, E. Gonina, S. Kamil, G. Friedland, D. Patterson, A. Fox. “CUDA-level Performance with Python-level
Productivity for Gaussian Mixture Model Applications” In Proceedings of the 3rd USENIX conference on Hot topics
in parallelism (HotPar'11). USENIX Association, Berkeley, CA, USA.

