A SPECGIALIZATION ERAMEWGORK
FOR AUDIO CONTENT ANALYSIS

Katya Gonina
with Henry Cook, Eric Battenberg, Gerald Friedland* and Kurt Keutzer

UC Berkeley ParLab, *International Computer Science Institute

I
January 18, 2012 //[\\

= Parallel processing is here

This shift toward increasing parallelism
is not a triumphant stride forward based

®Corei7

on breakthroughs in novel software and ¥ BCore

. . . X Pentium 4
architectures for parallelism; instead, K, Xpentium 1
this plunge into parallelism is actually a ff .

=80486
80386
©80286
8088
8086
8080
8008
4004

retreat from even greater challenges
that thwart efficient silicon
implementation of traditional
uniprocessor architectures.

-The Berkeley View [1]

¢ %

[1] Krste Asanovic et al. "The Landscape of Parallel Computing Intel Processor CIOCk Speed

Research: AView from Berkeley” December 2006

Fraction of Arithmetic Peak

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

o%

Dense Matrix Multiply (V. Volkov)

povy

vy

ACML (vendor-provided binary)

A w
had

by SV

w

an optimized code
(unrolling, explicit vectorization,
few levels of blocking)

Ww—r‘- v

—

naive blocking

YY)

o) 128

256

384
Dimension of Matrices

512

640

768

900 MHz [tanium 2, Intel C v8: ref=275 Mflop/s

Best _
performing 5 45
Autotuning to find parameters for best
performance
Naive

implementation 1

Figure from R. Vuduc column block size (c)

= Domain experts prefer to use high-level languages
such as Python or MATLAB

= However, to achieve sufficient performance,
computationally-intensive parts of applications must
be rewritten in low-level languages

= Parallel platform and input parameters determine
the best-performing parallel implementation

uctivity-Perrormance Gap

()
W, Target : :
£ pnplication Application
I)
I
-, : Application domain experts make v
A % S design trade-offs without full view of >
Dpe'z,eloper : parallel performance implications]
¢ l ~
| 1)
] : o
I | -
I - =
VL =
: £5 Expert parallel programmer with
I Expert limited knowledge of application %
: Pr::::;"ier design trade-offs
I
|
/ HW Platform Parallel

Hardware Architect P | ath m

1. Parallelism & productivity-performance gap J

2(Proposed solution: Just-in-time specialization J

3. Example: Gaussian mixture model (GMM) training
specializer

4. Example applications using GMM specializer:
1. Speaker diarization
2. Music recommendation system

5. Summary
6. Future Work

(SEJITS)

Key Idea: Generate, compile, and execute
high performance parallel code at runtime
using code transformation, introspection,
variant selection and other features of high-
level languages [2].

Invisibly to the user.

[2] B. Catanzaro, S. Kamil, Y. Lee, K. Asanovic, J. Demmel, K. Keutzer, J. Shalf, K. Yelick, and A. Fox. SEJITS:
Getting productivity and performance with selective embedded JIT specialization. In Workshop on
Programming Models for Emerging Architectures (PMEA 2009), Raleigh, NC, October 200g.

* Productivity-level language (PLL), e.g. Python for
applications

= “Specializers” generate efficiency-level language
(ELL) code targeted to hardware

» Specialize specific computation
* Code generation happens at runtime
= Specializers can incorporate autotuning

= ELL performance with PLL effort

@ python

o
50
& R
W \'5-\\/\ \ d\ \\‘\\ Ny
& A\ (\k y\\ 9)
3 [0 A \\O++
A\ \ ’\\—\Ki\
R i
)
W
&

JN T (SENITS)

Productivity app

Asp — A SEJITS

Py for Python [3]

f()

.C
| | cc/ld
I [3] Asp: ASEJITS implementation for Python.

https://github.com/shoaibkamil/asp

Interpreter

‘ .![\ /\t

= For productivity programmers
= Efficient performance from high-level language

» Further improvements in performance as specializers
are added/refined

= More programmers can exploit parallel architectures
= Application code far more portable & maintainable

= For parallel programming experts

* Provide useful common infrastructure for creating fast
specializers

= Wider impact & code reuse

= Pattern recognition and information extraction from
audio files

= Have impact on a big market

= Are computationally demanding
= Require processing large sets of data
= Have specific throughput and real-time constraints

1. Parallelism & productivity-performance gap J

2. Proposed solution: Just-in-time specialization J
3.[Example: Gaussian mixture model (GMM) training}

specializer

4. Example applications using GMM specializer:
1. Speaker diarization
2. Music recommendation system

5. Summary
6. Future Work

» Probabilistic model for clustering
data

4

Assumes the distribution of
observations follows a set
(mixture) of multidimensional
Gaussian distributions

Each Gaussian in the mixture hasa |

mean (/) and a covariance (s)
parameters

Gaussians in the mixture are
weighted with weight O

Example GMM in two dimensions

(Source: www.mathworks.com)

p(zj | ps, T Z?r

2|2|2

= Given a set of observations/events — find the maximum
likelihood estimates of the set of Gaussian Mixture
parameters (57, 3, p) and classify observations

= Expectation Maximization (EM) Algorithm
= Estep
= Compute probabilities of events given model parameters

= Mstep

= Compute model parameters given probabilities
= weights, mean, covariance matrix

"= |terate until convergence

= Covariance matrix — most computationally intensive step

Based on original GPU implementation by

[4]. A. D. Pangborn. Scalable data clustering using gpus. Master’s thesis, Rochester Institute of
Technology, 2010.

Covariance Matrix Computation

= N -—number of feature vectors, ~10K-1M

= D —feature vector dimension, ~10-100

= M -number of Gaussian components, ~1-128

= Matrix is symmetric —only compute the lower D*D/2 cells

k+1 k+1
s(k+1) _ > (9 (2 — 1) (@ — uF)T)

N
Ej:l Pi.j

||||||

D D D
v
= Opportunities for parallelism (independent computations):

= Each component’s covariance matrix
= Each cellin a covariance matrix

= Each feature vector’s contribution to a cell in a
covariance matrix

= -> Multiple code variants to perform the same computation
in different ways (here: on Nvidia GPUs)

I

= CUDA is a recent programming model, designed for
= Manycore (GPU) architectures

= Wide vector (SIMD*) parallelism < NVIDIA.
= Scalability CUDA.

= CUDA provides:
= A thread abstraction to deal with SIMD

* Synchronization & data sharing between small
groups of threads

= CUDA programs are written in C + extensions

*SIMD = "Single Instruction, Multiple Data”

= Parallel kernels composed of many threads
= all threads execute the same sequential program

= Kernels:
= |nvoked from “Host” CPU code (C)
= Executed on the “Device” GPU

= Threads are grouped into thread blocks
= threads in the same block can cooperate

= Threads/blocks have unique IDs

Block b

fto t1 .. tN

= Two levels of parallelism:
= Cores
= CUDA thread block

= SIMD vector lanes within the core
= CUDA threads

= Per-core local memory
= Software Programmable
= Shared by all threads in a thread block

Nvidia GTX480 (Fermi) Die Photo

= Code variant 1:

» 2D grid of thread blocks M x D*D/2

» Each thread block is responsible for computing one cell
in the covariance matrix for one component

* Thread parallelization over feature vectors (N)

Threads

C1

Thread

C3

Blocks ———

Code Variants

for each component m in M comps
for each cell c in DxD/2 cells

—> Thread block

(=0

far each f nin N features

c2 |3

->» Thread

Vladc nth contribution to ¢ of m

—>Seq. L.

for esach ecell ¢ in DxD/2 cells

for each £ n in N features

V2

—» | hread block

- Thread

for each component m in M comps
add nth contribution to ¢ of m

- Seq.

for each component m in M comps Thread for each cell c in DxD/2 cells —> Thread block
for each cell c in DxD/2 cells -> block
for each f nin N features = Thread
fgr each f nin N features - Thread
forreach component m in M comps
Vladc nth contribution to ¢ of m —>Seq. Vzadd nth contribution to ¢ of m —> Seq.
for each component m in M comps Tt?lreid for each block b in B feature blocks —> Thread
oc for each component m in M comps block
for each cell ¢ in DxD/2 cells —> Thread
fo each cell ¢ in DxD/2 cells —> Thread
for each f nin N features —>Seq.
add nth contribution to ¢ of m Vf r egach f nin N/B features —> Seq
add| nth contribution to ¢ of m
for each component m in M comps —>
for each block b in B feature blocks Seq.
V3 sum partial contributions to m from b

pecialization

= Given:
= Problem Dimensions (N, D, M)

= Platform Parameters (targeting Nvidia GPUs)
= Core count, local memory size, SIMD width...

= Automatically select:
= Optimal code variant

» Optimal parameters (block size, number of blocks) for
that code variant

cells
for each event n in N events| ork item
ents fork item
for each component m in M comps s
m [->Seq. V2| 2dd nth contribution to c of m eq.
uj ifor each bl cks

gmm = GMM()

gmm.train(X)

Template CUDA
files sources eeedR
l kernel

C sources 3-50'S

launch
launch
launch

}

)) \ Results — Code Variant Performance

GTX480 ceimalcodeversonnanes

100,000 {|
95,000

90,000 {|
85,000 {|
80,000 {|
75,000 {|
70,000 {|
65,000 {|
60,000 {|
55,000 {|
50,000 {|
45,000 {|
40,000

35,000 {|
30,000 {|
25,000 {|
20,000 {|
15,000 {|

10,000 {f

o1 2 3 4 5 6 7 & 9 1011 12 13 14 15 16 17 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
D

1L eV3 V4

imal code version names

GPU SIMD DRAM Size
GTX480 13KB

= 32% average improvement in covariance matrix
computation time using best code variant

= compared to always using original hand-coded variant
" D:1t036, M: 1t0 128, N: 20K to 150K

= Performance gap increases with larger problem sizes
* 75.6% for D=36, M=128, N=500,000

= |nitial invocation —81% overhead due to complier
Invocations

= Future runs using automatically determined optimal
code variant achieve 17% performance improvement
over the original GPU implementation (V1)

Runtime (seconds)
0 2 4 6 8 10 12 14 16 18 20

crscunav:
SOTS VL (uncachec) MMM IS

SEJITS V1 (cached)

SEJITS V4-B32 (cached) F o

B CUDA Python B NVCC

1. Parallelism & productivity-performance gap J

2. Proposed solution: a Specialization Framework J

3. Example: Gaussian mixture model (GMM) training J
specializer

4. Example applications using GMM specializer:
[1. Speaker diarization }

2. Music recommendation system
5. Summary
6. Future Work

Audio track:

Segmentation:

Clustering:

l

Speaker A

Speaker B

Speaker B

Estimate “who spoke when” with no prior knowledge of
speakers, #of speakers, words, or language spoken.

‘ Initialization \

Clusteri

‘ (Re-)Training \

(Re-)Alignment

E

Agglomerative
Hierarchical Clustering
of GMMs using
Bayesian Information
Criterion (BIC)

N = 100K-600K
D=19
M = 5-8o

er Diarization in Python

def AHC(self):

Get the events, divide them into an initial k clusters and train each GMM on a cluster
per_cluster = self.N/self.init_num_clusters
init_training = zip(self.gmm_list,np.vsplit(self.X, range(per_cluster, self.N, per_cluster)))
for g, x in init_training:

g.train(x)

Initialization

Pertorm hierarchical agglomeration based on BIC scores
b = 1.
while (best_BIC_score » @ and len(self.gmm_list) » 1):

num_clusters = len(self.gmm_list)

Resegment data based on likelihood scoring

likelihoods = self.gmm_list[@].score(self.X)

for g in self.gmm_list[1:]:

likelihoods = np.column_stack(({likelihoods, g.score (self.X)))
i — i i Cavic—1

(Re-)Training

Across 2.5 secs of observations, vote on which cluster they should be associated with
split_events = split_events_based_on_wotes(most_likely, self.XD

for g, data in split_ewvents:
g.trainCdata)

Score all pairs of GMMs using BIC
best_merged_gmm = None
best_BIC_score = ©.9@

merged_tuple = None

(for gmmlidx in range(len(iter_bic_list)): \
for gmm2idx in range(gmmlidx+1, len(iter_bic_list)):
gl, dl = iter_bic_list[gmmlidx]
g2, d2 = iter_bic_list[gmm2idx]
score = 0.9 &
new_gmm, score = compute_distance_BIC(gl, g2, np.concatenate((dl, d2)))
if score » best_BIC_score:
best_merged_gmm = new_gmm
merged_tuple = (gl, g2)

\ best_BIC_score = score J

ul ! i AAtds mnd e

if best_BIC_score > 0.0: l
self.gmm_list.remove(merged_tuple[@])
self.gmm_list.remove(merged_tuple[1])
i d_amm?

def AHC(self):

Get the events, r:Iw'Lr:Ie them into an initial k clusters and train each GMM on a cluster
per_c” o o
init.

«¢ L =new_gmm_list(M,D)

cluster)))

[

Pertorm hierarchical agglomeration based on BlL scores

while (best_BIC_score » @ and len(self.gmm_list) » 1):
num_clusters = len(self.gmm_list)

Resegment data based on likelihood scoring
likelihoods = self.gmm_list[@].score(self.X)
for g in self.gmm_list[1:]:
likelihoods = np. column_stack((likelihoods, g.score (self.X)))

Cawic—10

Across 2.5 secs of observations, vote on which cluster they should be associated with

for g in L : g.train(x)

e L LR LU

Score all pairs of GMMs using BIC
best_merged_gmm = None

best_BIC score = 0.0

merged_tuple = None

(for gmmlidx in range(len(iter_bic_list)): \
for gmm2idx in range(gmmlidx+1, len(iter_bic_list)):

gl, dl = iter_bic_list[gmmlidx]

g2, d2 = iter_bic_list[gmm2idx]

score = 0.9

- g. traln(x)

T atenate((dl, d2)))

A

\ best_BIC_score — score J

Gdats made

if best_BIC_score > 0.0:

(Re-)Training

P —

self.gmm_list.remove(merged_tuple[@])
self. gml_'L‘Lst remove(merged_tuple[1])
d_amm?

Python

def AHC(self):

Get on a cluster
per_c|
init_
for g|
g

new_gmm_list(M,D)

Perform hierarchical agglomeration based on BIC scores
best_BIC_score = 1.8
while (best_BIC_score > @ and len(self.gmm_list) > 1):

num_clusters = len(self.gmm_list)

Resegment data based on likelihood scoring
likelihoods = self.gmm_list[@].score(self.X)
for g in self.gmm_list[1:]:
likelihoods = np.column_stack((likelihoods, g.score (self.X)J))

most_likely = likelihoods.argmex(axis=1)
Across 2.5 secs of observations, vote on which ClUshassesr=sT001d be associated with
spli pt_likely, self.X)

| g.train(x)

Score all pairs of GMMs using BIC
best_merged_gmm = None
best_BIC_score = 0.8

merged_tuple = None

for gmmlidx in range(len(iter_bic_list)):
for gmm2idx in range(gmmlidx+l, len(iter_bic_list)):
gl, dl = iter_bic_list[gmmlidx]
gz, d2 = iter_bic_list[gmm2idx]
score = 0.0
new_gmm, score = compute_distance_BIC(gl, g2, np.concatenate((dl, d2)))
if score > best_BIC score:
best_merged_gmm = new_gmm
merged_tuple = (gl, g2)
best_BIC_score = score

Merge the winning candidate pair

if best_BIC_score > 0.@:
self.gmm_list.remove(merged_tuple[@])
self.gmm_list.remove(merged_tuple[1])
self.gmm_list.append(best_merged_gmm)

\ Speaker Diarization in Python

Python C

def AHC(self):

Get the events, divide them into an initial k clusters and train each GMM on a cluster

per_cluster = self.N/self.init_num_clusters

init_training = zip(self.gmm_list,np.vsplit(self.X, range(per_cluster, self.N, per_cluster)))

for g, x in init_training:
g.train(x)

Perform hierarchical agglomeration based on BIC scores
best_BIC_score = 1.8
while (best_BIC_score > @ and len(self.gmm_list) > 1):

num_clusters = len(self.gmm_list)

Resegment data based on likelihood scoring
likelihoods = self.gmm_list[@].score(self.X)
for g in self.gmm_list[1:]:

likelihoods = np.column_stack((likelihoods, g.sco
most_likely = likelihoods.argmex(axis=1)

Across 2.5 secs of observations, vote on which cluster
split_events = split_events_based_on_votes(most_likely, s

for g, data in split_events:
g.train(data)

Score all pairs of GMMs using BIC
best_merged_gmm = MNone
best_BI(_score = 8.9

merged_tuple = None

for gmmlidx in range(len(iter_bic_list)):
for gmm2idx in range(gmmlidx+l, len(iter_bic_list
gl, dl = iter_bic_list[gmmlidx]
g2, d2 = iter_bic_list[gmm2idx]
score = 0.0
new_gmm, score = compute_distance_BIC(gl, g2, np.concatenate(
if score > best_BIC score:
best_merged_gmm = new_gmm
merged_tuple = (gl, g2)
best_BIC_score = score

Merge the winning candidate pair

if best_BIC_score > 0.@:
self.gmm_list.remove(merged_tuple[@])
self.gmm_list.remove(merged_tuple[1])
self.gmm_list.append(best_merged_gmm)

Diarization Error Rate (DER) and
faster-than-real-time factor for

e

Average 71-115X Faster Than

Real-Time Performance on NVIDIA

N

J

the AMI Meeting Corpus Fermi GPU
-
MeetingID | FFDER FF xRT NFDER NF xRT
TS1000a 10.99% 71.19x 25.38% 72.83X
151001a 27.38% 80.88x 32.34% 163.22x
1S1001b 41.28% 70.02x 10.57% 123.28x
1S1001c 46.83% 59.71x 2840% 177.80x
IS1003b 41.54 % 80.85X 34.30% 254.81X%
11003d 66.89% 64.33x 50.75% 56.13x
1S1006b 20.88% 74.03x 1657% 129.35x
1S1006d 63.68% 54.87x 53.06% 58.36X
IS1008a 2.19% 64.29% 1.65 % 60.35X
1S1008b 4.99% 81.46x 8.58% 151.80x
IS1008c 32.43% 67.20x 9.30 % 81.13x
151008d 27.84% 83.42X 2627% 55.77X
Average 35.49 % 71.02x 24.76 % 115.40x%

[6] Ekaterina Gonina, Gerald Friedland, Henry Cook, Kurt Keutzer “Fast Speaker Diarization Using a
High-Level Scripting Language” In Proceedings of IEEE Workshop on Automatic Speech
Recognition and Understanding (ASRU), Dec 11-15, 2011, Waikoloa, Hawaii.

Mic Array Py+Cilk+ Py+CUDA
Westmere | GTX285/GTX480

Near field 56 X 101 x /115X
Far field 32 X 68 x / 7T1x

= Faster-than-real-time factors for:

= Specializer on Intel Westmere (12 cores/24 threads)
* Nvidia GTX280 & GTX480

GPU SMs | SIMD | Sh.mem Size | DRAM Size
GTX480 14 32 48KB 3GB
GTX285 30 8 16KB 1GB

1. Parallelism & productivity-performance gap J

2. Proposed solution: a Specialization Framework J

3. Example: Gaussian mixture model (GMM) training J
specializer

4. Example applications using GMM specializer:
1. Speaker diarization J
[2. Music recommendation system }

5. Summary
6. Future work

Pardora

= Given a query song or subset of songs — return
similar songs

= Song recommendation system based on the
content of the audio files

» Audio segment-based features
* No need for tedious manual tagging!

= Can use any audio for querying
= YouriTunes library?
= Recording from a concert?
= Humming your favorite song?

\Z |\

I\

= Million Song Dataset (MSD) from Columbia
University:
http://labrosa.ee.columbia.edu/millionsong/

= “A freely-available collection of audio features and
metadata for a million contemporary popular music
tracks”

= 1M song features & metadata :%. WW N
= Artist & song information h --‘;n' | ;

* Tags & beat information
= MFCC-like timbre features

DATASET’

http://labrosa.ee.columbia.edu/millionsong/

= Based on the UBM*-GMM supervector approach
(IRCAM'10 [6]) (next slide)

1. Offline Phase: train UBM & song models

2. Online Phase: train query model & return top 10
closest songs

[6] C. Charbuillet, D. Tardieu, F. Cornu, and G. Peeters, “2011 IRCAM AUDIO MUSIC
SIMILARITY SYSTEM#,” 2011.

UBM* = Universal Background Model

Train a UBM
(rhythm & timbre)

UBM* parameters x 2

means,
covariance,
weights

©® |

Adapt UBM to
- | Compute Song
Supervectors

Song Data

Py

songID => { tinySongID,
artist_name,
title,
supervector _t,
supervector_r}

UBM* = Universal Background Model

UBM parameters S0Ng Data

means songID => { tinySongID,
MSD covariance, fi‘trlte'ft—”ame'
weights supervector _t,
j S supervector_r}
= — -
APARDORA Py
“jaZZ” v
Bx —_— “jazz
> TrainQuery | _5
Model
Query Supervector
songlDz, d1 Compute Song
songID2, d2 Distances to the
songID3, d3 D o) <€
songlDg, d4 uery
songIDs, ds Supervector
- N = 250K-2.2M

D=12
M =64

Pardora Performance Results

= Offline Phase: ~10 minutes
* Online Phase: 1.5-5 seconds depending on query size

Pardora Recommendation Performance

%
o

\

+
o

——
/

e

time (seconds)
!\) w
o (@)

H
e}

o
o

500 1,000 1,500 2,000 2,500

o

Number of songs

4.

5.
6.

Parallelism & productivity-performance gap J

Proposed solution: a Specialization Framework J

Example: Gaussian mixture model (GMM) training J
specializer

Example applications using GMM specializer:

1. Speaker diarization J
2. Music recommendation systemJ

|

Summary
Future work

* Programming parallel processors is challenging

= Selective JIT specialization can allow us to bridge the
productivity-performance gap

= Example: Gaussian Mixture Model specializer
» Python-level productivity & CUDA-level performance

= Two example applications:
= Speaker Diarization (~100 lines of Python)
= 71-115X faster-than-real-time performance

* Music Recommendation System (~600 lines of Python)

= Order of seconds for online recommendation

* Productivity meets performance

\Z ||\
\\

<

= Scalability of this approach for application
development

* More applications using more specializers
* Focus on productivity & performance
= Scalability to the cloud for large datasets
= Whole 1M songs will require cluster-level parallelism
= Autotuning and smarter code generation/selection
* Incorporate machine learning & heuristics
= Specializer composition
= Optimization & data structure selection

Thank you!

Research supported by Microsoft (Award #024263) and Intel (Award #024894) funding
and by matching funding by U.C. Discovery (Award #DIGo7-10227). Additional support
comes from Par Lab affiliates National Instruments, Nokia, NVIDIA, Oracle, and
Samsung.

Backup Slides

= User writes code for a structured grid calculation

3d heat equation
def kernel(inArray, outArray):
for pt in inArray.interior():
for x in pt.neighbors(radius=1):
outArray[pt] += 1/6 * inArray[Xx]

51

= When the user runs kernel(A,B):
= Python code is transformed into optimized C code (more

on that later)
= Take into account # of cores, size of array (256”3)

int c2;
for (c2=chunkOffset_2;c2<=255;c2+=128) {
int c1;
for (cl=chunkOffset_1;c1<=255;c1+=64) {
int co;
for (c@=chunkOffset_0;c0<=255;c0+=256) {
int b2;
for (b2=c2 + threadOffset_2;b2<=c2 + 127;b2+=128) {
int bi;
for (bl=cl + threadOffset_1;bl<=cl + 31;bl+=16) { y
int b@; thread blocks
for (b0=c@ + threadOffset _0;b0<=c@ + 255;b0+=256) {
int kk;
for (kk=b2 + 1;kk<=b2 + 128;kk+=1) {
int j3;
for (jj=bl + 1;jj<=bl + 16;jj+=1) {
int ii;
for (ii=b@ + 1;ii<=b0 + 256;ii+=1) {
dst[_dst Index(ii - 1,jj - 1,kk - 1)] = ...; 55:2

register
Fﬂ/Mom

23333333,

= When the user runs kernel(A,B):

* Python code is transformed into optimized C code

= Touser, it just looks like the code ran really fast

(more on that later)
Code is output to disk

Compiler runs, turns it into dynamic library

Library is loaded into the interpreter

Translated function is called & result returned to

Interpreter

53

Results — Version Comparison (Raw CUDA)

NVIDIA GTX480 - Varying D

006, 07X 480: M =5, N = 90000 0.5 GT}f 48P: M. = 1.00‘.N = golouo
' o A V4128
& v4-032
0.05 |- > . 0.4ll ¥ 3
B V2 B
0.04 |- b > o " Vvl
h ' n I~ . x —
0.03 | > 1)
> 0.2} - ‘
0.02 | _—
" 3 4 . &
0.01} = i : s ®
v § o ®
U.D{].)| " : ' L I L n_u! ; L | | | ! .
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

D D

Results — Version Comparison (Raw CUDA)

NVIDIA GTX285 vs. 480

GTX 480: M =5, N =90000 GTX 285: M =5, N =90000
0.06 T T T T T T T 0.06 x i T T T T T
A V4-128
& V4-032 A
0.05 > . 0.051{ ¢ w3 .
B V2 > P
0.04} > > 0048 V1 > i
b > A
>
0.03 > > g 0.03 > E
A
0.02 |- > B 0.02 | > B
g B A
|
$ @ e ©
0.01 |- = g 0.01 |- A] .
v ' @ A ' ®
ﬂ[}ﬂ. ' |' : ! ! ! ! U.Uﬂ.—’ ;. |. | | ! !
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

D D

GPU SMs | SIMD | Sh.mem Size | DRAM Size
GTX480 14 32 48K B 3GB
GTX285 30 8 16KB 1GB

Recognition Network

Acoustic Pronunciation Language
Model Model Model

Speech

Feat Word

1 eatures

Signal Inference Sequence
Processing g 0O

Module Q Engine I think

therefore
I am

= Task: recognize words and sentences from an audio file

= Recognizing words from a large vocabulary arranged in exponentially
many possible permutations

= Inferring word boundaries from the context of neighboring words
= Viterbi decoding on Hidden Markov Models

Jike Chong, Ekaterina Gonina, Kurt Keutzer, “Efficient Automatic Speech Recognition on the GPU”
Chapter in GPU Computing Gems Emerald Edition, Morgan Kaufmann, Vol. 1, February 9, 2011.

Features
from one
frame

Gaussian Mixture Model

for One Phone State \ HMM Acoustic
Phone Model

Mixture

Computing —=Tomponents

distanc.e to DDDD D

omponents. 2000 - O 5.
0000 O o
00000 |, HH8

Computing 4333

weighted sum
of all /
components / /

Pronunciation Model

HOP hhaap

ONJ aan

PCP paap

-~ -
S ——— <-----"

Compiled HMM Recognition Network

Bigram

Language Model

E EX
. . <O
:6 T T

POP

. Z
1 O

IN

THE

CA

int

HO H
IN

ON
PO}

s

Fully-parallel Speech Recognition Decoder

= Efficient multicore and manycore implementations of
entire decoder (InterSpeech’og)

= Exploring

= Algorithmic-level design space (IEEE SP
Journal 2009)

= Recognition network representation HH o renee e
; : L

(InterSpeech’11)

Architecture of the inference engine: One iteration per
ﬁ time step:
. - A ~60M inst
Decoding Time Per Second of Speech (s) (oo inse)

00 1.0 20 30 40 ,
1 ' ' 82.7% Compute Intensive EETER Compute Intensive
Sequential 17.3% Communication Intensive PIINSPE Communication
| Intensive
) 79.19% Compute Intensive
Mutticore [EET 3.4 20.9% Communication Intensive Multiple steps in a

phase, each has:
1000s to 10,000s
ccccccccc t tasks

(10 to 500 instr.)

&
<

Manycaore .10.5 43.0% Compute Intensive
] 51.0% Communication Intensive

Specifications | Corei7 960 GTX285

4 cores, 4 way SIMD 30 cores, 8 way SIMD

Processing Elements @3.2 GHz @1.5 GHz

4 cores, 2 threads, 4 30 cores, 32 SIMD

Resident
STURIN Wy —— way SIMD: vectors, 32 way
] SIMD:
32 strands 30720 threads
SP GFLOP/s 102 1080 ek
Memory Bandwidth 25.6 GB/s 159 GB/s
Register File - 1.875 MB
Local Store - 480 kB ':LJ:‘

GTX285 (55nm

ACARCARN

SIMD
width=2

= Single Instruction Multiple Data architectures make
use of data parallelism

= We care about SIMD because of area and power
efficiency concerns

= Amortize control overhead over SIMD width

= Parallelism exposed to programmer & compiler

J \\ EHM peaalzer: etals .

-

= Python application code

Template

= Manipulates problem data, sets up application logic
files

= C/CUDA code that runs quickly

= Allocates GPU memory
X=Read in data C sources

= Performs main EM iterative loop

= Specializer[5]

= Selects appropriate code variant gmm = GMM(
(from history) based on —— oot
parameters i

= Pullsin the template for the code
variant, parameterizes it and
compiles to binary

[5]1H. Cook, E. Gonina, S. Kamil, G. Friedland, D. Patterson, A. Fox. "CUDA-level Performance with Python-level
Productivity for Gaussian Mixture Model Applications” In Proceedings of the 3rd USENIX conference on Hot topics
in parallelism (HotPar'11). USENIX Association, Berkeley, CA, USA.

