

Re-architecting DRAM with Silicon Photonics

BERKELEY PAR LAB

S. Beamer, C. Sun, Y. Kwon, A. Joshi, C. Batten, V. Stojanović, K. Asanović

PARALLE L COMPUTING LABORATORY

INTRODUCTION

- In this work, we will:
- Use silicon photonics to reduce the I/O energy and the cross-chip energy and get past pin bottlenecks
- Reduce the row size to reduce the activation energy

DRAM OVERVIEW

- Heavily commoditized part
- Cell density is crucial
- Historically design decisions have been made to increase density at the price of energy efficiency, latency, or bandwidth

Array blocks from different banks can share pins

PHOTONICS OVERVIEW

- Advantages
- High bandwidth density off-chip (DWDM)
- Energy efficient off-chip
- Seamless interchip links (Monolithically Integrated)
- Can fit 64 wavelengths per direction each at 10Gbps

PROPOSED DESIGN

- Redesigning the Bank
- Reduce the row size by increasing the number
 I/Os per array core

- Redesigning the Chip
- Bring photonics past the chip edge into the chip
- Electrical buses cover remaining distance from access points to array blocks
- Control still broadcast electrically

- Redesigning the Channel
- Want multiple chips to share channel to increase capacity independent of bandwidth
- We propose Optical Power Guiding
- Direct laser power only to where it is needed

- Redesigning the System
- All off-chip links (data & control) are optical
- A single memory controller controls one channel which may have multiple chips

FURTHER SCALING

- 3D Stacking is complementary
- Could stack DRAM chips to increase capacity
- Less area overhead than electrical stacking
- Combining with optical power guiding
- First level of switching selects stack
- Second level switching selects die

METHODOLOGY

- Photonic Model
- Conservative & aggressive projections
- DRAM Model
- Heavily modified CACTI-D for 32nm
- Validated against multiple points & processes
- Architectural Model
- Custom C++ simulator with random traffic
- Coverage
- Modeled hundreds of points, present three representative ones in the work

RESULTS

- Latency
- Mostly unchanged since internals of array core left mostly unchanged and activation latency dominates
- Energy vs. Design
- Biggest gain comes from off-chip efficiency
- Aggressive projection at 100% utilization

Conservative projection at 100% utilization

RESULTS

- Energy vs. Utilization
- Best energy efficiency at high utilization, but electrical is always the worst
- Aggressive projection

Conservative projection

Area vs. Design

Decreasing row size good for high bandwidth

Scaling Number of DRAM Chips per Channel

• Guided bus is *much* more scalable

CONCLUSION

- Our redesigned system is able to obtain nearly
 10x improvement in energy efficiency
- To fully reduce energy, must attack it in all places
- I/O, cross-chip, and within bank
- Surprisingly, our modifications are area neutral
- Optical power guiding makes it easier to increase capacity without paying for extra unneeded bandwidth

Poster template inspired by Sam Williams et al.