
P A R A L L E L C O M P U T I N G L A B O R A T O R Y

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Graph Algorithm Processor
Scott Beamer, David Patterson, Krste Asanović

I N T R O D U C T I O N P R E G E L M O D E L

❖ There are emerging applications that operate on large
graphs (millions of nodes)

❖ Lots of real world data/problems record relations
❖ Some problem types:

• Massive Social Networks
• Scientific Data Analysis
• Simulation

❖ Some of these applications can
have time constraints

❖ Unfortunately, these can be
hard for current infrastructure

❖ Can often have little locality (spatial or temporal)
❖ Low arithmetic intensity
❖ Above causes memory system to become a bottleneck

• Either bandwidth or number of outstanding requests
❖ Processor idles, reducing overall energy-efficiency

❖ With energy scaling slowing down, transistors are not
getting much more energy-efficient, however, Moore's
Law continues to give us more of them

❖ With a power budget, this means a decreasing
percentage of the chip can be active (Dark Silicon)

❖ It follows that the active portion should be specialized
for the current task

❖ Doing so allows us to increase its energy-efficiency
to increase performance under a power budget

F I R S T I M P L E M E N T A T I O N

Poster template inspired by Sam Williams et al.

Why Graph Algorithms?

Why are Graphs Algorithms Hard?

Why a Hardware Accelerator?

Fetch
Node
Data

Send
Msgs

Compute
Node

Copy
Back
Node
Data

P R O P O S E D D E S I G N O P E N Q U E S T I O N S

❖ Pregel is a Large-Scale Graph Processing Framework
• Developed by Google,
 published in SIGMOD 2010

❖ It is Bulk Synchronous Parallel
(BSP) with a "thread" per node

❖ Each time step, a node may:
• Examine its private data
• Read messages sent to it in
 previous time steps
• Update its private data
• Send messages to other nodes

❖ Nodes can also go to sleep until
woken up by a message

❖ Designed to work across a
large cluster

❖ How to layout message queues in memory
❖ How well could this perform on a contemporary

processor?
• Compare performance on Nehalem vs. Niagara

❖ Could this be done efficiently with a current processor
and a Virtual Local Store?

❖ Processor - DMA Engine interface
❖ ISA extensions to assist with graphs
❖ Multithread the processor?
❖ Multiple processors?
❖ What other types of applications could this run?

Queue
Node

for
Compute

Inbox

Data

❖ Big Idea: Use a Pregel-like programming model to get
a predictable memory accesses pattern to prefetch
• To compute, a node only needs its data and its inbox

❖ Data transfers can be done asynchronously with DMA
❖ Can get needed parallelism without lots of threads
❖ Use a Scratchpad Memory (SW-managed cache)

to stage data
❖ Below: Work for one node for one time step

Scratchpad Memory
i

DRAM

Processor

DMA
Engine

completed nodes
are written

back to DRAM

new nodes
are prefetched
in background

processor
works out of
scratchpad

Instruction
Cache

traditional
I$ feeds

processor

i-1 i+1

