
Henry Cook, Sarah Bird, Krste Asanovic and Dave Patterson

METHODOLOGY
•We use RAMP Gold with hardware partitioning

•Using PARSEC and Synthetic Benchmarks
•Running Tessellation (ROS)

•Collect performance data to create the models.
•Collect performance data for all possible allocations
to validate models and decisions

DESIGN OVERVIEW

Spatial Resource Allocation on Manycore Platforms
Using Predictive Performance Models

SAMPLING SENSITIVITY ANALYSIS

We collect application
behaviour and use it to create
predictive models. We use the
models as input to the
scheduler to make decisions.
Model accuracy is enhanced
by the performance isolation
provided by a set of hardware
partitioning mechanisms.

MODEL FORMULATION

MAKING SCHEDULING DECISIONS

•Create models from performance data sample
•Input: performance and activity metrics for a sample of
possible allocations
•Output: predicted perf. for untested allocations

•Explore different response surface model types
•Linear, Quadratic, KCCA, GPRS

•Use models to predict the perf. of possible allocations

DECISION-MAKING RESULTS

BENCHMARK SCALING

PARTITIONING MECHANISMS
Core Partitioning:
Easily partitioned by assigning threads to cores in a partition.
Application chooses which threads run on which cores.

Cache Capacity Partitioning (for shared caches):
Caches can be partitioned by ways or banks. For manycore
chips we can use bank-based, allowing an application to be
allocated more local banks.

Bandwidth Partitioning:
Using Globally Synchronous Frames (Lee et al. ISCA 2008)
we can guarantee minimum bandwidth (Packets/Frame) and
bound maximum delay, while also providing differentiated
services.

This graph
shows the
performance of
our bmks for
different
allocations.
Points with the
same core
count but
different
performance
have different
cache or
bandwidth
allocations.

•We define an objective function that uses the predictive
models of the two applications.
•Experiment with different objective functions to represent
best system performance, and lowest energy.

•Minimize the sum total of cycles on the machine
•Minimize the time to completion for the set of benchmarks
•Minimize energy based on a simple energy model

•We can give weights to the model outputs and other features.

•We use the active-set algorithm for nonlinear constrained
optimization (fmincon in Matlab) to solve the objective
function.

This graph shows
that our GSF
mechanism
succeeds in
partitioning BW.

CONCLUSIONS

PARTITIONING EVALUATION
(7.15)

PROBLEM STATEMENT
 On manycore platforms the OS must now manage both spatial
and temporal resource allocation of shared physical resources.
At the same time, the growing prevalence of mobile devices
has made power and energy first class citizens. How can we
get efficient execution on a diversity of platforms with
applications that have different resource usage patterns?
 The combinatorial scheduling problem worsens if all possible
allocations of resources have to be tested at runtime. Instead,
we propose to predict the effects changing an allocation using
performance models.

This figure
illustrates the effect
of validation set
size on perceived
success. Our
chosen allocation
appears to be very
close to optimal
when only sampling
a small number of
points.

This figure illustrates
the effect of the
benchmark input
data set size on the
scheduling problem.
For small data sets
the best and worst
case are so close
that models is too
expensive. This is
not true of the large
size.

This graph
shows how
effective our
models are a
picking an
allocation vs.
the best and
worst alloc.
Time-
mux’ing or
dividing the
machine in
half.

•Scheduling using predictive performance models shows
a lot of promise.

•Quadratic model is within 3% of optimal
•Time-multiplexing is on average 2x of optimal
•Dividing the machine in half is on average 1.5x of opt.

•Itʼs important to evaluate the approach on a system with
full size benchmarks and testing all the allocations

•We run all possible allocations for the two benchmarks
executing together.
•Compare with simple baselines

•Best Spatial Partition
•Time-Multiplexing each application on the whole machine
•Dividing the Machine in Half Spatially

