8/18/2010

Architecting Parallel
Software with Patterns

Kurt Keutzer
the PALLAS group,

Michael Anderson, Bryan Catanzaro, Jike Chong,
Katya Gonina, Dorothea Kolossa, Chao-Yue Lai,
Mark Murphy, David Sheffield, Bor-Yiing Su,
Narayanan Sundaram
with thanks to Tim Mattson

& 1 Assumption #1:

How NOt to develop parallel code
Initial Code

Re-code with

more threads

Profiler
Performance ‘%
profile ;
1

Lots of failures

Fast enough

Ship it N PE’s slower than 1

© Kurt Keutzer 2/64

Benchmark Serial 2 Threads 3 Threads 4 Threads 5 Threads 6 Threads
adaptecl 1.68 1.68 1.70 1.69 1.69 1.69
newbluel 1.80 1.80 1.81 181 1.81 1.82
newblue2 2.60 2.60 2.62 2.62 2.62 2.61
adaptec2 1.87 1.86 1.87 1.88 1.88 1.88
adaptec3 3.32 3.33 3.34 3.34 3.34 3.34
adaptec4 3.20 3.20 321 3.21 321 3.21
adaptec5 491 4.90 4.92 4.92 4.92 4.92
newblue3 2.54 2.55 2.55 2.55 2.55 2.55
average 1.00 1.0011 1.0044 1.0049 1.0046 1.0046
© Kurt Keutzer 3/64

- Assumption #2:

Initial Code

Super-compiler

Performance
profile

Ship it

© Kurt Keutzer

Fast enough

Nor this

Tune
compiler

30 years of HPC
research don'’t offer

much hope
4/64

8/18/2010

J‘\ - Automatic parallelization?

@ Basic speculative multithreading = Aggressive techniques

B Software value prediction such as speculative

O Enabling optimizations multithreading help, but
30 they are not enough.

= Ave SPECint speedup of
- 8% ... will climb to ave. of
15% once their system is
fully enabled.

= There are no indications
auto par. will radically

Speedup %
>

10 4 improve any time soon.
= Hence, | do not believe
5 4 Auto-par will solve our
problems.
0 - T T T
S A R E RS ST
019 & & § c§> & g & & 40{\ K\ < éq,o.»
3

Results for a simulated dual core platform configured as a main core and a core for
speculative execution.
© Kurt Keutzer 5 5/64

LI |
4% Assumption #3: This won’t help either

Code in new
cool language

Re-code with
cool language

Profiler

Performance
profile

V3
1

Fast enough After 200 parallel
languages where’s the
Ship it light at the end of the

tunnel?
© Kurt Keutzer 6/64

8/18/2010

I Wparallel Programming environments in

AaBceL
AcE
AcT++
Astivamazsagas
e
Adsmim
ADDAP

Athapasean-0b
Aurera
Autemap
Tb_threads
Blaze
Bep
BlockComns
o=
“CEmC
cun
CarlOS
Cashmars
ca

© Kurt Keutzer

DOLIB
DOME
DOSMOS,
DRL
DSM-Thrasds
Eass
ECO
Eisfal
Eilaan
Ermerald
EPL
Excalibur
Exprass
Faleon
Filaments
M
FLASH
The FORCE
Fork
Fortran-1g
24
A
GAMDLIA
Glenda

eLu

GUARD
HasL
Hazkeall

Java RMI
javaPG
JavaSpass
DL
Javes
Khesos
Kacms
KOAN Fortans
Lang
Lilac
Linda
JADA
WWWinda
ISETL-Linda
Parlin
Eilsan
P4-Linds
Glends
POSYBL
Objsctive-Linda
Lips
Locust
Lpam
Lucid
Maisie
Manifold

WESL

pC—
e
Pee:

PEACE

Quark
Quick Threads
Saget
SCANDAL
SAML

pC—
SCHEDULE
SeiTL
POET
SDDA.
SEREM
SIMPLE
Sins
SISAL
Gistributad smalltallc
SMIL
soNiC
Splie-C.
SR
Sthraads

Strand,

Tslemphos
SuperPaseal
TCGMSG.

Threads k.

Visifald V-NUS
VEE
Win32 thraads

7/64

% So What’s the Alternative?

© Kurt Keutzer

8/64

8/18/2010

'\
VA ‘\ ~ Principles of SW Design

= After 15 yearsin industry, at one time overseeing the techology of 25 software
products, my two best principles to facilitate good software design are:

= Use of modularity
= Definition of invariants
= Modularity helps:
= Architect: Makes overall design sound and comprehensible
= Project manager:

¢ As a manager | am able to comfortably assign different modules to
different developers

e | am also able to use module definitions to track development

= Module implementors: As a module implementor | am able to focus on the
implementation, optimization, and verification of my module with a minimum
of concern about the rest of the design

= |dentify invariants and key computations

© Kurt Keutzer 9/64

' }5 l\ ~ Non-Principles of SW Design

= What's life like without modularity?
= Spaghetti code
= Wars over the interpretation of the specification
= Waiting on other coders
= Wondering why you didn’t touch anything and now your code broke
= Hard to verify your code in isolation, and therefore hard to optimize
= Hard to parallelize without identifying key computations

= Modularity will help us obviate all these

= Parnas, “On the criteria to be used on composing systems into modules,”
CACM, December 1972.

© Kurt Keutzer 10/64

8/18/2010

- Modularity is important But ...

Pop quiz: Is software more like?

a) A building b) A factory

© Kurt Keutzer 11/64

_ . % What computations we do is as

important than how we do them

Apps

Dwarves Ed\ivsér
Graph Algorithms
Graphical Models
Backtrack / B&B
Finite State Mach,
Circuits
Dynamic Prog.
Unstructured Grid
Structured Grid
Dense Matrix
Sparse Matrix
Spectral (FFT)
Monte Carlo
N-Body

© Kurt Keutzer 12/64

8/18/2010

o/
b ‘\ Architecting Parallel Software

Putting computation and structure together:

= We believe the key to productively building efficient and correct
parallel software is software architecture

A software architecture is a hierarchical composition of:
= Computational patterns — the atoms
= Structural patterns — the molecular bonds
This software architecture naturally gives:
= Modularity
o Efficient management
o Efficient implementation
e Efficient verification
= |dentifies key computations, invariants, and interfaces

© Kurt Keutzer

13/64

J‘ l\ Outline

== B Architecting Parallel Software

W Structural Patterns

B Computational Patterns
B Examples

B Summary

© Kurt Keutzer

14/64

8/18/2010

j}l\ Identify the SW Structure

| Structural Patterns | L |

*Pipe-and-Filter % [I—
P
—

*Agent-and-Repository

*Event-based

sLayered Systems

*Model-view-controller QD

Arbitrary Task Graphs
*Puppeteer
elterator/BSP —-@ % @9

*MapReduce

These define the structure of our software but they do not
describe what is computed
© Kurt Keutzer 15 15/64

J‘ l\ Analogy: Layout of Factory Plant i

© Kurt Keutzer 16 16/64

8/18/2010

8/18/2010

Apps

Embed
SPEC

Games
C
D

El % 6 Health | Image |Speech| Music Erdwsér

DB

Dwarves
Graph Algorithms
Graphical Models
Backtrack / B&B
Finite State Mach|
Circuits
Dynamic Prog.
Unstructured Grid
Structured Grid
Dense Matrix
Sparse Matrix
Spectral (FFT)
Monte Carlo
N-Body

® Computational patterns describe the key computations but not how they
o kurt kAG.IMPlemented 17/64

J U Analogy: Machinery of the Factory 7 1

© Kurt Keutzer 18 18/64

j?‘\ Architecting the Whole Application

s g
P
Sequence
. /
* SW Architecture of Large-Vocabulary Analogous to the design of an
Continuous Speech Recognition entire manufacturing plant
Raises appropriate issues like scheduling, latency, throughput,
workflow, resource management, capacity etc.
© Kurt Keutzer 19 19/64

J‘ l\ Outline

B Architecting Parallel Software
== M Structural Patterns
M Pipe and filter
M |terator
B Map Reduce
B Computational Patterns
B Examples
B Summary

© Kurt Keutzer 20/64

8/18/2010

10

8/18/2010

LR |
J 4 Elements of a structural pattern

= Components are where the computation happens

\ A configuration is a
\ ~ graph of
components
ﬁ D (vertices) and
N

connectors (edges)

Q,D A structural

patterns may be
described as a
> J familiy of graphs.

Connectors are where the communication happens

© Kurt Keutzer 21/64

'\ Inventory of Structural Patterns

* Pipe-and-Filter

» Agent-and-Repository
* Event-based

* Layered Systems

* Model-view-controller
» Arbitrary Task Graphs
* Puppeteer

* lterator/BSP

* MapReduce

» We build arbitrarily complex software structures out of these nine
patterns

© Kurt Keutzer 22/64

11

j}l\ - Pattern 1: Pipe and Filter

*Filters embody computation
*Only see inputs and produce

outputs)
* No global or shared state Filter 1 *Pipes embody

l communication

\L Filter 3] [Filter 2]

Filter 4

May have feedback
Filter 5
[Filter 6] [Filter 7
Examples?
© Kurt Keutzer 23/64

J‘ l\ - Examples of pipe and filter

B Almost every large software program has a pipe and filter structure at the highest

level
Scan
Netlist
Bulild
Data
model

Feature Extraction

Build
Internal
Representation Train Classifier

Optimize
Program

Optimize
circult

Exercise Classifie

Image Retrieval System Logic optimizer

Compiler

© Kurt Keutzer 24

24/64

8/18/2010

12

8/18/2010

|3 |

7 Pz}ttern 2: Iterator Pattern

Initialization condition

)
)

Variety of functions
performed

asynchronously \\- ™

.

— No
Exit condition met?

ojelall

Synchronize results
of iteration

v Examples?
Yes P

© Kurt Keutzer 25/64

J‘ 1 Example of Iterator Pattern: "

Training a Classifier: SVM Training

Update Iterator Structural Pattern

surface

ths \\\ L ay] iz = 3 =
AN / [¢]
\\ S
0 o o
(h: \
Identify
Outlier
No
All points within
acceptable error? Y Ves
© Kurt Keutzer 26/64

13

Y,
I ‘\ ~ Pattern 3: MapReduce

% To us, it means
= A map stage, where data is mapped onto
independent computations

= Areduce stage, where the results of the map
stage are summarized (i.e. reduced)

Map Map
v
Reduce
Reduce
Examples?
© Kurt Keutzer

27/64

J‘ l\ - Examples of Map Reduce

= General structure:
B Map a computation across distributed data sets
B Reduce the results to find the best/(worst), maxima/(minima)

\\M

Speech recognition

* Map HMM computation
to evaluate word match

* Reduce to find the most-
likely word sequences

Support-vector machines (ML)
* Map to evaluate distance from
the frontier

* Reduce to find the greatest
outlier from the frontier

© Kurt Keutzer

28/64

8/18/2010

14

8/18/2010

J 1 Outline

B Architecting Parallel Software
B Structural Patterns
==> B Computational Patterns
M Linear Algebra
M Spectral Methods
B Dynamic programming
B Examples
B Summary

© Kurt Keutzer

29/64

Apps

Embed
SPEC

DB
Games

ML

U[usm

Image |Speech

HPC
CAD

Dwarves Health

EI’OWS el

Graph Algorithms
Graphical Models
Backtrack / B&B

Finite State Mach,

ircui

Dynamic Prog.
nstructure rl

Structured Grid

Dense Matrix

Spectral (FFT)
Monte Carlo

N-Body

® We build arbitrarily complex computations out of these thirteen

© Kurt Kglgzryrputatlonal patterns

30/64

15

8/18/2010

J \ CP1:Linear Algebra

= Vector Space: A set closed under + has identity and

inverse elements, scalar multiplication

= Linear Map: Operator T on vectors u,v, scalar a s.t.

T(u+v)=Tu+Tv, and T(av) = aT(v)

= Matrix: An m X n array of numbers representing a

Linear map from R" to R™

= Linear Equations: Ax =

b

= Eigenvalues/vectors: Ax = Ax

© Kurt Keutzer

31/64

(LAS)

= Three "Levels”, known as BLAS, characterized by
intrinsic ratio of computation to memory movement

Level Example #memrefs | #flops o}
1 XAXPY: y = y+ox 3n 2nt 2/3
2 XGEMV: y=y+Ax n2 2n2 2
3 XGEMM: C=C+AB 4n2 2n3 n/2

© Kurt Keutzer

32/64

16

J U Linear Algebra Resources

£ b4 5 ® APPLIED
CAphia = NUMERICAL
o by g = LINEAR

= ALGEBRA

James W, Demmel

www.netlib.org/lapack

Templates .
o the Soistion of Linewr Syemr: i
ey i r e i i
; 1
= gams.nist.gov I
~
www.netlib.org/templates www.cs.utk.edu/~dongarra/etemplates
© Kurt Keutzer 33/64

MRI Reconstruction

= "Spectral Methods" are a broad class of numerical algorithms for
solving PDEs, but notions of Spectral Analysis (i.e. convenient
changes of basis) are important in every application area

= |n Magnetic Resonance Imaging (MRI), images are collected in
"k-space" --i.e. an MRI scan produces a Fourier Domain image

MRI Scan
o == DFT

»

Wavelet
Xform

= Fourier and Wavelet
representations are different
Spectral analyses that expose
different properties of images
convenient for solving our problems

© Kurt Keutzer 34/64

8/18/2010

17

I & Spectral Methods Pattern:

Fast Transforms

= Spectral Methods rely on representions of data in "convenient"
bases that produce working, computationally feasible algorithms

= Changing a basis is, in general, an O(N2) matrix-vector
multiplication. The matrices representing "convenient" bases factor
into O(N log N) fast transforms!

M=l
= 2y wl®
F=Q
11 1 1 1 1 1 1
Fal|l ® whowt | 1 -

1 w? @t of 1 -1 1 -1
1 o % of 1 4 =1

Fom = lfnﬁ. Dﬂ‘?l lFﬁﬁﬂmI
feme —Dgpa Fosp ®odi

© Kurt Keutzer 35/64

Black Data Lagost of an m = - palnt FET an =8 Precescans

= Fast transform algorithms like the FFT are r=e=

notoriously difficult to optimize: .\\\ /}/\;\//; KE’{”
» Luckily, implementations of the FFT exist A TN -
for every platform. E.G: iy

= FFTW and SPIRAL: Highly successful R\ X
auto-tuners for FFT (and others) on L AAVANE
PCs and workstations ;:::::;\' =<

= CUFFT for Cuda on Nvidia GPUs Ve

/) N\ N

Required log (mip) steps
Ingip) staps

© Kurt Keutzer 36/64

8/18/2010

18

AVA

U CP3: Dynamic Programming

= (Class of problems for which the optimal solution can be built up
from optimal solutions to sub-problems

= Principle of optimality: Optimal cover for a tree consists of a
best match at the root of the tree plus the optimal cover for
the sub-trees starting at each input of the match
Best cover for
—_ this match uses
best covers for

X, ¥z

Choose least
cost tree-cover
at root

Best cover for
this match uses

best covers for
p,z

© Kurt Keutzer 37/64

ﬂl “ Mapping a circuits into a Cell Library } \

Der %

@—‘D‘*—L@ subject tree

e T I D O B>

© Kurt Keutzer 38/64

8/18/2010

19

j‘\ Example of Optimal Tree Covering

INV AOI21
1M1+2=13 4+3=7
NAND2
2+6+3=11
NAND2
INV 3+3=6
2
NAND2
3 NAND2
3
© Kurt Keutzer 39/64

At .. .
J 4 code generation in compilers

—~
/}1(‘“\\
(‘HEM \ MEMI
[- 8 +
BTN
sy T T[FP Y DONST x
I | '(——5<_ :
[A \@rsens
Ehconsr s
2 LOAD ¢ +— M[ip+4a) 2 LOAD ry A MI[Ep + a]
4 ADDI ra g+ 4 4 ADDI F—ap+d
5 MUL ry = F; X Py 5 MUL L R]
6 ADD Py +—F +F2 6 ADD o= r+r
& LOAD ry <« M[fp + x| & ADDI o tptx
9 STORE Mr 4+0] «nrs 9 MOVEM M] = M[ra]
© Kurt Keutzer 40/64

8/18/2010

20

Speech Recognition

Observations Time . .
igifgi
EEE e k ki a a a g EEHE

00000000099000000000000000000
00000000000000090999%2000000000
000000000000 060000060660000066006009
290 099900000000000000000000000
§99999999999999999999999999999
$1000000000000000000000000099200
S000000DOODODODOODODOODODODODODODODODODODODOOOO
é@@@@@@@@@@@@@99@@@@@@@@@@@@@@
7000000 ODOODODOODODOODODOODODODOODODO2000O000
090000000000000000000000000006
00000000000000000000000000000
-0 - - - - - - - O - - - - - - - - - - O - -

Interpretation

Wreck nice beach

Recognize speech

ﬂl ‘\ Outline

B Architecting Parallel Software

B Structural Patterns

B Computational Patterns

== B Examples
=== W Classification using Support Vector Machines

B MRI
B Speech Recognition

B Summary

© Kurt Keutzer 42/64

8/18/2010

21

New Images

Feature Extraction

Choose Examples

+
=~ +_ 1 Train Classifier |\ SEECEILEELLELLH g

Exercise Classifier

v :
[Results } [User Feedback }

© Kugteiitfics Processors”, ICML 2008

Catanzaro, Sundaram, Keutzer, “Fast SVM Training and Classification on

43/64

|
¥ l\ - Feature Extraction

- Image is reduced to a set of low-
dimensional feature vectors

Build Scale-
Space
Representation

Structured Grid

Il

Map Reduce

Select Interest Points -
(and Support Regions} = SRR ':E:' -

Dense Linear Algebra

(Build Descriptors ' = WEN EB:I g

Map Reduce Structured Grid

© Imjar?%gggtgrre Extraction for Mobile Processors", Mark Murphy, Hong Wang, Kurt Keutzer ISWC '09 44/64

8/18/2010

22

jl‘ ~ Train Classifier:

SVM Training
Update
Optimality q SR
Conditions
Train Classifier _ MapReduce
@
3
o
Select
Working
Set, ﬁ . . .
Solve QP
MapReduce
Iterator Pattern
© Kurt Keutzer 45/64

1 & Exercise Classifier :
SVM Classification

Test Data

Compute dot
products

Dense Linear
[Exercise Classifier] Algebra

Compute Kernel

values, sum & e G
scale
MapReduce
Output
© Kurt Keutzer 46/64

8/18/2010

23

8/18/2010

Support-Vector Machine Mini-Frameworkt

Feature Extraction = Support-Vector Machine Framework
I used to achieve:
TR T R F— - o
| = 9-35x speedup for training
e — = 81-138x for classification

Jm = 1100 downloads since release

Fast support vector machine training and classification , Catanzaro,
Sundaram, Keutzer, International Conference on Machine Learning 2008

© Kurt Keutzer 47/64

J‘ l\ Outline

B Architecting Parallel Software
B Structural Patterns
B Computational Patterns
B Examples
M CBIR
= N MRI
B Speech Recognition
B Summary

© Kurt Keutzer 48/64

24

S Fast, Robust Pediatric MRI

= Pediatric MRl is difficult:
= Children cannot sit still, breathhold
= Low tolerance for long exams

= Anesthesia is costly and risky
= Like to accelerate MRI acquisition
= Advanced MRI techniques exist, but require
data- and compute- intense algorithms for
image reconstruction
= Reconstruction must be fast, or time saved in
accelerated acquisition is lost in computing
reconstruction
= Slow reconstruction times are a non-starter
for clinical use

© Kurt Keutzer 49/64

LS State-of-the-Art Algorithms

= Collaboration with MRI Researchers:
= Miki Lustig, Ph.D., Berkeley EECS
= Marc Alley, Ph.D., Stanford EE
= Shreyas Vasanawala, M.D./Ph.D., Stanford Radiology

= Advanced MRI: Parallel Imaging and Compressed Sensing to dramatically
reduce MRI image acquisition time

v —_—

® Computational IOU: Must solve constrained L1 minimization
minimize | Wz||
st Fozr=uy,
|Gz —z|]2 <€

© Kurt Keutzer =N 50/64

8/18/2010

25

J 1 SW architecture of image reconstruction

1. Apply SPIRIT Operator:
Data Parallelism / Fourier Transforms
x— WS, {W*z}

Te ey * J;J
Linear Alg. Linear Alg. 3. Fourier-space projection

Pipe and Filter Iterative POCS Algorithm:
2. Wavelet'Soft-Thresholding
xz— F(PTy+ PI'P.F*z)

Data Parallelism / Fourier Transforms
\/

Iter. Refinement / Spectral Method

HE B B B

L/
| Data Parallelism / Fourier Transforms _l

© Kurt Keutzer 51/64

Data Parallelism / Wavelet xforms
Data Parallelism / Fourier xforms

J 14 Game-Changing Speedup

100X faster reconstruction
= Higher-quality, faster MRI

= This image: 8 month-old patient with
cancerous mass in liver

= 256 x 84 x 154 x 8 data size
= Serial Recon: 1 hour
= Parallel Recon: 1 minute

= Fast enough for clinical use

= Software currently deployed at
Lucile Packard Children's Hospital
for clinical study of the
reconstruction technique

© Kurt Keutzer

8/18/2010

26

j}l\ Outline

B Architecting Parallel Software
B Structural Patterns
B Computational Patterns
B Examples
M CBIR
B MRI
=== M Speech Recognition
B Summary

© Kurt Keutzer

53/64

b
v ‘\ Large Vocabulary Continuous Speech Recogniii(’m

Recognition Network

Acoustic Pronunciation Language

Model Model Model
Voice ipe:z ch Word
Input Signal eatures Inference Sequence
Processing (n] q 1 think
" | ' Module Q Engine th;r:&gore

I am

= Inference engine based system

Used in Sphinx (CMU, USA), HTK (Cambridge, UK), and Julius (CSRC, Japan) [10,15,9]
= Modular and flexible setup

Shown to be effective for Arabic, English, Japanese, and Mandarin

© Kurt Keutzer 54/64

8/18/2010

27

o
I ‘\ LVCSR Software Architecture

Recognition Network Pipe-and-filter

Acoustic Pronunciation Language
Model Model Model
Inference Engine (Graphical Model)

Beam Search lterations
Dynamic
Active State Computation Steps Programming
(TaskGraph)

MapReduce
Speech v

Feature

I am

Word
Speech
Features ? Sequence
1 think
therefore
(Iterative Refinement)

© Kurt Keutzer 55/64

(Aninstance of: Graphical Models) C Implemented with: Dynamic Programming)

= Finds the most-likely sequence of states that produced the observation

mlt][s,] = max m(t —1[s;—1] - P(s;|s;—1) - P(xe|s,)

o hat ~ BT

Viterbi Algorithm
Legends:

@ A State u An Observation

s POxs,) S m[t-1][s.4]
T P(ssiy) 4 m[t[s]

Markov Condition:

State 1

State 2

State 3

State 4 mlt][s;] = _max | PlXe o XS0 52108)
P

J. Chong, Y. Yi, A. Faria, N.R. Satish and K. Keutzer, “Data-Parallel Large Vocabulary Continuous Speech
Recognition on Graphics Processors”, Emerging Applications and Manycore Arch. 2008, pp. 23-35, June 2008

© Kurt Keutzer 56/64

8/18/2010

28

v,
I ‘\ Inference Engine in LVCSR

= Three steps of inference
0. Gather operands from irregular data structure to runtime buffer
1. Perform observation probability computation
2. Perform graph traversal computation

Parallelism in the inference engine:

Vs ~ Viterbi Algorithm
Obs 1 Obs 2 Obs 3 Obs 4
0. Gather operand ¢ X | kd B
¥
State 1 @
1. kd P(xs I
T () State 2 @
) State 3 "¢
2.« mls] e o
L) State 4 (5]
© Kurt Keutzer 57/64

Speech Recognition with HMM

Observations Time . .
iNifi
EEE e k kla a al g nny

0101000 00009/9/0100000000000000000
0101010001010/ 0/0/0|0/0/0101010I019191010/0/01 00101010
0000000000606 0660600000060606060060O0 009
2900999000000 00000000000000000
§99999999999999999999999999999
$00000000000000000000000009900
000000020000 0DO0ODODODODODODODOODOOOOOO
g@@@@@@@@@@@@@@000@@00@0000000
"O00OODODODOODODOODODOODODOODODOOODO200000
0900000000000000000000000600000
00000000000000000000000000000
©O0000000000O00O0DO0ODO0O0D0DO0DO0O0DO0DO0O0O00O0O0

Interpretation

Wreck nice beach

Recognize speech

8/18/2010

29

o/
b ‘\ Speech Recognition Results

Recogrition Network
Acoustic | Pronunciation || Language
= |nput: Speech audio waveform . =
. ;i Speech
= Qutput: Recognized word sequences s ﬁ e —
-] Engine
o

= Achieved 11x speedup over sequential version
= Allows 3.5x faster than real time recognition

= Qur technique is being deployed in a hotline call-center data analytics
company

= Used to search content, track service quality and provide early detection
of service issues

Scalable HMM based Inference Engine in Large Vocabulary Continuous Speech Recognition,
Kisun You, Jike Chong, Youngmin Yi, Ekaterina Gonina, Christopher Hughes, Wonyong Sung
and Kurt Keutzer, IEEE Signal Processing Magazine, March 2010

© Kurt Keutzer

59/64

Multi-media Speech Recognition 71

Prof. Dorothea Kolossa
Speech Application Domain Expert
Technische Universitat Berlin

[ST [CHMM Format
]

Extended audio-only speech recognition framework to (] Fired Beam Width

enable audio-visual speech recognition (lip reading)

Achieved a 20x speedup in applicatiol
performance compared to a sequentia
version in C++

|: CHMM GPU ObsProb

The application framework enabled a
Matlab/Java programmer to effective
utilize highly parallel platform

Output Results CHMM Scoring format

© Kurt Keutzer

60/64

8/18/2010

30

j}l\ ~ Outline

)

B Architecting Parallel Software
B Structural Patterns

B Computational Patterns

B Examples

B Summary

© Kurt Keutzer

61/64

: }5 l\ -~ Other Interesting Results

= Pa
of

=W

tterns have helped the PALLAS research group publish papers in a diverse group
leading Computer Science conferences in the last few years:

Interspeech 2009, Interspeech 2010 (2)

IEEE Signal Processing Magazine 2009

European Conference on Computer Vision 2010
International Conference on Computer Vision 2009

Workshop on High Performance Computing in Finance at Super Computing
2009

Joint Annual Meeting of the International Society for Magnetic Resonance in
Medicine, ISMRM 2010

International Conference on Machine Learning 2008
hat’s the point?
Computational patterns give a new powerful viewpoint to efficiency
programmers:
Enable us to disentangle the big fuzzy ball of yarn of computation
¢ add 20 I1Q points to our problem solving (as per Alan Kay)
Our Pattern language helps you to write good parallel code

© Kurt Keutzer

62/64

8/18/2010

31

8/18/2010

j}l\ - Summary

= The key to productive and efficient parallel programming is creating a
good software architecture — a hierarchical composition of:

= Structural patterns: enforce modularity and expose invariants
= | showed you three —seven more will be all you need

= Computational patterns: identify key computations to be parallelized
¢ |showed you three —ten more will be all you need

= QOrchestration of computational and structural patterns creates
architectures which greatly facilitates the development of parallel
programs:

= | showed you three — there are many more

Patterns: http://parlab.eecs.berkeley.edu/wiki/patterns/patterns

PALLAS: http://parlab.eecs.berkeley.edu/research/pallas

CS194: Engineering Parallel Software: Fall 2010
© Kurt Keutzer 63/64

32

