
PARLab Parallel Boot Camp 
 

 

Introduction to  

OpenMP 

 

 
Tim Mattson 

Microprocessor and Programming Research Lab 

Intel Corp. 



Tim Mattson OpenMP: 2 8/16/2011 

Disclaimer 

• The views expressed in this presentation 
are my own and do not represent the views 
of the Intel Corporation (or its lawyers).   



Tim Mattson OpenMP: 3 8/16/2011 

Outline 

• OpenMP: History and high level overview 

• Software development with OpenMP 

• OpenMP 2.5: other essential constructs 
– Synchronization 

– Runtime library 

– Loop scheduling 

• OpenMP memory model  beware the flush 

• OpenMP 3.0 

• The NUMA crisis and OpenMP 



Tim Mattson OpenMP: 4 8/16/2011 

OpenMP* Overview: 

omp_set_lock(lck) 

#pragma omp parallel for private(A, B) 

#pragma omp critical 

C$OMP parallel do shared(a, b, c) 

C$OMP PARALLEL  REDUCTION (+: A, B) 

call OMP_INIT_LOCK (ilok) 

call omp_test_lock(jlok)  

setenv OMP_SCHEDULE “dynamic” 

CALL OMP_SET_NUM_THREADS(10) 

C$OMP DO lastprivate(XX) 

C$OMP ORDERED 

C$OMP  SINGLE PRIVATE(X) 

C$OMP SECTIONS  

C$OMP MASTER 
C$OMP ATOMIC 

C$OMP FLUSH 

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C) 

C$OMP THREADPRIVATE(/ABC/) 

C$OMP PARALLEL COPYIN(/blk/) 

Nthrds = OMP_GET_NUM_PROCS() 

!$OMP  BARRIER 

OpenMP:  An API for Writing Multithreaded 
Applications 

 

A set of compiler directives and library 
routines  for parallel application programmers 

Makes writing multi-threaded applications in 
Fortran, C and C++ as easy as we can make it. 

Standardizes last 20 years of SMP practice 

* The name “OpenMP” is the property of the OpenMP Architecture Review Board. 



Tim Mattson OpenMP: 5 8/16/2011 

OpenMP pre-history 

• OpenMP based upon SMP directive standardization 
efforts … PCF and aborted ANSI X3H5 – late 80’s 

– Nobody fully implemented either standard 

– Only a couple of partial implementations 

 

• Vendors considered proprietary API’s to be a 
competitive feature:  

– Every vendor had proprietary directives sets 

– Even KAP, a “portable” multi-platform parallelization tool used 
different directives on each platform 

PCF – Parallel Computing Forum         KAP – parallelization tool from KAI. 

SMP – Symmetric multiprocessor API – application programming interface 



Tim Mattson OpenMP: 6 8/16/2011 

History of OpenMP 

SGI 

Cray 

Merged, 

needed 

commonality 

across 

products 

KAI ISV - needed 

larger market 

was tired of 

recoding for 

SMPs.  Urged 

vendors to 

standardize. 

ASCI 

Wrote a 

rough draft 

straw man 

SMP API 

DEC 

IBM 

Intel 

HP 

Other vendors 

invited to join 

1997 



Tim Mattson OpenMP: 7 8/16/2011 

OpenMP Release History 

OpenMP 

Fortran 1.1 

OpenMP 

C/C++ 1.0 

OpenMP 

Fortran 2.0 

OpenMP 

C/C++ 2.0 

1998 

2000 1999 

2002 

OpenMP 

Fortran 1.0 

1997 

OpenMP 

2.5 

2005 

A single 

specification 

for Fortran, C 

and C++ 

OpenMP 

3.0 

tasking, 

other new 

features 

2008 

… and we are currently working on OpenMP 3.X 



Tim Mattson OpenMP: 8 8/16/2011 

Outline 

• OpenMP: History and high level overview 

• Software development with OpenMP 

• OpenMP 2.5: other essential constructs 
– Synchronization 

– Runtime library 

– Loop scheduling 

• OpenMP memory model  beware the flush 

• OpenMP 3.0 

• The NUMA crisis and OpenMP 



Tim Mattson OpenMP: 9 8/16/2011 

OpenMP Execution Model:  
Fork-Join Parallelism:  

Master thread spawns a team of threads as needed. 

Parallelism added incrementally until performance are 
met: i.e. the sequential program evolves into a parallel 
program. 

Parallel Regions 
Master 

Thread 

in red 

A Nested 

Parallel 

region 

Sequential Parts 



Tim Mattson OpenMP: 10 8/16/2011 

The essence of OpenMP 

• Create threads that execute in a shared address space: 
– The only way to create threads is with the “parallel construct” 
– Once created, all threads execute the code inside the construct. 

 

• Split up the work between threads by one of two means: 
– SPMD (Single program Multiple Data) … all threads execute the same 

code and you use the thread ID to assign work to a thread. 
– Workshare constructs split up loops and tasks between threads. 

 

• Manage data environment to avoid data access conflicts 
– Synchronization so correct results are produced regardless of how 

threads are scheduled. 
– Carefully manage which data can be private (local to each thread) and 

shared. 



Tim Mattson OpenMP: 11 8/16/2011 

Example Problem:  Numerical Integration 

  
4.0 

(1+x2) 
dx =  

0 

1 

 F(xi)x   
i = 0 

N 

Mathematically, we know that: 

We can approximate the 

integral as a sum of 

rectangles: 

Where each rectangle has 

width x and height F(xi) at 

the middle of interval i. 

4.0 

2.0 

1.0 

X 
0.0 



Tim Mattson OpenMP: 12 8/16/2011 

PI Program: an example 

static long num_steps = 100000; 

double step; 

void main () 

{   int i;    double x, pi, sum = 0.0; 

 

   step = 1.0/(double) num_steps; 

             x = 0.5 * step; 

   for (i=0;i<= num_steps; i++){ 

    x+=step; 

    sum += 4.0/(1.0+x*x); 

   } 

   pi = step * sum; 

} 



Tim Mattson OpenMP: 13 8/16/2011 

How to write a parallel program 

Stages of parallel programming 

Identify the concurrent tasks in a problem. 

Organize the problem and structure source code to 
expose the concurrent tasks. 

Express the concurrency and its safe execution in the 
source code . 

Execute the concurrency on parallel hardware, evaluate 
performance 



Tim Mattson OpenMP: 14 8/16/2011 

PI Program: identify Concurrency 

static long num_steps = 100000; 

double step; 

void main () 

{   int i;    double x, pi, sum = 0.0; 

 

   step = 1.0/(double) num_steps; 

             x = 0.5 * step; 

   for (i=0;i<= num_steps; i++){ 

    x+=step; 

    sum += 4.0/(1.0+x*x); 

   } 

   pi = step * sum; 

} 

Loop iterations 

can in principle 

be executed 

concurrently 



Tim Mattson OpenMP: 15 8/16/2011 

PI Program: Expose Concurrency, part 1 

static long num_steps = 100000; 

double step; 

void main () 

{   double pi, sum = 0.0;  

   step = 1.0/(double) num_steps; 

 

             int i;    double x;  

   for (i=0;i<= num_steps; i++){ 

    x = (i+0.5)*step; 

    sum += 4.0/(1.0+x*x); 

   } 

   pi = step * sum; 

} 

Isolate data 

that must be 

shared from 

data local to a 

task 
Redefine x to 

remove loop 

carried 

dependence 

This is called a reduction … 

results from each iteration 

accumulated into a single 

global.  



Tim Mattson OpenMP: 16 8/16/2011 

PI Program: Expose Concurrency, part 2 
Deal with the reduction 

static long num_steps = 100000; 

#define NUM 4  //expected max thread count 

double step; 

void main () 

{   double pi, sum[NUM] = {0.0};  

   step = 1.0/(double) num_steps; 

 

             int i, ID=0;    double x;  

   for (i=0;i<= num_steps; i++){ 

    x = (i+0.5)*step; 

    sum[ID] += 4.0/(1.0+x*x); 

   } 

   for(int i=0, pi=0.0;i<NUM;i++)  

                          pi += step * sum[i]; 

} 

Common Trick: 

promote scalar 

“sum” to an array 

indexed by the 

number of 

threads to create 

thread local 

copies of shared 

data. 



Tim Mattson OpenMP: 17 8/16/2011 

PI Program: Express Concurrency using OpenMP 

#include <omp.h> 

static long num_steps = 100000; 

#define NUM 4 

double step; 

void main () 

{   double pi, sum[NUM] = {0.0};  

   step = 1.0/(double) num_steps; 

#pragma omp parallel num_threads(NUM) 

{ 

             int i, ID;    double x;  

             ID = omp_get_thread_num(); 

  for (i=ID;i<= num_steps; i+=NUM){ 

    x = (i+0.5)*step; 

    sum[ID] += 4.0/(1.0+x*x); 

   } 

} 

   for(int i=0, pi=0.0;i<NUM;i++)  

                          pi += step * sum[i]; 

} 

Create NUM 

threads 

Each thread 

executes code in 

the parallel block 

Simple mod to 

loop to deal out 

iterations to 

threads 

variables 

defined inside 

a thread are 

private to that 

thread 

automatic variables 

defined outside a 

parallel region are  

shared between 

threads 



Tim Mattson OpenMP: 18 8/16/2011 

PI Program: Fixing the NUM threads bug 
#include <omp.h> 

static long num_steps = 100000; 

#define NUM 4   

double step; 

void main () 

{   double pi, sum[NUM] = {0.0};  

   step = 1.0/(double) num_steps; 

#pragma omp parallel num_threads(NUM) 

{            int nthreads = omp_get_num_threads(); 

             int i, ID;    double x;  

             ID = omp_get_thread_num(); 

  for (i=ID;i<= num_steps; i+=nthreads){ 

    x = (i+0.5)*step; 

    sum[ID] += 4.0/(1.0+x*x); 

   } 

} 

   for(int i=0, pi=0.0;i<NUM;i++)  

                          pi += step * sum[i]; 

} 

Hence, you 

need to add a 

bit of code to 

get the actual 

number of 

threads 

NUM is a 

requested 

number of 

threads, but an 

OS can choose 

to give you 

fewer. 



Tim Mattson OpenMP: 19 8/16/2011 

Incremental Parallelism 

• Software development with incremental 
Parallelism: 

– Behavior preserving transformations to expose 
concurrency. 

– Express concurrency incrementally by adding OpenMP 
directives… in a large program I can do this loop by loop 
to evolve my original program into a parallel OpenMP 
program. 

– Build and time program, optimize as needed with 
behavior preserving transformations until you reach the 
desired performance. 

 



Tim Mattson OpenMP: 20 8/16/2011 

PI Program: Execute Concurrency 
#include <omp.h> 

static long num_steps = 100000; 

#define NUM 4   

double step; 

void main () 

{   double pi, sum[NUM] = {0.0};  

   step = 1.0/(double) num_steps; 

#pragma omp parallel num_threads(NUM) 

{            int nthreads = omp_get_num_threads(); 

             int i, ID;    double x;  

             ID = omp_get_thread_num(); 

  for (i=ID;i<= num_steps; i+=nthreads){ 

    x = (i+0.5)*step; 

    sum[ID] += 4.0/(1.0+x*x); 

   } 

} 

   for(int i=0, pi=0.0;i<NUM;i++)  

                          pi += step * sum[i]; 

} 

The performance can 

suffer on some 

systems due to false 

sharing of sum[ID] … 

i.e. independent 

elements of the sum 

array share a cache 

line and hence every 

update requires a 

cache line transfer 

between threads. 

Build this program 

and execute on 

parallel hardware. 



Tim Mattson OpenMP: 21 8/16/2011 

PI Program: Safe update of shared data 
#include <omp.h> 

static long num_steps = 100000; 

#define NUM 4 

double step; 

void main () 

{   double pi, sum=0.0;  

   step = 1.0/(double) num_steps; 

#pragma omp parallel num_threads(NUM) 

{           int i, ID;    double x, psum= 0.0;  

             ID = omp_get_thread_num(); 

             ID = omp_get_thread_num(); 
        for (i=ID;i<= num_steps; i+=nthreads){ 
    x = (i+0.5)*step; 

    psum += 4.0/(1.0+x*x); 

   } 

               #pragma omp critical 

                          sum += psum 

} 

     pi = step * sum;  

} 

Replace array for 

sum with a 

local/private version 

of sum (psum) … 

no more false 

sharing 

Use a critical section so 

only one thread at a time 

can update sum, i.e. you 

can safely combine psum 

values 



Tim Mattson OpenMP: 22 8/16/2011 

Pi program:  making loop-splitting and 
reductions even easier   

#include <omp.h> 

static long num_steps = 100000;         double step; 

void main () 

{     int i;    double x, pi, sum = 0.0; 

       step = 1.0/(double) num_steps; 

#pragma omp   parallel    for    private(i, x) reduction(+:sum)  

       for (i=0;i<= num_steps; i++){ 

   x = (i+0.5)*step; 

   sum = sum + 4.0/(1.0+x*x); 

       } 

       pi = step * sum; 

} 

Reduction used to 

manage 

dependencies 

Private clause 

creates data local to 

a thread 



Tim Mattson OpenMP: 23 8/16/2011 

Outline 

• OpenMP: History and high level overview 

• Software development with OpenMP 

• OpenMP 2.5: other essential constructs 
– Synchronization 

– Runtime library 

– Loop scheduling 

• OpenMP memory model  beware the flush 

• OpenMP 3.0 

• The NUMA crisis and OpenMP 



Tim Mattson OpenMP: 24 8/16/2011 

Synchronization: Barrier 

• Barrier: Each thread waits until all threads arrive. 

#pragma omp parallel shared (A, B, C) private(id) 

{ 

 id=omp_get_thread_num(); 

 A[id] = big_calc1(id); 

#pragma omp barrier  

#pragma omp for  

 for(i=0;i<N;i++){C[i]=big_calc3(i,A);} 

#pragma omp for nowait 

 for(i=0;i<N;i++){ B[i]=big_calc2(C,  i); } 

 A[id] = big_calc4(id); 

} 
implicit barrier at the end 

of a parallel region 

implicit barrier at the end of a 

for worksharing construct 

no implicit barrier 

due to nowait 



Tim Mattson OpenMP: 25 8/16/2011 

Putting the master thread to work 

• The master construct denotes a structured 
block  that is only executed by the master 
thread. The other threads just skip it (no 
synchronization is implied). 

#pragma omp parallel   

{  

 do_many_things(); 

#pragma omp master 

 {     exchange_boundaries();   } 

#pragma omp  barrier 

 do_many_other_things(); 

}  



Tim Mattson OpenMP: 26 8/16/2011 

Runtime Library routines and ICVs 
• To use a known, fixed number of threads in a program,  

(1) tell the system that you don’t want dynamic adjustment of the 
number of threads,  (2) set the number of threads, then (3) save the 
number you got. 

#include <omp.h> 

void main() 

{   int num_threads; 

      omp_set_dynamic( 0 ); 

      omp_set_num_threads( omp_num_procs() ); 

#pragma omp parallel 

    {     int id=omp_get_thread_num(); 

#pragma omp single    

              num_threads = omp_get_num_threads();    

           do_lots_of_stuff(id);  

     } 

} 

Protect this op since Memory 

stores are not atomic 

Request as many threads as 

you have processors. 

Disable dynamic adjustment of the 

number of threads. 

Internal Control Variables (ICVs) … define state of runtime system to 

a thread.  Consistent pattern: set with “omp_set” or an environment 

variable, read with “omp_get” 



Tim Mattson OpenMP: 27 8/16/2011 

Optimizing loop parallel programs   

#include <omp.h> 

#pragma omp parallel 
{ 
// define neighborhood as the num_neighbors particles 
// within “cutoff” of each particle “i”.   
#pragma omp for 
        for( int i = 0; i < n; i++ ) 
        { 
            Fx[i]=0.0;  Fy[i]=0.0; 
            for (int j = 0; j < num_neigh[i]; j++) 
                neigh_ind = neigh[i][j]; 
                Fx[i] += forceX(i, neigh_ind);  
                FY[i] += forceY(i, neigh_ind); 
             } 
        } 
} 
         

Particles may be 
unevenly distributed … 
i.e. different particles 
have different numbers 
of neighbors. 

Evenly spreading out 
loop iterations may fail 
to balance the load 
among threads 

We need a way to tell 
the compiler how to 
best distribute the 
load. 

Short range force computation for a particle 
system using the cut-off method 



Tim Mattson OpenMP: 28 8/16/2011 

The schedule clause 

• The schedule clause affects how loop iterations are mapped onto 
threads 

– schedule(static [,chunk]) 

• Deal-out blocks of iterations of size “chunk” to each thread. 

– schedule(dynamic[,chunk]) 

• Each thread grabs “chunk” iterations off a queue until all 
iterations have been handled. 

– schedule(guided[,chunk]) 

• Threads dynamically grab blocks of iterations. The size of the 
block starts large and shrinks down to size “chunk” as the 
calculation proceeds. 

– schedule(runtime) 

• Schedule  and chunk size taken from the OMP_SCHEDULE 
environment variable (or the runtime library … for OpenMP 3.0). 



Tim Mattson OpenMP: 29 8/16/2011 

Optimizing loop parallel programs   

#include <omp.h> 

#pragma omp parallel 
{ 
// define neighborhood as the num_neigh particles 
// within “cutoff” of each particle “i”.   
#pragma omp for schedule(dynamic, 10) 
        for( int i = 0; i < n; i++ ) 
        { 
            Fx[i]=0.0;  Fy[i]=0.0; 
            for (int j = 0; j < num_neigh[i]; j++) 
                neigh_ind = neigh[i][j]; 
                Fx[i] += forceX(i, neigh_ind);  
                FY[i] += forceY(i, neigh_ind); 
             } 
        } 
} 
         

Divide range of n into 
chunks of size 10. 

Each thread computes 
a chunk then goes back 
to get its next chunk of 
10 iterations. 

Dynamically balances 
the load between 
threads. 

Short range force computation for a particle 
system using the cut-off method 



Tim Mattson OpenMP: 30 8/16/2011 

Schedule Clause When To Use 

STATIC Pre-determined and 
predictable by the 
programmer 

DYNAMIC Unpredictable, highly 
variable work per iteration 

GUIDED Special case of dynamic to 
reduce scheduling overhead 

loop work-sharing constructs: 
The schedule clause 

Least work at 

runtime : 

scheduling 

done at 

compile-time 

Most work at 

runtime : 

complex 

scheduling 

logic used at 

run-time 



Tim Mattson OpenMP: 31 8/16/2011 

Summary of OpenMP’s key constructs 

• The only way to create threads is with the parallel 
construct: 
 #pragma omp parallel 

• All thread execute the instructions in a parallel 
construct. 

• Split work between threads by: 
– SPMD:  use thread ID to control execution 

– Worksharing constructs to split loops (simple loops only) 

#pragma omp for 

• Combined parallel/workshare as a shorthand 
 #pragma omp parallel for 

• High level synchronization is safest 
 #pragma critical 

 #pragma barrier  

 



Tim Mattson OpenMP: 32 8/16/2011 

Outline 

• OpenMP: History and high level overview 

• Software development with OpenMP 

• OpenMP 2.5: other essential constructs 
– Synchronization 

– Runtime library 

– Loop scheduling 

• OpenMP memory model  beware the flush 

• OpenMP 3.0 

• The NUMA crisis and OpenMP 



Tim Mattson OpenMP: 33 8/16/2011 

Shared Memory Architecture 

  

proc1 proc2 proc3 procN 

Shared memory 

cache1 cache2   cache3 cacheN 

a 

x 

x 

. . . 

There is a single address space (shared memory) but due to the 
caches, a processor may hold a value for “x” that is different from 

the one in shared memory. 



Tim Mattson OpenMP: 34 8/16/2011 

Source code 

Program order 

memory 

a b 
Commit order 

private view 

thread thread 

private view 
threadprivate threadprivate a a b b 

Wa  Wb  Ra  Rb  . . .  

OpenMP Memory Model: Basic Terms 

compiler 

Executable code 

Code order 

Wb Rb Wa Ra . . .  

RW’s in any 

semantically 

equivalent order 



Tim Mattson OpenMP: 35 8/16/2011 

OpenMP: Forcing a consistent view of memory 

• The flush construct denotes a sequence point where a thread tries to create a 
consistent view of memory for all thread-visible variables (the “flush set”). 

#pragma omp flush 
• For the variables in the flush set: 

» All memory operations (both reads and writes) defined prior to the sequence point 
must complete.  

» All memory operations (both reads and writes) defined after  the sequence point must 
follow the flush. 

» Variables in registers or write buffers must be updated in memory.  

• Compilers reorder instructions to better exploit the functional units and keep the machine busy 

– A compiler CANNOT do the following: 

» Reorder read/writes of variables in a flush set relative to a flush. 

» Reorder flush constructs when flush sets overlap 

– A compiler CAN do the following: 

» Reorder instructions NOT involving variables in the flush set relative to the flush. 

» Reorder flush constructs that don’t have overlapping flush sets. 

OpenMP applies flushes automatically at the “right” places 
(barriers, end of workshare constructs, etc).  You usually don’t 

need to worry about flushes explicitly. 



Tim Mattson OpenMP: 36 8/16/2011 

Pair-wise synchronization in OpenMP 

• OpenMP lacks synchronization constructs that 
work between pairs of threads. 

• When this is needed you have to build it yourself. 

• Pair wise synchronization 
– Use a shared flag variable 

– Reader spins waiting for the new flag value 

– Use flushes to force updates to and from memory 

This use of flush exposes the details of OpenMP’s relaxed 

memory model … a risky practice for experienced shared 

memory programmers only. 



Tim Mattson OpenMP: 37 8/16/2011 

Producer/consumer and flush 
int main() 
{ 
    double *A, sum, runtime;     int numthreads, flag = 0; 
    A = (double *)malloc(N*sizeof(double)); 
 
    #pragma omp parallel sections 
    { 
       #pragma omp section 
        { 
           fill_rand(N, A); 
           #pragma omp flush 
           flag = 1; 
           #pragma omp flush   
        } 
        #pragma omp section 
        { 
           #pragma omp flush   
           while (flag != 1){ 
                #pragma omp flush   
           } 
           #pragma omp flush  
           sum = Sum_array(N, A); 
        } 
      } 
} 

Use flag to Signal when the 

“produced” value is ready 

Flush forces refresh to memory.  

Guarantees that the other thread 

sees the new value of A 

Notice you must put the flush inside the while 

loop to make sure the updated flag variable is 

seen 

Flush needed on both “reader” and “writer” 

sides of the communication 



Tim Mattson OpenMP: 38 8/16/2011 

The rest of OpenMP 2.5 

• Create threads 
– parallel 

• Share work among a 
set of threads 

– for 
– single 
– Sections 

• Synchronize to 
remove race 
conditions 

– Critical 
– Atomic 
– Barrier 
– locks  
– flush 

• Manage data 
environment 

– Private  
– shared 
– threadprivate  
– firstprivate  
– Lastprivate 
– Reduction 

• Interact with runtime 
– change numbers of threads 
– Discover thread properties 
– modify environment 



Tim Mattson OpenMP: 39 8/16/2011 

Outline 

• OpenMP: History and high level overview 

• Software development with OpenMP 

• OpenMP 2.5: other essential constructs 
– Synchronization 

– Runtime library 

– Loop scheduling 

• OpenMP memory model  beware the flush 

• OpenMP 3.0 

• The NUMA crisis and OpenMP 



Tim Mattson OpenMP: 40 8/16/2011 

OpenMP 3.0: completed May 2008 

• Task expression 
– Task Queues 

– Loop collapse 

• Resource management 
– Stack size control 

– Thread wait policy 

– Improved Nesting support 

– Multiple Internal control 
variables 

• Scheduling 
– STATIC schedule 
– Schedule kinds 

• Clean up: 
– Constructors/destructors 
– Memory model 
– Unsigned int in a for-loop 
– Storage reuse 

Of all these changes, the 

most significant by far is 

the addition of task 

queues 

3.0 



Tim Mattson OpenMP: 41 8/16/2011 

Tasks beyond loops 

• OpenMP is fundamentally based on tasks … i.e. the 
constructs in OpenMP define sets of tasks executed by 
teams of threads. 

• OpenMP 2.5 provides only a few ways to define tasks: 

– The code redundantly executed inside parallel regions 
(SPMD programs). 

– Iterations from “simple loops” split between threads. 

– Section construct 

– Single construct (with a no wait if you want concurrency) 

• OpenMP 3.0 adds explicit tasks with deferred execution 
(task queues) … thereby dramatically expanding the scope of 
algorithms that can be handled by OpenMP  

3.0 



Tim Mattson OpenMP: 42 8/16/2011 

Explicit Tasks in OpenMP 3.0 
• OpenMP  2.5 can not handle the very common case of a pointer 

chasing loop: 

• OpenMP  3.0 covers this case with explicit tasks: 

nodeptr list, p; 

for (p=list; p!=NULL; p=p->next) 

  process(p->data); 

nodeptr list, p; 

#pragma omp single 

{ 

  for (p=list; p!=NULL; p=p->next) 

        #pragma omp task firstprivate(p) 

                 process(p->data); 

} 

One thread goes 

through the loop and 

creates a set of tasks 

Captures value of p for 

each task 

tasks go on a queue to 

be executed by an 

available thread 

3.0 



Tim Mattson OpenMP: 43 8/16/2011 

Task Expression: 
The new OpenMP 3.0 Task directive 

• Explicit tasks are created with the task construct 
#pragma omp task [<clause>] … 

<structured block> 

• A task is executed by a thread, called the task-
thread, which may be any thread in the encountering 
thread’s team. 

• A task barrier … is a point where preceding tasks 
must complete before threads continue 

• To prevent deadlock, we define “thread switching 
points” where a thread may pause and execute other 
tasks. 

– This happens most commonly at barriers or other natural 
places where a break in the action makes sense. 

3.0 



Tim Mattson OpenMP: 44 8/16/2011 

Tasks with synchronization 

struct node { 
struct node *left; 
struct node *right; 

}; 
extern void process(struct node *); 
void postorder_traverse( struct node *p ) { 

if (p->left) 
#pragma omp task // p is firstprivate by default 

postorder_traverse(p->left); 
if (p->right) 
#pragma omp task // p is firstprivate by default 

postorder_traverse(p->right); 
#pragma omp taskwait 
process(p); 

} 

Do not proceed until prior 

tasks in scope have 

completed 

3.0 



Tim Mattson OpenMP: 45 8/16/2011 

Outline 

• OpenMP: History and high level overview 

• Software development with OpenMP 

• OpenMP 2.5: other essential constructs 
– Synchronization 

– Runtime library 

– Loop scheduling 

• OpenMP memory model  beware the flush 

• OpenMP 3.0 

• The NUMA crisis and OpenMP 



Tim Mattson OpenMP: 46 8/16/2011 

OpenMP Computational model  
• OpenMP was created with a particular abstract machine 

or computational model in mind: 
» Multiple processing elements. 

» A shared address space with “equal-time” access for each 
processor. 

» Multiple light weight processes (threads) managed outside of 
OpenMP (the OS or some other “third party”). 

Proc3 Proc2 Proc1 ProcN 

Shared Address Space 



Tim Mattson OpenMP: 47 8/16/2011 

How realistic is this model? 

• Some of the old 
supercomputer 
mainframes followed 
this model,  

• But as soon as we added caches 
to CPUs, the SMP model implied 
by OpenMP fell apart. 

– Caches … all memory is equal, but 
some memory is more equal than 
others. 

A CPU with lots of cache … 



Tim Mattson OpenMP: 48 8/16/2011 

Memory Hierarchies 
• A typical microprocessor memory hierarchy 

I-cache 

TLB 

CPU D-cache 

U
n

ifie
d

 C
a

c
h

e
 

R
e

g
 F

ile
 

RAM 

• Instruction cache and data cache pull data from a unified cache that maps 
onto RAM. 

• TLB implements virtual memory and brings in pages to support large memory 
foot prints.   



Tim Mattson OpenMP: 49 8/16/2011 

Do you need to worry about the TLB? 

Transpose: 2 threads on a Dual Proc Xeon 
T

im
e

 (
s
e

c
s
) 

Matrix Order 

Tiled to optimize 

use of TLB 

Ignore TLB issues (no 

tiling)  

Source: M Frumkin, R. van de Wijngaart, T. G. Mattson, Intel 



Tim Mattson OpenMP: 50 8/16/2011 

Put these into a larger system and it 
only get’s worse 

Proc0 Proc1 

Memory 
(0) 

Proc2 Proc3 

Memory 
(1 ) 

NODE 0 NODE 1 

• Memory access takes longer if memory is remote.  

• For example, on an SGI Altix: 
•Proc0 to local memory (0)  207 cycles 

•Proc0 to remote memory (1) 409 cycles 

Source: J. Marathe & F. Mueller, Gelato ICE, April 2007. 

• Consider a typical NUMA computer:  



Tim Mattson OpenMP: 51 8/16/2011 

Consider a  cluster, and it gets much worse! 

latency to L1: 1 - 2 cycles 

latency to L2: 5 - 7 cycles 

latency to L3: 12 - 21 cycles 

latency to memory: 180 – 225 cycles 

Gigabit Ethernet - latency to remote node: ~45000 cycles (30uS) 

Infiniband* - latency to remote node: ~7500 cycles (5uS) 

Itanium 2 latencies 

Source: Intel Cluster OpenMP workshop 



Tim Mattson OpenMP: 52 8/16/2011 

NUMA issues on a Multicore Machine  
2-socket Clovertown Dell PE1950 

2 threads, 2 cores, 

sharing a cache 

2 thrds, 2 cores, 1 sock, 

no shared cache 

A single 

quad-core 

chip is a 

NUMA 

machine! 

Source Dieter an Mey, IWOMP’07 face to face meeting 

2 thrds, 2 cores, 2 sockets  

$ $ 

Xeon® 5300  

Processor block 

diagram 

Third party names are the property of their owners. 



Tim Mattson OpenMP: 53 8/16/2011 

Surviving NUMA: initializing data   

• Keep data close to where 
it is needed: 

– Bind threads to cores. 

– Iniitialize the data so 
its near the core that 
will use it. 

• Test problem: Jacobi 
from www.openmp.org, 
with 2000x2000 matrix. 

• Hardware: a 4-socket 
machine with dualcore 
Opteron processors with 
processor binding 
enabled. 

0

500

1000

1500

2000

2500

3000

1 2 thrd 4 thred 8 thred

1st touch

master init

MFLOPS vs. number of threads 

Third party names are the property of their owners. 

Source Dieter an Mey, IWOMP’07 face to face meeting 



Tim Mattson OpenMP: 54 8/16/2011 

Conclusion 

• OpenMP is one of the most commonly used APIs 
for programming shared memory computers: 

– My friends in the Intel Software group tell me countless ISVs 
are shipping applications using OpenMP. 

• Incremental parallelism with testing at every step 
is not a luxury … it is a requirement. 

• OpenMP makes things about as easy as we can for 
application programmers. 

• OpenMP is useful in hybrid models to help expose 
additional levels of concurrency 

• BUT, OpenMP is in trouble when it comes to 
NUMA machines … and practically all machines are 
NUMA so this is a big deal. 


