
Determinism for Multithreaded Code
Asserting and Checking Determinism for Parallel Programs
Jacob Burnim • Koushik Sen • Par Lab, University of California, Berkeley

Parallel Computing Laboratory • June, 2009

﻿A Case for Determinism
• Increasing cores-per-chip requires parallel software
• Parallel software is more difficult to write/debug than sequential counterpart

- Unexpected thread interleavings may yield unintended results
• To make parallel programs easy to write and debug, we try to make them
behave as sequential programs, that is

-Same input should yield semantically same output (i.e. deterministic output)
-Non-determinism from thread scheduling should not yield different outputs

﻿Specifying Parallel Correctness
•Spectrum of correctness specifications for parallel programs:

﻿Full Functional Correctness
•Pro: Very precise.
•Con: Difficult to write.
•May requires reimplementing code
sequentially, possibly in an assertion
language

•Proposal: specify deterministic behavior
•A parallel program behaves as if it is
sequential
•Easy for programmers
-Identify outputs that should be the same

•More precise than implicit specs
-Can distinguish benign data races from
 races leading to unintended output
-Also for high-level races, atomicity, etc.

Basic Example
 deterministic {
 img = par_mandelbrot(params);
 }

Specifies that, for any two executions with
identical initial state (params), the resulting
states (img) should be identical.

Semantic Determinism
 deterministic {

float C[][];
C = par_matrix_mult(A, B);

 } assert (|C – C’| < ε);

Specifies that, for any two executions from
the same initial state, the resulting matrices
must have entries equal to within tolerance ε.

Preconditions for Determinism

 Set set = new RedBlackTreeSet();
 ...
 deterministic assume (set.equals(set’)) {

cobegin {
set.add(5);
set.add(7);

}
 } assert (set.equals(set’));

Specifies that, for any two executions where
sets initially contains the same elements,
the resulting sets will also contain the same
elements.

Deterministic Specification: A Sweet Spot?

Checking Determinism
• Built a Java library for determinism assertions.
- Records initial and final state for each block.
- Checks for every deterministic block:
 deterministic assume (Pre(s0,s0')) {
 P
 } assert (Post(s1,s1'));

 that for every two runs (s
0
,s

1
) and (s

0
',s

1
'):

 Pre(s0,s0') => Post(s0,s1')

• Easy to use: For benchmarks, writing
 assertions took only 5-10 minutes.
• Effective: For benchmarks, library automatically
 distinguished benign races from real bugs:

﻿No source of non-determinism
(e.g. no race)
•Pro: No programmer specification
•Con: Lack of precision
•Races could be benign or harmful

Atomicity vs Determinism

• Atomicity: Sequential code
 not harmed by its parallel/
 non-deterministic environ.

• Determinism: Parallel code is
 essentially sequential despite
 its internal non-determinism.

Use in Verification

Can treat blocks as sequential
once determinism verified,
avoiding exponential # paths:

Benchmark LOC Threads
Data Races High-Level

Races
Found Bugs Found Bugs

JGF

 sor 300 10 2 0 0 0
 moldyn 1k 10 2 0 0 0
 lufact 2k 10 1 0 0 0
 raytracer 2k 10 3 1 0 0
 montecarlo 4k 10 1 0 2 0

PJ

 pi 15k 4 9 0 1+ 1
 keysearch3 15k 4 3 0 0+ 0
 mandelbrot 15k 4 9 0 0+ 0
 phylogeny 19k 4 4 0 0+ 0

 tsp 700 5 6 0 2 0

	Poster Title Here

