
The CA-BiCG Algorithm

A Parallel Communication-Avoiding Biconjugate Gradient Algorithm

Erin Carson and Nick Knight

Performance Results

Future Work

Shared Memory Parallel Implementation

The Matrix Powers Kernel

Research supported by Microsoft (Award #024263) and Intel (Award #024894) funding and by matching funding by U.C. Discovery (Award #DIG07-10227)

Motivation: The Cost of Communication

Fast
Memory

DRAM

P1

P2

P3

P4

• The cost of an algorithm has two primary components: computation

(floating point operations) and communication (movement of data to

and from memory)

• Communication is comprised of two measurements: bandwidth (total

number of words moved) and latency (the number of messages in which

those words are sent)

Sequential Case Parallel Case

• Because flop rate is increasing at a faster rate than memory bandwidth

or inverse memory latency, computations are communication bound

• Motivation: We can improve the performance of iterative methods

if we rearrange the algorithm to avoid communication.

The Biconjugate gradient algorithm is a Krylov subspace method for the solution of

linear systems that are not necessarily symmetric or positive definite. We rewrite the

standard BiCG algorithm to make use of the Matrix Powers Kernel,

[A, x]  [x, Ax, …, Akx],

which avoids communication by eliminating the k SpMVs in the inner loop. We can

additionally use the matrix powers kernel and residual vectors to form a Gram

matrix, which can then be used to eliminate dot products.

• Create Matrix Powers Kernel implementation that will allow us to

compute the Krylov subspace for both A and AT , so we can test on

nonsymmetric matrices

• Further experiments on convergence properties

• Implementation of other bases (Newton, Chebyshev)

• Explore opportunities for co-tuning: Can we achieve further speedups?

• Extend this algorithm to CA-BiCGStab in order to improve stability

• Exploit more opportunities for parallelism (computing recurrence

coefficients, eliminating dot products by use of Gram Matrix, etc.)

We implemented both a shared memory parallel version of standard BiCG and a shared

memory parallel version of CA-BiCG. All tests were run on the Intel Xeon X5550

(Nehalem) architecture, which is dual socket, quad core. The first experiment illustrates

strong scaling of both algorithms for up to 4 threads.

The matrix powers kernel takes a sparse matrix A, a dense vector x, and

scalars and outputs the vectors k ,...,1

xIAIAIAxIAIAxIA kk))...()((,...,))((,)(11121   

Whereas this operation would normally compute these vectors by performing

k SpMV operations, the matrix powers kernel has been designed to compute

all k vectors while only reading the matrix A once. This is accomplished by

determining dependencies at the beginning of the computation, and ensuring

that each partition has all required data to calculate its entries in the result

vectors before doing any work. A method based on hypergraph partitioning

is used to minimize dependencies, and thus minimizes redundant work. This

minimizes communication both in terms of reading from slow memory and

minimizing communication between threads.

Parallel algorithm for a tridiagonal matrix (n = 40, p = 4, k = 3). Vertices, representing elements of x (and

rows of A), are colored by their affinities. Overlapping regions indicate redundant work. [MHDY09].

Representation of dependencies in a general graph

with 7 partitions. In order to compute values for black

vertices, we also need red vertices for k = 1, red and

green for k = 2, etc. [MHDY09].

Our second experiment involved comparing the standard BiCG method to our

communication-avoiding method. We gathered timing data, also on the Nehalem

architecture, for tridiagonal matrices of increasing size. We see speedups up to 17%.

We used pthreads to write a shared memory parallel implementation of CA-BiCG (and

BiCG). Each thread “owns” rows of matrices and entries of vectors, done with a naïve

partitioning, which all reside in shared memory. Although iterations in the algorithm must

be performed sequentially, the operations within the loop can be easily parallelized. We

parallelized the algorithm in the following ways:

• The matrix powers kernel computes the k basis vectors in parallel

• Each thread computes its entries of the search direction vector (small

SpMV), according the to rows of the matrix it owns

• Dot products are performed in parallel

• Each thread computes updated values for the entries it owns in the result vectors

and residual vectors

Hypergraph partitioning

based on k-level column

nets. Given a partition, the

total communication

volume can be found by

determining the cut cost of

the graph between vertices

in each partition. Black

edges represent

dependencies for k = 1, and

red and black edges

represent dependencies for

k = 2.

0

50

100

150

200

250

300

1 2 3 4

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Number of Threads

Strong Scaling for Parallel BiCG Algorithm

0

10

20

30

40

50

60

1 2 3 4

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Number of Threads

Strong Scaling for Parallel CA-BiCG

Algorithm

0.9

0.95

1

1.05

1.1

1.15

1.2

5000 10000 20000 50000 70000

R
el

at
iv

e
P

er
fo

rm
an

ce

Matrix Dimensions

Normalized Performance for CA-BiCG vs. BiCG

CABiCG

BiCG

The matrix powers kernel avoids an additional communication for each increase of s by

1, but also incurs additional computational cost, since the surface-to-volume ratio increases

with the fill-in. After some value of s, this extra work will exceed the savings of avoiding

communication, and become worse than the traditional parallel BiCG algorithm. To explore

this behavior, we ran CA-BiCG on a 20000x20000 tridiagonal matrix, with varying s values.

The minimum runtime occurs at s=3, although performance increases are noted between s=2

through 7. We expect these features to shift to the right in environments where

communication is more expensive.

8

9

10

11

12

13

14

2 4 6 8 10 12

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Basis Length (s value)

Algorithm Speed vs. Basis Length

CA-BiCG
BiCG

