
The CA-BiCG Algorithm

A Parallel Communication-Avoiding Biconjugate Gradient Algorithm

Erin Carson and Nick Knight 

Performance Results

Future Work

Shared Memory Parallel Implementation

The Matrix Powers Kernel

Research supported by Microsoft (Award #024263) and Intel (Award #024894) funding and by matching funding by U.C. Discovery (Award #DIG07-10227)

Motivation: The Cost of Communication
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• The cost of an algorithm has two primary components: computation 

(floating point operations) and communication (movement of data to 

and from memory)

• Communication is comprised of two measurements: bandwidth (total 

number of words moved) and latency (the number of messages in which 

those words are sent) 

Sequential Case Parallel Case

• Because flop rate is increasing at a faster rate than memory bandwidth 

or inverse memory latency, computations are communication bound

• Motivation: We can improve the performance of iterative methods 

if we rearrange the algorithm to avoid communication. 

The Biconjugate gradient algorithm is a Krylov subspace method for the solution of 

linear systems that are not necessarily symmetric or positive definite. We rewrite the 

standard BiCG algorithm to make use of the Matrix Powers Kernel, 

[A, x]  [x, Ax, …, Akx], 

which avoids communication by eliminating the k SpMVs in the inner loop. We can 

additionally use the matrix powers kernel and residual vectors to form a Gram 

matrix, which can then be used to eliminate dot products. 

• Create Matrix Powers Kernel implementation that will allow us to 

compute the Krylov subspace for both A and AT , so we can test on 

nonsymmetric matrices

• Further experiments on convergence properties

• Implementation of other bases (Newton, Chebyshev)

• Explore opportunities for co-tuning: Can we achieve further speedups?

• Extend this algorithm to CA-BiCGStab in order to improve stability

• Exploit more opportunities for parallelism (computing recurrence 

coefficients, eliminating dot products by use of Gram Matrix, etc.)

We implemented both a shared memory parallel version of standard BiCG and a shared 

memory parallel version of CA-BiCG. All tests were run on the  Intel Xeon X5550  

(Nehalem) architecture, which is dual socket, quad core. The first experiment illustrates 

strong scaling of both algorithms for up to 4 threads. 

The matrix powers kernel takes a sparse matrix A, a dense vector x, and 

scalars                and outputs the vectors k ,...,1

xIAIAIAxIAIAxIA kk ))...()((,...,))((,)( 11121   

Whereas this operation would normally compute these vectors by performing 

k SpMV operations, the matrix powers kernel has been designed to compute 

all k vectors while only reading the matrix A once.  This is accomplished by 

determining dependencies at the beginning of the computation, and ensuring 

that each partition has all required data to calculate its entries in the result 

vectors before doing any work. A method based on hypergraph partitioning 

is used to minimize dependencies, and thus minimizes redundant work. This 

minimizes communication both in terms of reading from slow memory and 

minimizing communication between threads. 

Parallel algorithm for a tridiagonal matrix (n = 40, p = 4, k = 3). Vertices, representing elements of x (and 

rows of A), are colored by their affinities. Overlapping regions indicate redundant work. [MHDY09].

Representation of dependencies in a general graph 

with 7 partitions. In order to compute values for black 

vertices, we also need red vertices for k = 1, red and 

green for k = 2, etc. [MHDY09].

Our second experiment involved comparing the standard BiCG method to our 

communication-avoiding method. We gathered timing data, also on the Nehalem 

architecture, for tridiagonal matrices of increasing size. We see speedups up to 17%. 

We used pthreads to write a shared memory parallel implementation of CA-BiCG (and 

BiCG). Each thread “owns” rows of matrices and entries of vectors, done with a naïve 

partitioning, which all reside in shared memory. Although iterations in the algorithm must 

be performed sequentially, the operations within the loop can be easily parallelized. We 

parallelized the algorithm in the following ways:

• The matrix powers kernel computes the k basis vectors in parallel

• Each thread computes its entries of the search direction vector (small 

SpMV), according the to rows of the matrix it owns

• Dot products are performed in parallel 

• Each thread computes updated values for the entries it owns in the result vectors 

and residual vectors

Hypergraph partitioning 

based on k-level column 

nets. Given a partition, the 

total communication 

volume can be found by 

determining the cut cost of 

the graph between vertices 

in each partition. Black 

edges represent 

dependencies for k = 1, and 

red and black edges 

represent dependencies for 

k = 2. 
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The matrix powers kernel avoids an additional communication for each increase of s by 

1, but also incurs additional computational cost, since the surface-to-volume ratio increases 

with the fill-in. After some value of s, this extra work will exceed the savings of avoiding 

communication, and become worse than the traditional parallel BiCG algorithm. To explore 

this behavior, we ran CA-BiCG on a 20000x20000 tridiagonal matrix, with varying s values. 

The minimum runtime occurs at s=3, although performance increases are noted between s=2 

through 7. We expect these features to shift to the right in environments where 

communication is more expensive.
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